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Abstract: In this paper, a discrete-time output feedback controller that stabilizes the
class of nonlinear Lipschitz systems is presented. The applicability of the controller
design in the robotics field is thoroughly discussed from both the modeling and
design perspectives. It is shown that the objective of stabilizing the robot manipulator
continuously using a discrete-time controller can be achieved using a direct sampled-
data design approach in which neither the plant model nor the controller need to be
discretized a priori, and where the robot measurements are only available at discrete
points of time. The proposed design is shown to have important advantages over the
classical emulation approach that has been used to solve similar problems. Simulation
results on a nonlinear model of the single link flexible joint robot are presented.
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1. INTRODUCTION

Nonlinear control design continues to be a
challenge. One of the main challenges, especially in
practice, is the Sampled-data (SD) nonlinear control
problem, motivated by the use of digital computers in
most modern control setups. In this case, a nonlinear
continuous-time plant is controlled using a discrete-
time controller, where sampled signals from the plant
are processed with a digital computer, and where
the plant input is obtained by using a hold device
on the resulting discrete-time signal generated by
the computer. Three standard approaches have been
applied to design nonlinear SD controllers in this
case [13]: (i) Continuous-time “Emulation” design,
(ii) Discrete-time “Discretization” design, and (iii)
Sampled-data “Direct” design.

In the emulation method, a continuous-time
controller is designed based on the continuous-time
plant model, then the discrete-time controller is ob-
tained through discretization. The majority of the
work done for nonlinear SD control uses this tech-
nique, see for example [2, 4, 5]. These results use
the principle that the discretized controller recovers
the performance of the continuous-time controller as
the sampling frequency is sufficiently large, or try to
show the relationship between the sampling time and
the domain of attraction. In general, these methods
assume the existence of a continuous-time stabilizing
controller and do not focus on the controller design
problem. The focus is rather on the sampling fre-

1 Department of Electrical and Computer Engineering, Uni-
versity of Alberta, Edmonton, Canada, T6G 2V4.

quency, and fast sampling rates are usually needed
to achieve stability in this case. In the discretization
method, a digital controller is designed based on
the exact or approximate discrete-time plant model.
For results on nonlinear SD control that use this
approach, see [7, 9, 10]. Most of these results pursue
controller design for sampled-data nonlinear systems
based on the approximate discrete-time model of
the system when sampling is sufficiently fast. It is
important in the discretization approach to consider
approximate discrete-time models simply because ex-
act models are impossible or hard to obtain in most
nonlinear systems of practical interest. As with the
emulation method, a limitation of these results is
that they do not consider the design problem (see for
example [13]) since their main objective is to provide
sufficient conditions to guarantee the stability of the
exact discrete-time plant if the given digital con-
troller stabilizes the approximate discrete-time plant.
Another limitation is the fact that stability is only
considered in the discrete-time domain, and that the
intersample response is not considered in this case.
In the direct SD design approach, no approximations
are made and a discrete-time controller is designed
based on the sampled-data model of the plant which
must include exact modeling of the sample and hold
devices, and therefore constitutes a modeling chal-
lenge in nonlinear systems. Due to the complexity of
the problem, results on the direct SD design method
are scarce (see [3] for direct design of sampled-data
linear time-invariant systems). The main advantage
of this approach is that it makes no approximations,
intrinsic in the discretization process, and that the
design takes into account the inter-sample behavior.
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Another important advantage is that the controller
design problem plays an important role in the sta-
bility analysis, and is not considered as an indepen-
dent problem unlike the emulation and discretization
designs. This alleviates the need for fast sampling
rates, and hence puts less restrictions on the control
hardware.

In this paper, we focus on the latter approach
proposing a new direct design technique for solving
the SD stabilization problem of the general class
of nonlinear Lipschitz continuous systems. Due to
its importance, the class of systems considered in
this paper has seen much attention in the literature,
especially for the observer and state estimation de-
sign problems (see for example [1, 14, 17, 20]). Our
approach to solve the SD stabilization problem is
as follows: we first show that the SD stabilization
problem is equivalent to a standard discrete-time
H∞ problem solvable using commercially available
software packages (this can therefore be seen as an
extension of the works in [14, 15] where the H∞ ap-
proach was used for solving the observer design and
sensor fault estimation problems in the continuous-
time domain). We then prove that the discrete-
time H∞ problem is sufficient for exact stabilization,
presenting a parameterization for the set of “direct
design” SD controllers in this case. The proposed
design is shown to have important advantages over
the classical emulation approach that has been used
to solve similar problems. This is illustrated through
simulations on a nonlinear model of the single link
flexible joint robot. The general application in the
robotics field is thoroughly discussed from both the
modeling and design perspectives.

