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Abstract— Probabilistic Boolean networks are a class of
rule-based models for gene regulatory networks. This class
of models is used to design optimal therapeutic intervention
strategies. While synchronous probabilistic Boolean networks
have been investigated in detail in the literature, no similar
endeavor has been completed for asynchronous networks. This
paper addresses this issue by introducing an asynchronous
extension to probabilistic Boolean networks and by developing
intervention methods based on this new model. The proposed
framework introduces asynchronism at the level of aggregated
genes status. The theory of semi-Markov decision processes is

then used to devise effective intervention methods where the
objective is to reduce the time duration that the system spends
in undesirable states. The necessary timing information for the
proposed model can be obtained from sequences of gene-activity
profile measurements. This is one of the major advantages of
the propose approach.

I. INTRODUCTION

From a translational perspective, the ultimate objective

of genetic regulatory network modeling is to put forth a

mathematical platform for the design of therapeutic inter-

vention strategies that reduces or eliminates the incidence of

undesirable phenotypes, for instance, cancer [1]. To date, reg-

ulatory intervention has been studied in the context of prob-

abilistic Boolean networks (PBN) [2]. While synchronous

PBNs and their corresponding intervention methods have

been investigated in detail [3], there has been no attempt

to study their asynchronous counterparts. In this paper, we

relax the synchronous assumption and consider intervention

in asynchronous networks. We define an asynchronous ge-

netic regulatory network motivated by probabilistic Boolean

networks, and study the problem of designing intervention

methods based on the proposed asynchronous model. Our

approach considers asynchronism relative to the state-space

of gene-activity profiles.

The multivariate interactions among the components of a

rule-based regulatory network are defined by a regulatory

graph. From here on, we use the term gene loosely to

refer to the general biological components, e.g. genes and

proteins, involved in a regulatory network. The vertices of a
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Fig. 1. Presentation of a regulatory graph and its corresponding oriented
graph for an arbitrary 3-gene Boolean network.

regulatory graph are the genes or nodes. A directed edge

starts from a predictor vertex and ends at an influenced

vertex. All the vertices directly going into a node are its

predictors. A regulatory rule defines the multivariate effects

of predictors on the vertex. The node values are selected

from a set of possible quantization levels to facilitate the

modeling of gene interactions by logical rules. The discrete

assumption in rule-based regulatory networks is suitable for

many classes of biological systems. Strong evidence suggests

that the discrete-state-space models are capable of describing

interactions between biological components [4] [5]. Fig. 1a

shows the regulatory graph of a hypothetical three-gene

network. There is a unidirectional relation between nodes

(genes) x1 and x2. The relation between nodes x2 and x3 is

bidirectional.

To completely specify a class of regulatory networks, we

need to adopt an updating scheme. Having the updating

scheme, we can translate the dynamical information of the

regulatory graph and the regulatory rules into an oriented

graph. The vertex of an oriented graph is a logical state,

which is the aggregated values of all the nodes at a given

time. An edge traverses from one logical state to another

logical state of an oriented graph if a transition can occur in

the direction of the edge from one vertex to the other.

The choice of the updating scheme plays a crucial rule in

the dynamical behavior of the network. For instance, Fig. 1b

shows the oriented graph corresponding to the regulatory

graph in Fig. 1a. According to this oriented graph, whenever

the aggregate value of the three nodes in the network is

(x1 = 1, x2 = 1, x3 = 1) and if all the nodes update

synchronously, then the next logical state is (x1 = 0, x2 =
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0, x3 = 0). A regulatory graph is a static representation

of interactions among biological components, whereas an

oriented graph shows the dynamics of the interactions among

these components. We can practically observe timing infor-

mation related to the dynamical representation of biological

component interactions, that is, timing relative to the oriented

graph.

Synchronous abstractions are used under the implicit as-

sumption that asynchronous updating will not unduly alter

system properties central to the application of interest [6].

Clearly, some properties will be altered [7]–[9]. On the

other hand, from a biological perspective, interactions among

genes causing transcription, translation, and degeneration

occur over a wide range of time-scales. Hence, relaxing the

synchronous abstraction is arguably the next logical step in

the design of genetic regulatory networks.

