

Abstract—In traditional Adaptive Dynamic Programming

(ADP), only one step estimate is considered for training process，
Thus, learning efficiency is lower. If more steps estimates are
included, learning process will be speed up. Eligibility traces
record the past and current gradients of estimation. It can be used
to work with ADP for speeding up learning. In this paper,
Heuristic Dynamic Programming (HDP) which is a typical
structure of ADP is considered. An algorithm, HDP(λ),
integrating HDP with eligibility traces is presented. The
algorithm is illustrated from both forward view and back view for
clear comprehension. Equivalency of two views is analyzed.
Furthermore, differences between HDP and HDP(λ) are
considered from both aspects of theoretic analysis and simulation
results. The problem of balancing a pendulum robot (pendubot) is
adopted as a benchmark. The results indicate that compared to
HDP, HDP(λ) shows higher convergence rate and training
efficiency.

Index Terms—Heuristic dynamic programming, Adaptive
dynamic programming, Eligibility trace, Pendulum robot

I. INTRODUCTION
daptive Dynamic Programming (ADP) [1] is an
optimization technique combining concepts of

reinforcement learning and approximate dynamic
programming. An optimal control policy for the entire range of
initial conditions can be obtained by ADP with small
computational cost. Thus, ADP has received more and more
research and application attentions.

In optimal control area, dynamic programming as a useful
tool has been applied to many different fields such as
engineering, economics, and so on [2-3]. But it connects with
very high computational cost which is called “curse of
dimensionality” [4]. This disadvantage limits application of the
dynamic programming to low dimensional problems.

A key step of ADP is to estimate the cost function in the

Manuscript received September 21, 2007. This work was supported in part
by the NSFC Projects under Grant No. 60621001, the National 973 Project No.
2006CB705500, China.

1. Tao Li, Dongbin Zhao, and Jianqiang Yi are with the Laboratory of
Complex Systems and Intelligence Science, Institute of Automation, Chinese
Academy of Sciences. 95 Zhongguancun East Road, Haidian District, Beijing
100080, China (phone: +86-10-82615422; fax: +86-10-62658815; e-mail:
xpnslt@eyou.com, xpnslt@hotmail.com).

2. Dongbin Zhao is also with the University of Arizona as a visiting scholar
funded by China Scholarship Council.

dynamic programming. Artificial neutral network has universal
approximation capacity for nonlinear functions. Thus, it is
adopted to estimate the cost-to-go function in the dynamic
programming for solving the above defects. ADP can achieve
optimal control result from random initialization. During
training, ADP only needs to know the desired cost. Many
contributions have been achieved in this area from different
aspects [5-9].

The existing ADP algorithms are often classified into three
categories: 1) Heuristic dynamic programming (HDP); 2) Dual
heuristic dynamic programming (DHP); 3) Globalized dual
heuristic dynamic programming (GDHP). Learning strategies
are different for three categories. For the first category, the
approximate cost function J is calculated as training signal;
the second selects the derivative of J ; and the third selects
both J and its derivative. The action dependent (AD) versions
of the above architectures are also presented. AD refers to the
design that the action output is also taken as one input of the
critic network. The structure of ADP is usually composed of
three modules: model network, action network, and critic
network. However, considering different learning strategy, the
model is needed for DHP and GDHP algorithms. However, this
need makes their learning process more complicated.

The traditional ADP is a case with only one step estimate,
changing an earlier estimate based on how it differs from a later
estimate. If more information is considered, updating of the
control police will be more effectively. Eligibility traces can
record the past and current gradients, and its adoption could
speed up the learning process. It offers significantly fast
learning, particularly when rewards are delayed many steps.
Thus it often makes sense to use eligibility traces when data are
scarce and cannot be repeatedly processed, as is often the case
in online applications. Eligibility traces have been used in
reinforcement learning such as Q-learning and Sarsa [10-13].
But for ADP, initial exploration about combination between
eligibility traces and training of ADP was only introduced in
[14]. This paper focuses on designing an ADP algorithm with
eligibility traces, and investigating the performance of
considering more than one step estimate. Heuristic dynamic
programming with eligibility traces, HDP(λ) will be proposed
and described in detail with the following sections.

This paper is organized as follows: Section II describes the
structure of the traditional HDP algorithm adopted in this paper.
Section III presents the combination of eligibility traces and
HDP. Section IV provides a case study of pendulum robot

Heuristic Dynamic Programming Strategy
with Eligibility Traces

Tao Li1, Dongbin Zhao1,2, Member, IEEE, and Jianqiang Yi1, Member, IEEE

A

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

FrB07.6

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 4535

benchmark plant. Some conclusions are given in the last
section.

