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Abstract— Electrostatic tuning of the resonant modes in
vibratory gyroscopes is often suggested as a means for compen-
sating manufacturing aberrations that produce detuned reso-
nances. In high performance sensors, however, this approach
places very stringent requirements on the stability of the bias
voltages used for tuning. Furthermore, the bias voltage stability
must be maintained over the operating environment, especially
with regard to temperature variations. This paper presents two
methods for tuning the resonant modes in MEM vibratory
gyroscopes using mass perturbation of the sensor’s resonant
structure. The approach ameliorates the stringent bias voltage
stability requirements and can be applied to any vibratory
gyroscope that relies on modal frequency matching for optimum
performance.

I. INTRODUCTION

Most high-performance vibratory angular rate sensors rely
on the matching of the frequencies of two modes that are
highly coupled by a Coriolis acceleration term when the
equations of motion are written in a case-fixed coordinate
system. Frequency matching exploits the mechanical gain
afforded by the sensor dynamics and leads to the best
attainable signal-to-electronic noise ratio. The degenerate
dynamics can be attained by designing structures with a high
degree of symmetry and in the case of the Boeing Silicon
Disk Resonator Gyro (SiDRG) this symmetric design also
provides a high degree of isolation of the Coriolis modes
from linear acceleration of the sensor case. These ideas
have also been exploited in Litton’s Hemispherical Resonator
Gyro (HRG), the BAE nickel ring gyro, and the BEI quartz
tuning fork gyro. In all of these sensors, the anchor attaching
the resonant structure to the sensor case is, ideally, a nodal
point for the Coriolis coupled modes and the symmetric
design, on its face, guarantees degenerate modal frequencies.
Furthermore, the high degree of isolation reduces energy
dissipation in the modes, which is a source of angular rate
bias and drift. The HRG is an extreme example of the degree
of isolation that can be achieved– quality factors exceeding
6×106 have been reported when the resonators are fabricated
from fused quartz [6], [7].

For those sensors lending themselves to MEM fabrication,
such as the SiDRG, local variations in etch rate produce
very small, but unpredictable, asymmetries that manifest

Manuscript submitted on September 21, 2007. This work was supported
by Boeing and NSF grant #0601622.

The authors are with the Mechanical and Aerospace Engineering Depart-
ment, University of California, Los Angeles, CA 90095 USA.

David Schwartz is a Graduate Student Researcher.
Dong Joon Kim is a Postdoctoral Researcher
Robert T. M’Closkey is Professor and corresponding author (310 825-

2909, rtm@obsidian.seas.ucla.edu)

1.468 1.469 1.47 1.471 1.472 1.473 1.474 1.475 1.476 1.477

x 10
4

−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Fig. 1. SiDRG frequency response within a narrow, 100 Hz band
encompassing the “fundamental” Coriolis modes. Though the frequency
split is small in a relative sense –less than 0.3% –the sensor effectively has
no mechanical gain in this state. The present work proposes a systematic
method for tuning these modal frequencies to degeneracy by perturbing the
resonator mass matrix.

themselves as a splitting of the modal frequencies (Fig. 1).
Although the frequency splits are small, on the order of
0.3% or less, the absolute separation between the modal
frequencies coupled with their relatively high Q conspire to
eliminate the mechanical gain advantage that was a primary
objective of sensor’s design in the first place.

In past work, the resonant frequencies of the SiDRG
were tuned by locally altering the resonator stiffness by
applying electrostatic forces with dedicated electrodes [2],
[3], [5]. Unfortunately the electrodes are required to hold a
very stable voltage over the operating environment, which
is difficult to do with compact, low-cost electronics. The
possibility of tuning the modes by permanently altering the
mass distribution of the sensor is attractive because it elim-
inates the need for tuning bias voltages [1]. On the SiDRG
this can be accomplished by using a laser to strategically
trim the resonator. In order to develop the mass perturbation
algorithms a scale model of the SiDRG, called the Macro
DRG, was fabricated. Using a novel model identification
method, the effects of mass matrix perturbation on the Macro
DRG are studied and several frequency tuning approaches are
demonstrated.
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Fig. 2. Photograph of the Macro DRG. The two electromagnetic actuators
are labeled D1 and D2, and the two capacitive pick–offs that detect planar
deflection of the resonator are located at S1 and S2.