These observations instigate examining intervention strate-

gies in asynchronous models. Since adopting the asyn-

chronous assumption alters the time progression of regula-

tory models, we cannot readily apply existing intervention

techniques designed for synchronous networks. Alternative

approaches to influence network dynamics in asynchronous

models are needed.

To date, asynchronism in the context of Boolean networks

has been introduced by updating each node based on its

period. Assuming asynchronism at the node level for Boolean

networks has practical and theoretical impediments that may

prevent independent node updating to serve as a basis for

designing effective therapeutic intervention strategies [10],

[11]. In particular, the delay and the updating order of a

given gene are only observable with respect to the activity

levels of other genes and proteins involved in the regulation

process. Thus, it is impractical to study the alteration of one

specific gene over time, while keeping the levels of all other

genes in the model constant. Practically, we can measure

the aggregated values of all the genes (logical states) at each

observation instant. The inter-transition interval between two

logical states can then be modeled by a random variable. In

[10] and [11], experimentally validated Boolean rules are

considered. Under a synchronous assumption, the oriented

graphs can accurately determine the phenotypic behavior of

the underlying biological processes. However, these studies

suggest that asynchronously updating the nodes when utiliz-

ing the same Boolean rules generates very complex pathways

which possess many incompatible and unrealistic pheno-

types. Although not mentioned explicitly in [10] and [11],

it appears that asynchronously updating the nodes changes

the global behavior of regulatory networks by changing their

oriented graphs.

The results of [10] and [11] indicate that rule-based reg-

ulatory models should maintain the topology of the oriented

graph generated by experimentally validated predictor rules,

as if the genes are coupled. In other words, regulatory models

should accurately translate the logical relationships, i.e. the

regulatory graph, governing the interactions of nodes into

the oriented graph specifying the dynamics of the model.

Moreover, they should enable the analysis of the temporal

behavior of biological systems. Since our objective is to

alter the long-run behavior of biological systems via effective

intervention strategies, our regulatory models should not only

possess the previous two attributes, but these models should

also be inferable from the empirical data.

In this paper, we propose an asynchronous regulatory net-

work model, termed semi-Markov asynchronous regulatory

networks (SM-ARN). In the SM-ARN, the asynchronism is

at the logical state. In this model, the empirically measurable

timing information of biological systems is incorporated into

the model. This timing information determines the typical

time delay between transitions from one logical state to

another. Since the order of updating nodes and their relative

time delays depend on the levels of other regulatory compo-

nents, estimating the updating time of each gene in isolation,

and independent of the values of other genes, is highly

problematic, if not impossible. Time-course data enable the

estimation of inter-transition times between logical states, not

the updating time of each node. It is then natural to introduce

asynchronism at the logical-state level.

An SM-ARN is specified with two sets of information. The

first set determines the rule-based multivariate interactions

between genes. Considering simultaneous updating, we can

specify the oriented graph of the model based on this

information. In other words, the first set of information

specifies a PBN, which is generated from a given set of

Boolean functions for updating each gene. The generated

oriented graph guarantees the predictability of the rule-based

topology. The second set of information consists of the

distributions of inter-transition intervals between any two

logical states that are directly connected. These values can

be empirically inferred from time-course data.

To design optimal intervention strategies based on the

SM-ARN model, we apply results from the theory of semi-

Markov decision processes (SMDP). Appropriately formu-

lating the problem of intervention in the SM-ARN model,

we devise an optimal control policy that minimizes the time

that the system spends in undesirable states.

The SM-ARN model is introduced in Section II. Having

the objective of reducing the time that the regulatory network

spends in undesirable states, we derive optimal intervention

strategies for exponentially distributed inter-transition time

distributions in section III. As a numerical study, we apply

the SM-ARN intervention method to control a regulatory

model of the mammalian cell-cycle in Section IV.