II. HEURISTIC DYNAMIC PROGRAMMING
A schematic diagram of the action dependent heuristic

dynamic programming (ADHDP) is shown in Fig. 1.

γ

Fig. 1. Schematic diagram of the action dependent heuristic dynamic
programming. The solid lines represent signal flow, while the dashed lines are
the paths for parameter tuning

The inputs of the action network are the system states ()x t .
The output of the action network is the control variable ()u t .
The system states ()x t and the control variable ()u t are
chosen as the inputs of the critic network. The output ()J t of
the critic network is defined as estimating the discounted total
cost-to-go.

In traditional HDP, the error ()ce t and the objective function
()cE t for training the critic network are defined as follows:

() () () (1) ()ce t r t J t J t tγ δ= + − − =

21
2() ()c cE t e t= , (1)

where γ (0 1)γ< < is a discount factor for infinite-horizon
problems, and 0.85γ = is used in the case studies. ()tδ is
one-step error.

The purpose of training the critic network is to adjust the
error ()ce t close to zero. Thus, the following equation could be
derived

1

1
() (1) (2) () ()k t

k t
J t r t r t r k R tγ γ

∞
− −

= +
= + + + + = =∑ . (2)

Equation (2) accords with the form defined in the Bellman

equation. ()R t is the sum of the sequenced rewards.
For the training of the action network, the error ()ae t and the

objective function ()aE t are defined as follows:

() () ()a ce t J t U t= −

21
2() ()a aE t e t= (3)

where ()cU t is the desired ultimate objective.

For training the action network and the critic network
gradient descent method is often adopted. The whole training
process is described as follows. Beginning with a set of random
inputs for the network weights ()aw t and ()cw t of the action
and critic networks respectively, the system state ()x t is
sampled. Subsequently, the output of the action network ()u t
is calculated. Furthermore, the cost-to-go ()J t and the
reinforcement signal ()r t could be received. The following
update algorithms are adopted to adjust the weights of these
two networks.

(1) () ()c c cW t W t W t+ = + Δ
() () ()() ()[] ()
() () ()

() () ()
()

c c
c c c

c

c c

E t E t J tW t l t l t
W t J t u t

J tl t e t
u t

∂ ∂ ∂
Δ = − = −

∂ ∂ ∂

∂
= −

∂

 (4)

(1) () ()a a aW t W t W t+ = + Δ

() () ()() ()[] ()
() () ()

() () ()
()

a a
a a a

a

a a

E t E t J tW t l t l t
W t J t u t

J tl t e t
u t

∂ ∂ ∂
Δ = − = −

∂ ∂ ∂
∂

= −
∂

 (5)

where () 0cl t > and () 0al t > are the learning rates of the critic
and the action networks at time t , respectively.

HDP adjusts an earlier estimate based on how it differs from
a later estimate. Only one step estimate is considered in the
traditional HDP algorithm. When a state is visited, its activity
becomes higher and then gradually decays until the same state
is revisited. If more information of future states is included,
then it will have much more opportunities to be inspired for
"truth" in future time.

 If more information is considered, updating of the control
police will be more effective. But calculation will need much
time and memories if all infinite states are considered. One kind
of compromise would base on consideration of some further
states from current state. More than one state, but less than all
states until termination will be considered. The following
section presents an algorithm combining eligibility traces with
the traditional HDP scheme.

III. HDP WITH ELIGIBILITY TRACES
In this section, a new adaptive dynamic programming

algorithm, HDP(λ), is put forward and analyzed. This
algorithm combines HDP and eligibility traces.

4536

A. Eligibility Traces
The concept of eligibility traces is first introduced into the

Temporal Difference (TD) learning process to form an efficient
reinforcement learning algorithm named as TD(λ) [10].
Following the work of [10], some notions of eligibility traces
for the application in HDP from forward view, backward view
and equivalence analysis are discussed. Due to the direction of
the trace, the aliases are forward view and backward view
respectively. The forward view is most useful for
understanding what is computed by methods using eligibility
traces, whereas the backward view is more appropriate for
developing practical process about the algorithms themselves.