2. PROBLEM DEFINITION

In the sequel we consider the nonlinear system
Σ of the form:

Σ :

{

ẋ(t) = Ax(t) + Bu(t) + Φ(x, u, t)
y(t) = Cx(t)

(1)

satisfying the following conditions

(1) Φ(0, u, t) = 0 ∀u ∈ ℜm, ∀t ∈ ℜ.
(2) Φ(x, u, t) satisfies a uniform Lipschitz condition

globally in x, i.e,

‖ Φ(x1, u, t)−Φ(x2, u, t) ‖ ≤ α ‖ x1−x2 ‖ (2)

∀ u ∈ ℜm, t ∈ ℜ and ∀ x1 and x2 ∈ ℜn. Here
α ∈ ℜ+ is referred to as the Lipschitz constant
and is independent of x, u and t.

(3) (A,B) stabilizable and (A,C) detectable.

We will discuss in section 4 how the Euler-Lagrange
model of robot manipulators can also be put in
this form. The third condition (stabilizability and
detectability of the pairs (A,B) and (A,C) respec-
tively) is needed to guarantee that the standard
assumptions in the H∞ optimization theory are sat-
isfied. In this paper, we consider the output feedback
stabilization problem of the system Σ in the following
sense:

Definition 1. The system Σ is said to be globally
exactly stabilized by the output feedback control
input u = g(y), if the equilibrium point of Σ at the
origin is rendered globally asymptotically stable by
u (i.e, if the system ẋ = Ax+Bg(y)+Φ(x, g(y)) has
a globally asymptotically stable equilibrium point at
the origin, in the sense that x(t) → 0 as t → ∞,
∀ x ∈ ℜn).

We focus on the sampled-data (SD) case, in
which the output y is sampled at discrete time
instants (as shown in Figure 1 2 ) and the input
u(t) = Hu(k) where H is the hold operator,
and where the sample and hold devices are both
operating with the speed 1/h (h being the sampling
time).

Plant Σ

Controller Kd

z(k + 1) = f(z(k), y(k), k)
u(k) = g(z(k), y(k), k)
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Fig. 1. The SD stabilization problem.

Therefore, in our problem definition we con-
sider that: (i) not all the system states are mea-
surable, (ii) the measurements are only available
every “h” seconds, and our objective is to design
the discrete time controller that achieve exact time
stabilization according to Definition 1.

Throughout the paper, we will make use of the
following notation: Consider a system G : L2 → L2.
We will represent by γ(G) the L2 gain of G de-

fined by γ(G) = supu

‖Gu‖L2

‖u‖L2

. It is well known that,

for a linear system G : L2 → L2 with a transfer
matrix Ĝ(s), γ(G) is equivalent to the H-infinity

norm of Ĝ(s) defined as follows: γ(G) ≡ ‖ Ĝ(s) ‖∞
∆
= supω∈ℜ σmax(Ĝ(jω)) where σmax represents the

maximum singular value of Ĝ(ω). The correspond-
ing L2 space and H∞ norm in the discrete-time case
will also be used (see [3] for their exact definition).
The matrices In, 0n and 0nm represent the iden-
tity matrix of order n, the zero square matrix of
order n and the zero n by m matrix respectively.
The symbol T̂yu represents the transfer matrix from
input u to output y. The partitioned matrix K =
[

AK BK

CK DK

]

(when used as an operator from y(k) to

u(k), i.e, u(k) = Ky(k)) represents the discrete-time
state space representation (z(k + 1) = AKz(k) +
BKy(k), u(k) = CKz(k) + DKy(k)) and when used
as a mapping between the continuous-time signals

2 In the figures of this paper, solid and dotted lines represent
continuous-time and discrete-time signals respectively.
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u(t) and y(t), it represents the continuous-time ver-
sion of this state space representation. The operators
S and H will be used to represent the sample and
zero-order hold operators with sampling time h.