II. SEMI-MARKOV ASYNCHRONOUS REGULATORY

NETWORKS

Similar to synchronous PBNs, in a SM-ARN, node values

are quantized to a finite number of levels. A SM-ARN

consists of a sequence V = {xi}
n
i=1, of n nodes, where

xi ∈ {0, 1, . . . , d− 1}. In the framework of gene regulation,

each xi represents the expression value of a gene selected

from d possible quantization levels. It is common to mix ter-

minology by referring to xi as the ith gene. The gene-activity

profile (GAP) is an n-tuple x(t) = (x1(t), . . . , xn(t)) giving

the expression values of the genes at time t, where x(t) ∈

1389



{0, ..., d − 1}n [4]. There is a natural bijection between the

GAP, x(t), and the decimal number z(t) taking values in

W = {0, . . . , dn − 1}. We define the states of an SM-ARN

as the gene-activity profiles of the nodes in V . The decimal

representation of a GAP facilitates the visualization of the

intervention in a SM-ARN. At each time t ∈ R
+, the state

z(t) of the SM-ARN is selected from the set of all possible

states W .

Considering two consecutive epoch times tk and tk+1 per

Fig. 2, the state of the SM-ARN for all the times tk ≤ t <

tk+1 is z(tk) = i. At tk+1, the model enters a new state

z(tk+1) = j. If τk+1 is the time spent in state i prior to

transition to state j, then we have τk+1 = tk+1 − tk. In the

SM-ARN model, this inter-transition interval is modeled with

a non-negative random variable with probability distribution

Pij(τ) = P
(

τk+1 ≤ τ |z(tk) = i, z(tk+1) = j
)

. (1)

According to (1), the probability distribution of sojourn time

in the current state i prior to transition to the successive state

j could depend on both states. We require the inter-transition

interval distributions, Pij(τ), for any two directly connected

states as one of the two sets of information needed to define

an SM-ARN. Time-course data can provide the information

leading to these distributions.

z(tk) = i 

t 
tk+1

z(tk+1) = j 

τk+1 = tk+1 - tk

tk

z(tk) 

Fig. 2. A schematic of transition in SM-ARN with two consecutive epoch
times tk and tk+1. The inter-transition interval, τk+1, is the sojourn time
in state i prior to the transition to state j.

Borrowing the methodology proposed in [2], we proceed

to define the embedded-PBN of an SM-ARN. The embedded-

PBN of an SM-ARN models the probabilistic rule-based

connections of gene interactions and constitutes the other set

of information required for specification of an SM-ARN. The

embedded-PBN specifies the oriented graph of the SM-ARN

based on the predictors of the genes. The oriented graph of an

SM-ARN is a directed graph whose vertices are the states of

the SM-ARN in W , and for which there is an edge between

any two directly connected states. The weight of each edge

is the transition probability between two vertices connected

by that edge.

Let {fl}
N
l=1 be the set of N realizations of the embedded-

PBN. If the genes are coupled, then at each simultaneous

updating instant, one of the N possible realizations of the

embedded-PBN is selected. Each vector-valued function fl

has the form fl = (fl1, . . . , fln). Each function fli :

{0, ..., d−1}n → {0, ..., d−1} denotes the predictor of gene

i, when the realization l is selected. At each simultaneous

updating instant a decision is made whether to switch the

context of the network. The switching probability q is a

system parameter. If at a particular updating instant, it

is decided that the realization of the network should not

be switched, then the embedded-PBN behaves as a fixed

Boolean network and simultaneously updates the values

of all the genes according to their current predictors. If

it is decided that the network should be switched, then

a realization of the embedded-PBN is randomly selected

according to a selection distribution {rl}
N
l=1. After selecting

the vector-valued function fl, the values of the genes are

updated according to the predictors determined by fl. We

assume that the probability of selecting the ith realization,

ri, of the embedded-PBN is known [2]. In addition, we allow

perturbations in the embedded-PBN, whereby each gene may

change its value with a small probability p at each updating

instant.

The graph specifying the relationships among the GAPs

of an embedded-PBN, defined as above, can be represented

as a Markov chain [2]. On the other hand, the graph of the

relationships among the GAPs specified by the embedded-

PBN is the regulatory graph of the SM-ARN. Originating

from a state z(tk) = i, the successor state z(tk+1) = j

is selected randomly within the set W according to the

transition probability pij defined by regulatory graph of the

SM-ARN:

pij = P
(

z(tk+1) = j|z(tk) = i
)

, for all i, j ∈ W.