1) The forward view
The cost-to-go function ()R t in (2) can be rewritten as

1() (1) (2) () () n n

nR t r t r t r t n J t nγ γ γ−= + + + + + + + + (6)

which consists of the reward truncated after n steps and an
approximately corrected term for the truncation)(ntJn +γ ,

estimating 1(1) (2)n nr t n r t nγ γ ++ + + + + + , the next nth state
value. When n=1, 1() (1) (1) R t r t J tγ= + + + . ()nR t is called
the corrected n-step truncated reward, which will be used to
form a new cost function with more than one steps rewards,
representing the eligibility traces of J(t). A weight 1nλ − is
introduced to each n-step truncated reward, then a λ -return
cost function ()R tλ is defined by

1

1

1
1 1

1

() (1) ()

(1) () ()

n
n

n

T t
n T t

n
n

R t R t

J R t R t

λ λ λ

λ λ

∞
−

=

− −
− − −

=

= − ∑

= − +∑
 (7)

where the factor 1−λ is applied to normalize the weights sum to
1. The second row is derived with that the n-step return after a
terminal state is R(t). So, if λ=1, () ()R t R tλ = , else if λ=0,

1() ()R t R tλ = , the 1-step return. λ determines the influence of
n-step return on the total cost function in a exponential rate,
which plays same roles here as in TD(λ).

The adopted algorithm which performs backups based on the
λ -return is defined as the algorithm. The algorithm computes
an increment to the value of the state on each step as following:

() [() ()]FJ t J t R tλαΔ = − − , (8)

where α is a positive step-size parameter. ()FJ tΔ denote the
update at time t of ()J t . If () (1)x t x t≠ − , eligibility trace
will be changed. Thus, it can be deduced that the increments for
all () (1)x t x t≠ − are () 0FJ tΔ = .

Overview of the forward algorithm is summarized as follows.
When a state is visited, all further rewards are reviewed in time,
and the algorithm decides to combine them or give up. After a

state is updated, this state needs not to be considered. At the
same time, we view and process further states on each arrived
state.

2) The backward view
A causal and incremental mechanism is defined as the

backward view which is adopted to approximate the forward
view. It is useful because it is simple conceptually and
computationally. In the backward view, each state associated
with its eligibility trace can be taken as an additional memory
variable. The eligibility trace for state x at time t is denoted
as ()e t +∈ℜ .

(1) if () (1)
()

(1) 1 if () (1)
e t x t x t

e t
e t x t x t

γλ
γλ

− ≠ −⎧
= ⎨ − + = −⎩

 (9)

where (0) 0e = . λ, as introduced above, is referred to as the
trace-decay parameter. The weights of future are determined by
λ exponentially states based on their temporal
distance-smoothly interpolating between λ=0 and λ=1.

From the backward view, the increment occurring on that
step is computed:

() () ()BJ t t e tαδΔ = − . (10)

here ()tδ in defined in (1). ()BJ tΔ denote the update at time
t .

The algorithm adopts the eligibility trace to record which
states have recently been visited. When a state is visited, the
eligibility trace will be accumulated. Otherwise, it will be faded
away gradually until the state is revisited. The "recently" is
defined by γλ . The degree to which each state is eligible for
undergoing learning changes is indicated by the trace.

3) Equivalence of forward and backward views
The aim of this section is to show that the sum of all the

updates is the same for the two views:

0 0
() ()

T T
B F

s
t t

J t J t I
= =

Δ = Δ∑ ∑ , (11)

where

1 () (1)
0 () (1)s

x t x t
I

x t x t
= −⎧

= ⎨ ≠ −⎩
. (12)

An eligibility trace can be written as:

2

0

() (1) () (2)

 ()

s s s

t
t k

s
k

e t e t I e t I I

I

γλ γλ γλ

γλ −

=

= − + = − + +

= = ∑
 (13)

Thus, the left side of (11) can be written

4537

0 0 0

0

0

() () ()

 () ()

 () ()

T T t
B t k

s
t t k

T
t k

s
t k t

T
t k

s
t k t

J t t I

I k

I k

αδ γλ

α γλ δ

α γλ δ

−

= = =

∞
−

= =

∞
−

= =

Δ = −∑ ∑ ∑

= −∑ ∑

= −∑ ∑

 (14)

For the right side of (11), consider an individual update:

1

0

1 2

() ()
 () (1) [(1) (1)]
 (1) [(1) (2) (1)]

F
tJ t J J t
J t r t J t

r t r t J t

λ
α

λ λ γ
λ λ γ γ

− Δ = −

= − + − + + +

+ − + + + + +

(15)