II. MACRO DRG EXPERIMENTAL SETUP

The Boeing SiDRG was developed to exhibit the advan-
tages of the HRG at a much lower cost. The end result is a
thin concentric ring structure with an 8mm diameter. Sensing,
driving and trimming electrodes are embedded inside the
gaps between the rings.

The Macro DRG, on the other hand, is a steel simulacrum
of the SiDRG with an outer diameter of 12 cm (Fig. 2). The
Macro DRG is instrumented with two electromagnetic actu-
ators and two capacitive sensing pick-offs that are mounted
on linear translation stages for a precise gap control. Fig. 3
shows the block diagram of a testing setup for an open
loop system identification. A DSP generates signals that
drive an op-amp whose ouput energizes the electromagnetic
actuators thereby applying radial forces to the resonator.
The structural response creates a varying capacitance that
produces a current which is then converted into buffered
voltage via a transimpedance amplifier. The sense signals
are further amplified, scaled and filtered prior to sampling.
Small NdFeB magnets (disc shape, 1.5mm diameter, .75mm
thickness) are placed on the top surface of the resonator to
create (reversible) mass perturbations.

A single channel of Macro DRG frequency response data
is shown in Fig. 4. The fundamental Coriolis modes are
near 1.6kHz and the zoomed frequency response shows the
individual Coriolis-coupled modes exhibiting a 2 Hz (0.12%)
frequency split.

III. SENSOR MODEL

The system identification method used to guide the mass
perturbation process is based on the one developed by the
authors for electrostatic tuning of the gyro dynamics [5] . The
electrostatic tuning case will be briefly reviewed in order
to highlight the differences with the sensor model used in
the mass perturabation study. For electrostatic tuning, the
linear mechanics of nearly degenerate vibratory gyros in a
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Fig. 3. Block diagram of test setup. Filtered drive and sense signals are
denoted Di and Si, i = 1,2. Frequency response data is used to construct a
two-input/two-output model of the sensor.

neighborhood of the Coriolis-coupled modes can be modeled
as

Hout(s)RZ−1
act (s), (1)

where s is the Laplace transform variable and where

Zact(s) := Ms2 +Cs+K0 +
ne

∑
p=1

Kpν2
p. (2)

In this model M, C, and K0 are real 2× 2 positive definite
mass, damping and stiffness matrices, respectively. There are
ne electrodes on the sensor that are dedicated for electrostat-
ically tuning the modes and the “stiffness matrix sensitiv-
ity” associated with these electrodes are given by the real
symmetric matrices Kp, p = 1, . . . ,ne, which are multiplied
by the square of the voltage potentials existing between
the electrodes and resonator (denoted νp, p = 1, . . . ,ne).
The angular rotation rate of the sensor is assumed to be
zero in this model. The subscript on Zact denotes that the
system matrices are written in the generalized coordinates
specified by the actuator (forcer) frame. The transfer function
Hout represents any dynamics associated with the signal
conditioning electronics and R ∈ R2×2 captures the effects
of noncolocated pick-offs and forcers.

The model parameters {M,C,K0,K1, . . . ,Kne} are esti-
mated by using frequency response data from nexp ex-
periments conducted at different tuning electrode voltage
potentials. In other words, the kth experiment with tuning
potentials defined by {νk,1,νk,2, . . . ,νk,ne}, k = 1, . . . ,nexp,
yields two-input/two-output complex-valued frequency re-
sponse data {Ψk,1,Ψk,2, . . . ,Ψk,mk} corresponding to the mk

frequencies {ωk,1,ωk,2, . . . ,ωk,mk}.
The minimax optimization problem for estimating the

sensor parameters is

min
M>I,C>0

Kp≤0, p=1,...,ne

K0+∑Kpν2
p>0

Rl∈C2×2, l=0,1,...,nR

max
k=1,...,nexp
q=1,...,mk

σ̄
(
R̃k,q−ψk,qZact( jωk,q)

)
, (3)

where

R̃k,q :=
nR

∑
l=0

Rlω l
k,q, (4)
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Fig. 4. The S1/D1 channel empirical frequency response of the Macro
DRG showing wideband (top) and narrowband dynamics in a neighborhood
of the Coriolis-coupled modes (bottom). Just as in the SiDRG response, the
Coriolis-coupled modes of the Macro DRG have a small but detrimental
frequency split despite the fact that the steel resonator visually exhibits
symmetry. Small magnets are attached to the rings of the resonator to
achieve mass loading, thereby altering the mass matrix governing the modal
coupling.