(2)

In other words, the oriented graph of an SM-ARN is the

same as its regulatory graph. However, the update of states

in the oriented graph of an SM-ARN occurs on various time-

scales according to inter-transition interval distributions. We

note that, the oriented graph of the SM-ARN defined by

the embedded-PBN maintains the topology of the oriented

graph generated by the experimentally validated predictors

of genes.

Gene perturbation ensures that all the states of the SM-

ARN communicate in the oriented graph. Hence, the fraction

of time that the SM-ARN spends in each state in the long

run is unambiguous and can be computed numerically using

standard techniques [12].

III. STOCHASTIC CONTROL OF AN SM-ARN

Now that the dynamical behavior of a SM-ARN is de-

scribed by a semi-Markov process, the theory of semi-

Markov decision processes (SMDP) can be utilized to find an

optimal sequence of interventions. Reducing the time that the

regulatory network spends in undesirable states in the long

run is the objective of the intervention problem. We suppose

that the SM-ARN has a binary control input u(t) taking

values in C = {0, 1}. Originating from state i, the successor

state j is selected randomly within the set W according to

the transition probability pij(u):

pij(u)
△
= P

(

z(tk+1) = j|z(tk) = i, u(tk) = u
)

, (3)
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for all i and j in W and for all u in C. Moreover, the inter-

transition interval distribution is also a function of the control

u:

Pij(τ, u)
△
= P

(

τk+1 ≤ τ |z(tk) = i, z(tk+1) = j, u(tk) = u
)

,

(4)

for all states i and j in W , and all controls u in C. We

associate a rate of reward r(z(t), u(t)) for sojourning in state

z(t) per unit of time while the control is u(t). Considering

consecutive epoch times tk and tk+1, the rate of reward

r(z(t), u(t)) is constant for all tk ≤ t < tk+1. It is equal

to r(i, u), whenever z(tk) = i and u(tk) = u. The rate of

reward of undesirable states is lower than those for desirable

states. In practice, the rates of reward have to capture the

relative preferences for the different states. A state in which

metastatic biological components are active is considered

to be undesirable. We also consider the cost of applying a

control action, which reduces the rate of reward of each state.

To devise a stationary intervention policy, we consider

the discounted reward formulation. The discounting factor

per unit of time, λ ∈ (0, 1), insures the convergence of

the expected total reward over the long run [13]. Including

a discounting factor in the expected total reward signifies

that the incurred reward at a later time is less significant

than the incurred reward at an earlier time. In the case of

cancer therapy, the discounting factor attempts to capture the

fact that obtaining treatment earlier is better than postponing

treatment to a later stage.

Among all admissible policies Π, the SMDP methodology

finds a policy π = {µ0, µ1, . . .}, where µt : W → C
is the decision rule at time t, that maximizes the expected

total discounted reward. The infinite-horizon expected total

discounted reward, given the policy π and the initial state i,

is

Jπ(i) = lim
M→∞

E

{
∫ tM

0

e−λ tr
(

z(t), µ(z(t))
)

dt

}

, (5)

where tM is the M -th epoch time. We seek a policy π∗ that

maximizes the value function for each state i. An optimal

control policy is a solution of the SMDP with discounted

reward:

π∗(i) = arg max
π∈ Π

Jπ(i), ∀ i ∈ S. (6)

Intervention using the policy π∗ increases the time spent in

desirable states determined through appropriate assignment

of rate of rewards r(z(t), u(t)) to each state-control pair

(z(t), u(t)).

The amount of data observed from a biological system

is usually limited. Instead of using the data to estimate an

arbitrary inter-transition interval distribution, we can pos-

tulate a class of parametric distributions whose members

can be defined by a small number parameters, e.g. the

expected value. Here, we assume that the distribution of the

inter-transition interval follows an exponential distribution.