From above equation, it can be shown that all the weighting

factors of the ()r t i+ are geometric series, 1,2,i ∈ . For
example, all the ()r t i+ ’s with their weighting factors of 1 λ−
times powers of λ . It turns out that all the weighting factors
sum to 1. Combining ()r t i+ and summing up coefficient,
respectively, we can get:

1

0

1

0

() ()
 () [(1) (1) (1)]
 () [(2) (2) (2)]

 =() [(1) (1) ()]

FJ t J t
r t J t J t
r t J t J t

r t J t J t

α

γλ γ γλ
γλ γ γλ

γλ γ

− Δ = −

+ + + + − +

+ + + + − +

+ + + −

+ 1() [(2) (2) (1)]

 () ()k t

k t

r t J t J t

k

γλ γ

γλ δ
∞

−

=

+ + + − +

≈ ∑

Thus, the right side of (11) can be written:

0 0
() () ()

T T
F k t

s s
t t k t

J t I I kα γλ δ
∞

−

= = =
Δ = −∑ ∑ ∑ , (16)

Above function is the same as (14). Equation (11) is proved.

B. HDP ()λ and ADHDP ()λ

In this section, the eligibility trace is adopted for training the
critic network.

The reinforcing events concerned with are the moment-by-
moment one-step critic network errors. In the traditional HDP
algorithm, the critic network error is defined as ()ce t in (3).

In the forward view of HDP(λ), the error between
returnλ − and the output of the critic network is adopted as

training target:

() ()ce t J t Rλ λ= − . (17)

The objective function ()cE t is defined as that in (1).
Weight update law cWΔ of the critic network in (4) is

calculated as:

()() ()[()]
()c c

c

J tW t l t J t R
W t

λ λ ∂
Δ = − −

∂
. (18)

According to the analysis in above section, the forward view

mentioned above is equivalent to the following backward view,
which is more appropriate for developing practical process
about the algorithms themselves. The backward view is
provided by

() () () ()c cW t l t t e tλ δΔ = − (19)

where ()tδ is the usual critic network error defined in (10),
and ()e t is the eligibility trace, and its update law is adopted by

()() (1)
()c

J te t e t
W t

γλ ∂
= − +

∂
. (20)

with (0) 0e = .
HDP(λ) and ADHDP(λ) have the same update algorithm for

the weights of the critic network. In HDP(λ), the item
()
()

aE t
u t

∂
∂

in the update algorithm (5) is achieved through a model

network. However in ADHDP ()λ , the item
()
()

aE t
u t

∂
∂

 in the

update algorithm (5) is achieved by back-propagating error
from the critic network.

In the traditional HDP and ADHDP algorithms, only one
state preceding the current one is changed by the critic network
error. The backward view of HDP(λ) and ADHDP(λ) is
oriented backward in time. At each moment we look at the
current critic network error and assign it backward to each prior
state according to the state's eligibility trace at that time. When

0λ = , HDP(λ) and ADHDP(λ) are same as the traditional
HDP and ADHDP algorithms, respectively. If 1λ = , HDP(λ)
learns something until the end of training. This is same as a
Monte Carlo method. Using 0λ > allows one to incorporate
prediction differences from multiple steps, to hopefully speed
up learning. For larger values of λ , but still 1λ < , the
preceding states are changed more greatly. At the same time,
recently visited states are changed less because its eligibility
trace is smaller. Pseudo code of the ADHDP(λ) control
algorithm is described as follows:

Step 1: Initialize ()aW t , ()cW t , x(t) arbitrarily and () 0e t = .
Step 2: Calculate action ()u t in state x(t).
Step 3: Take action ()u t , observe ()r t and next state x(t+1).
Step 4: Calculate ()J t , ()e t , and train the critic network.
Step 5: Train the action network.
Repeat step 2 to step 5 until final state or error criteria is

4538

attained.

IV. CASE STUDY – PENDUBOT BENCHMARK
Under-actuated mechanical systems are often adopted as the

benchmark for test performance of different control strategies.
Inverted pendulum [5] and pendubot (pendulum robot) [16] are
such systems. The pendubot is a typical structure of two link
under-actuated robotic system, which is featured as simple
structure but complex system dynamics, and is widely adopted
to test performance of different control algorithms [17-19]. For
its complexity, this paper takes this problem as an example. In
this section, ADHDP(λ) is adopted to deal with this case study.