and where evaluating Zact at the qth frequency point associ-
ated with the kth experiment yields

Zact( jωk,q) := −Mω2
k,q +K0 +

ne

∑
p=1

Kpν2
k,p + jCωk,q. (5)

The M > I constraint in (3) is imposed rather than the
typical M > 0 because in the latter case all of the free
parameters may scaled by a nonzero constant so as to make
the cost arbitrarily small without actually changing the model
frequency response. Also note that HoutR has been replaced
by R̃. This recognizes the fact that any additional dynamics
due to, for example, signal conditioning preamplifiers, should
not exhibit significant magnitude and phase changes in a
neighborhood of the resonant modes. If these dynamics can
be reflected to the sensor output then they can be combined
with R into a low order polynomial function of frequency

with coefficients in C2×2, i.e. R̃ is degree nR. In fact, R̃ can
be viewed as combining the first few terms of the Taylor
series expansion of the frequency response function of Hout

with sensor-actuator combined with non-collocation effects.
Once the model parameters are identified it is possible to
compute the bias potentials necessary to tune the modes
to degeneracy, i.e. the potentials are selected so that the
generalized eigenvalues of the pair (M,K0 +∑ne

p=1 Kpν2
p) are

equal.
The present study requires that we modify Zact . Assume

that nexp experiments are conducted in which mass is added
to, or, removed from, the resonator. The kth experiment
generates frequency response data {Ψk,1,Ψk,2, . . . ,Ψk,mk} at
the following grid of frequencies {ωk,1,ωk,2, . . . ,ωk,mk}. The
index k = 0 is reserved for the unperturbed case. In this
scenario, Zact in (3) is replaced by

Zact( jωk,q) := −Mkω2
k,q +K + jCωk,q, k = 0,1, . . . ,nexp,

(6)
where ωk,q is the qth frequency point affiliated with the kth
experiment. As mentioned above, M0 represents the mass
matrix of the unperturbed sensor, and M1, M2, etc., represent
the mass matrices corresponding to perturbed sensor states.
No distinction need be made between mass removal or mass
addition. As in the electrostatic tuning case, a minimax
problem can be specified to compute the model parameters
in this mass perturbation scenario,

min
K>0,C>0

Mk>I,k=0,1,...,nexp

Rl∈C2×2, l=0,1,...,nR

max
q=1,...,mk

σ̄
(
R̃k,q −ψk,qZact( jωk,q)

)
, (7)

where R̃k,q is given by (4) and σ̄ is the maximum singular
value. The approach forces the differences between the fre-
quency response data among the experiments to be captured
by the changes in the sensor mass matrix. Note that (7) can
be formulated as a convex optimization.

IV. EXPERIMENTAL RESULTS

Experimental data is generated by driving each actuator
with a narrow band chirp sequence that encompasses the
Coriolis modes of the Macro DRG. The input-output se-
quences are processed to yield 2× 2 empirical frequency
response data on a grid of frequencies with 0.1 Hz resolution.
The model (6) is now applied to two mass perturbation cases,
in addition to the nominal case when no mass perturbation is
present. The first mass perturbation case places four magnets
on outer ring of the Macro DRG as shown in the left-hand
picture of Fig. 5. The orientation of this picture coincides
with the photograph in Fig. 2. The second mass perturbation
case places four magnets on the outer ring of the DRG as
shown in the right-hand picture of Fig. 5. The empirical
frequency responses for these perturbed cases along with
the unperturbed case (no magnets added) are shown as the
top grouping of plots in Fig. 6. Since the sensor is a two-
input/two-output plant, four frequency response magnitude
plots are shown in this figure (the individual channels are de-
noted S1/D1, S2/D1, etc.). It is clear that mass perturbations
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Fig. 5. Left. Location of Δ1 perturbation. Right. Location of Δ2
perturbation. Masses are added at four points in each Δ to achieve more
even mass loading.

shift both modal frequencies, change the frequency split, and
also modify the coupling between the channels. The modal
parameter set {M0,M1,M2,C,K} is determined using (7)
and the three sets of frequency response data corresponding
the unperturbed sensor and the two perturbed cases are
generated for comparison with the data. The model frequency
response using mass matrix Mk, k = 0,1,2, is given by(
∑nR

l=0 Rlω l
)(−Mkω2 +K + jCω

)−1
. Instead of plotting the

model frequency response against the empirical frequency
response, we plot the absolute error between the data and
model,