If all the inter-transition intervals of state i are exponentially

distributed, then the sojourn time of state i possesses an

exponential distribution:

Pi(τ, u) = 1 − e−νi(u) τ τ ≥ 0. (7)

In (7), νi(u) is the rate of transition from state i whenever the

control has value u. Practically, the rates νi(u) are bounded

for all states i in W , and all controls u in C. Assuming that

the inter-transition interval is exponentially distributed, we

use “uniformization” to find a solution to the optimization

problem in (6). Due to lack of space, we skip the details and

refer to [13] for treatment of the uniformization method.

IV. CONTROL OF A MAMMALIAN CELL CYCLE

RELATED NETWORK

Faure et al. recently proposed a Boolean model for the

mammalian cell cycle [10]. In this section, we design a SM-

ARN that is a probabilistic version of this Boolean model.

We construct a SM-ARN that postulates the cell-cycles with

mutated phenotype. The proposed intervention method is

then applied to hinder the cell growth in the absence of

growth factors.

The authors of [10] have been able to quantitatively

reproduce the main known features of the wild-type bi-

ological system, as well as the consequences of several

types of mutations. The regulatory graph for the wild-type

mammalian cell-cycle network, as it is presented in [10], is

shown in Fig.3.

Fig. 3. Logical regulatory graph for the mammalian cell cycle network
as it was presented in [10]. Each node represents the activity of a key
regulatory element. Blunt arrows stand for inhibitory effects, normal arrows
for activations.

The cell cycle involves a succession of molecular events

leading to the reproduction of the genome of a cell and its

division into two daughter cells. Mammalian cell division is

tightly controlled. In a growing mammal, the cell division

should coordinate with the overall growth of the organism.

This coordination is controlled via extra-cellular signals.
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These signals indicate whether a cell should divide or remain

in a resting state. The positive signals, or growth factors,

elicit the activation of Cyclin D (CycD) in the cell.

The key genes in this model are CycD, retinoblastoma

(Rb), and p27. Rb is a tumor-suppressor gene. This gene is

expressed in the absence of the cyclins, which inhibit the Rb

by phosphorylation. Whenever p27 is present, Rb can also

be expressed even in the presence of CycE or CycA. Gene

p27 is active in the absence of the cyclins. Whenever p27

is present, it blocks the action of CycE or CycA. Hence, it

stops the cell cycle.

The preceding explanation represents the wild-type cell-

cycle model. We assume p27 is mutated and its logical rule

is always zero (OFF). This mutation is listed in [10] as one

of many possible mutations in the cell cycle network. In

this cancerous scenario, p27 can never be activated. This

mutation introduces a situation where both CycD and Rb

may be inactive. As a result, in this mutated phenotype, the

cell cycles in the absence of any growth factor. In summary,

when p27 is mutated we consider the logical states in which

both Rb and CycD are down-regulated as undesirable states.

The Boolean functions corresponding to the cancerous

scenario are derived to construct the embedded-PBN of the

cell-cycle’s SM-ARN. The defined embedded-PBN main-

tains the topology of the oriented graph generated by these

Boolean functions. To this end, we assume that the extra-

cellular signal to the cell-cycle model is a latent variable.

The growth factor is not part of the cell and its value is

determined by the surrounding cells. The expression of CycD

changes independently of the cell’s content and reflects the

state of the growth factor. Depending on the expression status

of CycD, we obtain two constituent Boolean networks for

the embedded-PBN. The first constituent Boolean network

is determined from the Boolean functions defined in Fig. 3

when the value of CycD is equal to zero. Similarly, the

second constituent Boolean network is determined by setting

the variable of CycD to one. To completely define the

embedded-PBN, the switching probability, the perturbation

probability, and the probability of selecting each constituent

Boolean network have to be specified. We assume that these

are known.

The SM-ARN for the cell-cycle consists of nine genes:

CycD, Rb, E2F, CycE, CycA, Cdc20, Cdh1, UbcH10, and

CycB. The above order of genes is used in the binary

representation of the logical states, with CycD as the most

significant bit and CycB as the least significant bit. This order

of genes in the logical states facilitates the presentation of

our results and does not affect the computed control policy.