A. The Pendubot Balancing Problem
The schematic diagram of the pendubot system is shown in

Fig. 2. The pendubot system is with only one external torque
actuated on the first joint, while another joint is passive.

x

y

1τ

1q

2q

1l

2l

1m

2m

Fig. 2. Scheme of pendubot

 Suppose that there is no friction, the system dynamics
equations are depicted by

() (,) ()D q q C q q q G qτ = + + . (21)

where 1[0]Tτ τ= is the external torque, 1 2[,]q q q= represents
the angles of the two links. D , C and G represent the inertial,
coriolis, and gravity terms of the system respectively. Above
five variables can be described by five parameters
{ }1 2 3 4 5, , , ,θ θ θ θ θ as

1 2 3 2 2 3 2

2 3 3 2

2 cos cos
() ,

cos
q q

D q
q

θ θ θ θ θ
θ θ θ
+ + +⎡ ⎤

= ⎢ ⎥+⎣ ⎦

3 2 2 3 2 1 2

3 1 2

sin ()sin
(,) ,

sin 0
q q q q q

C q q
q q

θ θ
θ
− − +⎡ ⎤

= ⎢ ⎥
⎣ ⎦

4 1 5 1 2

5 1 2

sin sin()
() ,

sin()
g q g q q

G q
g q q

θ θ
θ

− − +⎡ ⎤
= ⎢ ⎥− +⎣ ⎦

where { }1 2 3 4 5, , , ,θ θ θ θ θ are denoted by

1 1

2 2
1 1 2 1 ,cm l m l Iθ = + +

2

2
2 2 2 ,cm l Iθ = +

23 2 1 ,cm l lθ =

1 14 1 2 ,cm l m lθ = +

25 2 .cm lθ =

The system parameters are set same as that in [19]:

1 2 30.0308, 0.0306, 0.0095,θ θ θ= = =

4 50.2087, 0.0630.θ θ= =

The top position [0,0]q = is an unstable equilibrium. The

control object is to balance the pendubot system around its top
equilibrium position from a random position around top
equilibrium position in this case.

B. Simulation Results
For comparison, the performance of ADHDP [5] is also

tested, and the simulation environments are set the same for
both algorithms.

The reinforcement signal will be generated as follow:

1 20 if 40 40 and 12 12
1 otherwise

q q
r

− < < − < <⎧
= ⎨

−⎩
. (22)

The bang-bang control strategy is applied to the system, with

a constant torque of 0.5 Nm in clockwise or counter-clockwise
direction on the first joint. The states are defined as the angles
and the angular velocities of the two links 1 1 2 2{ , , , }x q q q q= .

In this simulation, a run consists of a maximum of 300
consecutive trials. The task is considered successful if a trial
has lasted 6000 time steps, where the step time is 0.01 seconds.

The structure of the critic and action networks uses
feed-forward network with one hidden layer. The number of
the hidden neurons is 6. The states of the system are taken as
inputs of the action network. The output ()u t of the action
network is continuous, served as the inputs of the critic network
together with the states. The control variable to pendubot plant
will be 0.5 Nm if () 0u t > , -0.5 Nm otherwise.

For ADHDP(λ) algorithm, 0.85λ = is used. The
convergence criteria for the action and critic network are
chosen as | | 0.005ae < and | | 0.05ce < , respectively. The max
training step is 100 and 50, respectively.

100 runs are performed to calculate the success rate and the
average trials which are the average number of step times

4539

before the algorithm converges in the 100 runs. The results are
listed in Table I.

TABLE I
COMPARISON OF TWO LEARNING ALGORITHMS

FOR THE BALANCING PROBLEM OF THE PENDUBOT

 Success Rate Number of Trials

ADHDP 24% 168.7
ADHDP(λ) 89% 100.3

Each run is initialized with random normalized weights of

the critic and action networks. For ADHDP, the success rate to
balance the pendubot system is 24%. Comparatively, the
success rate with ADHDP(λ) is 89%. Number of trails reflects
the necessary time before the algorithm converges. Litter
number of trials means quicker convergence rate. It can be
derived that ADHDP(λ) speeds up the convergence rate and
has higher successful percentage. It is affected less by the
randomness of the initial parameters. It is important to reduce
decision time in real-time control problems. A typical result
during a successful learning trial by ADHDP(λ) is shown in Fig.
3.

Fig. 3. A typical control result during a successful learning trial for the
pendubot system: angle1 and angle2.

V. CONCLUSIONS
In this paper, an new ADP algorithm, ADHDP(λ),

combining HDP with eligibility traces is presented. The
eligibility trace is adopted for the training of the heuristic
dynamic programming. ADHDP(λ) achieves higher
convergence rate and training efficiency. This is especially an
important feature for on-line control of real-time.