σ̄
(
Ψk,q− R̃k,qZ

−1
act ( jωk,q)

)
, k = 0,1,2,

These plots give direct assessment of the modeling error as
function of frequency and are shown in the bottom plot in
Fig. 6. The absolute error is approximately 25dB smaller than
the frequency response magnitude across the band of interest
thereby demonstrating a good model fit. It is convenient to
define the mass matrix perturbation as Δk = Mk −M0 , k =
1, . . . ,nexp, so we will adopt this notation forthwith.

Since we are interested in using this model to guide the
mass addition/removal process with the objective of driving
the two modal frequencies together, the predictive power of
the model is tested on two new data sets. The first test adds
two magnets at each of the four points on the resonator
corresponding to the positions shown the left-hand picture in
Fig. 5 (total of eight magnets). This perturbation doubles the
magnitude of the mass perturbation corresponding to Δ1 so
we compare the empirical data with the frequency response
of the model(

nR

∑
l=0

Rlω l

)(−(M0 +2Δ1)ω2 +K + jωC
)−1

.

The comparison is made in the top set of plots in Fig. 7
(“Case 1”). The model predicts the actual frequency response
extremely well especially since the positioning of the mag-
nets is done by hand.

The second test case involves placing a single magnet at
each of the eight points on the resonator corresponding to the
locations shown in both pictures in Fig. 5. This perturbation
should correspond to modifying the nominal mass matrix
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Fig. 6. (Top group) Empirical frequency response of Macro DRG in a
neighborhood of the fundamental Coriolis coupled modes. The solid trace
represents the native resonator dynamics without any mass perturbation.
The other two dashed traces represent the resonator dynamics when mass
perturbations are created by attaching small magnets to the resonator. The
perturbation locations is shown in Fig. 5. (Bottom plot) Absolute error
between the empirical frequency response data and the identified model.

by the sum of Δ1 and Δ2, thus we compare the frequency
response data against(

nR

∑
l=0

Rlω l

)(−(M0 +Δ1 +Δ2)ω2 +K + jωC
)−1

.

Again, the bottom set of plots in Fig. 7 (“Case 2”) shows a
very good agreement between the model prediction and the
empirical frequency response data.

V. TUNING THE MODAL FREQUENCIES

The challenge with tuning the modal frequencies using
the mass perturbation approach that is not present in the
electrostatic tuning approach is the fact that the mass pertur-
bation approach does not possess a simple representation of
the mass perturbation matrix as a function of perturbation
location on the resonator (recall that the tuning voltages
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Fig. 7. Top: Empirical frequency response of macro DRG with double the
mass perturbation at the Δ1 perturbation locations (dashed trace) compared
to the frequency response predicted by the model R̃( jω)(−(M0 +2Δ1)ω2 +
K + jωC)−1 (thin solid trace). Bottom: Empirical frequency response of
macro DRG with the mass perturbations in both the Δ1 and Δ2 perturbation
locations (dashed trace) compared to the frequency response predicted by
the model R̃( jω)(−(M0 +Δ1 +Δ2)ω2 +K + jωC)−1 (thin solid trace).

appeared directly in the sensor model for the electrostatic
case –the functional form of the stiffness matrix dependence
on the tuning voltages is easily motivated by considering the
energy stored in the capacitor formed by the resonator and
tuning electrodes). It is possible to analytically derive a rela-
tionship between the perturbation location and the resulting
mass matrix perturbation for a much simpler structure such
as a single, thin ring. Unfortunately the complex topology
of the DRG with its multiple, coupled, concentric rings
precludes such an approach. The mass perturbation matrix
can, however, be experimentally identified using the sensor
model (6). Thus, we proceed to systematically observe the
change in M in one ninety degree arc at regular intervals
(it can be shown that adding the same mass at 90 degree,
or 180 degree, angles relative to the current position pro-
duces the same mass matrix perturbation for the modes of
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Fig. 8. Mass matrix perturbation, Δ, as a function of the counter-clockwise
angle from the D1 axis, θ , found by fitting the model to ten empirical
frequency response data sets. The upper diagonal term is denoted by ‘*’,
the lower diagonal by ‘o’, and the off diagonal term by ‘+’.

interest). Nine separate perturbations where conducted with
magnets spaced in 11.25 degree steps (a total of ten MIMO
frequency response data sets) and then the modal parameter
set {M0,M1, . . . ,M9,C,K} was identified. A plot of the three
components of each Δk, k = 0,1, . . . ,9, is shown in Fig. 8.
The three traces represent the upper diagonal, lower diagonal
and off diagonal terms of the positive definite Δk matrices.