We also have to specify the inter-transition interval distri-

butions between the logical states to fully define the cell-

cycle’s SM-ARN. Although such information is likely to

become available from time-course data in the near future, it

is not available today. Here, we simply assume that all inter-

transition intervals between logical states are exponentially

distributed. If τ(i, j) is the sojourn time in logical state i

before transition to state j, then we need the rate of the

transition from state i to state j to specify its distribution.

We use the gene-expression data to determine the probability

pij of the transition from state i to state j in the embedded-

PBN. We assume that the rate of the transition from state i

to state j is assigned such that

P
{

τ(i, j) < min
k=1,...,|S|

k 6= j

τ(i, k)
}

= pij . (8)

In other words, the probability of the first transition out of

state i to state j is equal to the transition probability pij . The

left side of equation (8) can be determined for exponentially

distributed sojourn times.

Avoiding the logical states with simultaneously down-

regulated CycD and Rb as our objective, we apply the inter-

vention method described in Section III to the constructed

SM-ARN. If the control is high, u = 1, then the state of

the control gene is reversed; if u = 0, then the state of the

control gene remains unchanged. The control gene can be

any one of the the genes in the model except CycD.

We assume that the reward of the logical states with down-

regulated Rb and CycD is lower than those for the states

in which these two genes are not simultaneously down-

regulated. We also consider the cost of applying a control

action, which reduces the reward of each logical state. We

postulate the following rate-of-reward function:

r(i, u) =



























6, if u = 0 and (CycD, Rb) 6= (0, 0) in i

1, if u = 0 and (CycD, Rb) = (0, 0) in i

5, if u = 1 and (CycD, Rb) 6= (0, 0) in i

0, if u = 1 and (CycD, Rb) = (0, 0) in i.
(9)

We select an arbitrary rate of reward; however, the reward

and control cost are selected so that applying the control

to prevent the undesirable logical states is preferable in

comparison to not applying control and remaining in an un-

desirable state. In practice, the reward values have to capture

the benefits and costs of the intervention and the relative

preference of the states. They have to be set in consultation

with physicians relying on their clinical judgement.

Assuming the preceding rate-of-reward function, we com-

pute a control policy for the SM-ARN of the cell cycle.

Fig. 4 depicts the fraction of time that the SM-ARN spends

in each logical state when there is no intervention. Per

Fig. 4, the aggregated fraction of time that the cell-cycle

model spends in the logical states with simultaneously down-

regulated CycD and Rb is 49%.

From the Fig. 5, it is clear that after intervention using

Rb, the fraction of time that the model spends in the logical

states is significantly altered. Directly using Rb as the control

gene, we can reduce the fraction of time that the model

spends in the undesirable states to less than 2%. Fig. 5

depicts the fraction of time that the SM-ARN spends in each

logical state when the intervention is applied using Rb. If

the direct control of Rb is not feasible, then one can use

E2F as the control gene. In this case the system spends

slightly more time in the undesirable states, but still less than

4.5%. For all practical purposes, the difference between the
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Fig. 4. The fraction of time that the SM-ARN of mammalian cell cycle
spends in each logical state prior to intervention. The vertical line separates
the undesirable logical states from the desirable logical states.

performance achieved using either of these two control genes

is insignificant.
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Fig. 5. The fraction of time that the SM-ARN of mammalian cell cycle
spends in logical states after intervention using Rb as the control gene.
The vertical line separates the undesirable logical states from the desirable
logical states.

V. CONCLUSION

In this work, we proposed an asynchronous regulatory

network model with discrete state space. We formulated the

optimal intervention strategies for this class of regulatory

networks. Since asynchronism at the node level has practical

limitations, we introduced the SM-ARN model, in which

the asynchronism is at the logical-state level. Empirically

measurable timing information of biological systems can be

directly incorporated into the SM-ARN model to determine

the time-delay distributions between transitions from one

logical state to another logical state. We modeled the dynam-

ics of a mutated mammalian cell-cycle regulatory network

using the SM-ARN. The proposed intervention method for

the SM-ARN was then used to design a strategy to influence

the dynamics of the constructed SM-ARN. The goal of the

intervention was to reduce the long-run likelihood of the

cell growth in the absence of growth factors. The presented

numerical studies indicate that our intervention method ef-

fectively alters the dynamics of the cell-cycle model.
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