Instead of adjusting a value approximation based solely on
one further state, ADHDP(λ) updates control policy based on
an exponential weighting of values of future states. More
information is considered in ADHDP(λ) training. Using
0 1λ< < allows one to incorporate prediction differences from
multiple steps. Thus the estimate for updating control policy is
more creditable.

Different with ()Q λ and Sarsa(λ) derived in [10], the
eligibility trace is not applied to update the choice of actor, but
adopted for training the critic network. Thus, a more
appropriate reinforcement signal will be achieved early which
is used to direct the action network to a more optimized one.

ACKNOWLEDGMENT
The authors would like to thank Professor Fei-Yue Wang

of Chinese Academy of Sciences and the University of Arizona
for his constructive suggestions on this research.

The authors also gratefully acknowledge the support of K. C.
Wong Education Foundation, Hong Kong.

REFERENCES
[1] P. Werbos, “Advanced forecasting methods for global crisis warning and

models of intelligence,” General System Yearbook, vol. 22. pp. 25-38,
1977.

[2] T. Borgers and R. Sarin, “Learning through reinforcement and replicator
dynamics,” Journal of Economic Theory, vol. 77, no. 1, pp. 1-17, 1997.

[3] J. Dalton and S. N. Balakrishnan, “A neighboring optimal adaptive critic
for missile guidance,” Mathematical and Computer Modelling, vol.23,
no.1, pp. 175-188, 1996.

[4] D. Kirk, Optimal Control Theory: An Introduction. Englewood Cliffs, NJ:
Prentice-Hall, 1970.

[5] J. Si and Y. T. Wang, “On-line learning control by association and
reinforcement,” IEEE Transactions on Neural Networks, vol.12, no.2, pp.
264-276, 2001.

[6] D. B. Prokhorov and D. C. Wunsch, “Adaptive critic design,” IEEE
Transactions on Neural Networks, vol.8, no.5, pp. 997-1007, 1997.

[7] J. J. Murray, C. J. Cox, G. G. Lendaris, and R. Saeks, “Adaptive dynamic
programming,” IEEE Transactions on Systems, Man, Cybernetics Part C,
vol. 32, no.2, pp. 140-152, 2002.

[8] D. Liu, X. Xiong, and Y. Zhang, “Action-dependent adaptive critic
designs,” in Proceedings of the 2001 IEEE International Joint
Conference on Neural Networks, vol. 2, 2001, pp. 990-995.

[9] J. Si, A. Barto, W. Powell, and D. Wunsch, Handbook of Learning and
Approximate Dynamic Programming. IEEE Press, John Wiley & Sons,
Inc. 2004.

[10] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Induction. MIT
Press, Cambridge, MA, 1998.

[11] P. Cichosz, “Truncating temporal differences: on the efficient
implementation of TD(λ) for reinforcement learning,” Journal of
Artificial Intelligence Research, vol .2, pp. 287-318, 1995.

[12] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: a survey,” Journal of Artificial Intelligence Research, vol. 4,
1996, pp. 237-285.

[13] P. Dayan, “The converge of TD(λ) for general λ,” Machine Learning, vol.
8, no. 3, 1992, pp. 341-365.

[14] J. Xu, F. M. Liang, and W. S. Yu, “Learning with eligibility traces in
adaptive critic designs,” in Proceedings of the 2006 IEEE International
Conference on Vehicular Electronics and safety, 2006, pp. 309-313.

[15] H. J. Kushner and G. G. Yin, Stochastic Approximation Algorithms and
Applications, New York: Springer-Verlag, 1997.

[16] M. W. Spong and D. J. Block, Pendubot Installation and User Guide.
Mechatronic System Inc. 1997.

[17] M. J. Zhang and T. J. Tarn, “Hybrid control of the pendubot,”
IEEE/ASME Transactions on Mechatronics. vol. 7, pp.79-86, 2002.

[18] D. B. Zhao, J. Q. Yi, and D. R. Liu, “Particle swarm optimized adaptive
dynamic programming,” in Proceedings of the 2007 IEEE International
Symposium on Approximate Dynamic Programming and Reinforcement
Learning, 2007, pp. 32-37.

[19] M. A. Perez-Cisneros, R. Leal-Ascencio, and P. A. Cook, “Reinforcement
learning neurocontroller applied to a 2-dof manipulator,” in Proceedings
of the 2001 IEEE International Symposium on Intelligent Control.
Mexico, 2001, pp.56-61.

4540