We proceeded to use the identified model parameters to
test different possible perturbation scenarios. For this study,
linear interpolation is used to specify the perturbation matrix
coefficients at angular values not represented in the exper-
iments. This is clearly an approximation, but the guidance
it provides in ultimately tuning the modes justifies its use.
Thus, for our initial analysis we use the perturbed mass
matrix

M = M0 +αΔ(θ ),

where Δ(θ ) represents the mass matrix perturbation as a
function of angular perturbation location θ (in other words,
the coefficients represented graphically in Fig. 8), and α
represents the scalar perturbation magnitude (in our case with
the magnets, the perturbation magnitude takes on discrete
values since we can add only a whole number of magnets;
on the other hand, there are other mass removal/deposition
approaches that would provide much finer control over α).

The objective is to find a perturbation magnitude and
location that creates degenerate generalized eigenvalues of M
and K. In addition to changes in the generalized eigenvalues
of M and K as a function of α and θ , one can also observe
changes in the generalized eigenvectors, which indicate the
angular position of the anti-nodes of the modes. By analyzing
the generalized eigenvalues we conclude that in the case
of a single perturbation location (replicated with the 4-fold
symmetry in the other quadrants vis-à-vis Fig. 5) there is
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from the D1 actuator location. The frequency split is initially reduced in
all three cases as mass is added, however, only when mass is added to a
single ideal location can the resonant frequencies be completely tuned. This
figure shows that the magnitude of the perturbation must also be carefully
controlled.

a unique perturbation location and magnitude that tunes the
modes. If the exact location is not correctly identified then it
is not possible to tune the modes to degeneracy. Fig. 9 shows
how the frequency split changes as function of perturbation
location in a neighborhood of the location required for
eigenvalue degeneracy. Thus, attempting to attain degeneracy
by adding mass to only one angular location can be very
difficult. It is possible, however, to attain convergence by
adding mass to two different locations in a quadrant. By
adding mass to either side of the anti-node of the higher
frequency mode, the anti-nodal orientation is, in a sense,
trapped. The anti-node is determined by the generalized
eigenvector associated with the higher frequency mode. Since
we are searching for a way to tune a MEM DRG, it will
be easiest to add mass at the “spokes” of the resonator
(visible in Fig. 2 as the structures that join adjacent rings
and form a radial pattern) that are closest to the anti-node.
In this scenario the perturbed mass matrix is given by
M = M0 +α1Δ1 +α2Δ2, where Δ1 and Δ2 correspond to the
mass matrix perturbations associated with the desired spoke
locations.

Testing these two scenarios on the Macro DRG was
successful. Fig. 10 shows the empirical frequency responses
of the tuned sensor using the mass matrix perturbations as
function of α and θ as a guide. In one trace the DRG
is tuned using only one angular location, and in the other
trace the DRG is tuned using the two spoke approach. As
expected, the off-diagonal channels exhibit reduced coupling
and the diagonal frequency responses resemble a single
degree of freedom resonator. Also, using the spokes for
modal frequency tuning inevitably produces a smaller tuned
frequency because more total mass is added to the resonator.
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Fig. 10. Empirical frequency response of the Macro DRG tuned by single
mass placement (dashed line) and the two spoke tuning approach (dash
dotted line). The unperturbed frequency response is shown as the solid
trace. Both approaches effectively tune the sensor modal frequencies to a
frequency split of less than 100mHz.

VI. CONCLUSIONS

Two methods using a mass matrix perturbation approach
for tuning the two Coriolis-coupled modes in a vibratory
gyroscope have been experimentally demonstrated on a scale
model of the Boeing Silicon Disk Resonator Gyro. Although
mass was added to the resonator for this study, the methods
are readily adapted to the situation in which mass is removed.
Future work will address mass matrix perturbations that can
reduce the coupling of linear acceleration to the Coriolis-
coupled modes. The latter objective is important for isolating
the modes used for angular rate sensing from linear accler-
ation of the sensor case.
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