3. DIRECT SD STABILIZATION

In this section, we consider the SD output
feedback stabilization problem represented by Fig-
ure 1. Our goal is to solve this problem using a
direct design approach where no approximate dis-
cretizations of the plant or the controller are used,
and where the objective is to design a discrete-time
controller Kd that achieves global exact stabilization
of the continuous-time plant Σ according to Defini-
tion 1. Our main result is presented in the form of a
theorem showing that the “direct design” controller
can be obtained by solving a standard discrete-time
H∞ problem (without the need to discretize the plant
a priori nor to design a continuous-time controller
then discretize it as is the case with the emulation
method) as follows:

Theorem 1. There exists a dynamic discrete-time

controller Kd =

[

AK BK

CK DK

]

that stabilizes the sys-

tem Σ according to Definition 1, if there exists a
solution to the following discrete-time H∞ problem:
“Find Kd such that ‖ T̂ζω(z) ‖∞< 1

α
, for the stan-

dard setup in Figure 2(a), where Ĝ(z) is a discrete-
time system that is function of both the Lipschitz
constant α and the sampling time h (see [16] for

details about the computation of Ĝ(z)).”
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Fig. 2. (a) Discrete-time setup. (b) SD setup.

Proof : The proof is divided into three parts:

Part 1:
Using the first two Lipschitz conditions in section 2,
the function Φ(x, u, t) : ℜn ×ℜm ×ℜ → ℜn satisfies:

‖ Φ(x, u, t) ‖ ≤ α ‖ x ‖; ∀x ∈ ℜn. (3)

Then, looking at Φ(x, u, t) as a nonlinear uncer-
tainty term ∆, and proposing a dynamic discrete-

time controller Kd =

[

AK BK

CK DK

]

, the SD feedback

stabilization problem in Figure 1 can be represented
by Figure 3 where

‖ ∆x ‖ ≤ α ‖ x ‖ (4)

This can be seen as the feedback interconnection of
system P (the black box shown in Figure 3) and the
nonlinear uncertainty ∆. By defining the following
variables:

Fig. 3. Feedback interconnection.

ω = x̄

ζ = x (5)

ϕ = y

ν = u

the system P can be represented by the sampled-data
setup in Figure 2(b), where Ĝ(s) has the continuous-
time state space representation in (6) with the ma-
trices defined in (7)-(8).

Ĝ(s) =





A B1 B2

C1 D11 D12

C2 D21 D22



 (6)

ż = [A] z + [In B]

[

ω
ν

]

(7)

[

ζ
ϕ

]

=

[

In

C

]

z +

[

0n 0nm

0pn 0pm

] [

ω
ν

]

(8)

Part 2:

If the controller Kd satisfies ‖ T̂ζω(z) ‖∞< 1

α
for the

standard setup in Figure 2(a), then the L2 gain of
the system P (i.e, the L2 gain from ω(t) to ζ(t) in
Figure 2(b)) is less than 1

α
. More details about the

relation between the two setups in Figure 2 can be
found in [3] 3 .

Part 3: The uncertainty ∆ is a static nonlinearity
(no internal states) with finite L2 gain ≤ α due to
(4). The mappings Txx̄ : x̄ → x and ∆ : x → x̄,
therefore, satisfy γ(Txx̄).γ(∆) < 1. Using a dissi-
pativity argument for the feedback interconnection
of Figure 3, Txx̄ and ∆ are dissipative with respect
to the supply rates s1 = −xT x + γ(Txx̄)2x̄T x̄ and
s2 = −x̄T x̄+α2xT x respectively. Denoting by V1 and
V2 the storage functions associated with these supply
rates, it follows from Corollary 1 in [8] that V1 + ǫV2,
ǫ > 0 is a Lyapunov function for the system, and
that the equilibrium point is globally asymptotically
stable in the sense of Definition 1, and the proof is
complete. △

Comment:
The importance of the result in Theorem 1 is that it

3
P is a hybrid system (mix of continuous-time and discrete-

time signals) and has an ill-defined transfer function. However,
the equivalence between the L2 gain of these two setups was
proven. See [3], Chapter 13, for more details.
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gives an exact stability result (i.e, exact stability of
the equilibrium point is proven and no convergence
to stability sets is involved) for the output feedback
stabilization problem of SD nonlinear Lipschitz sys-
tems. The design is a discrete-time H∞ problem that
can be solved using commercially available software
packages. Most importantly, the proposed method
is a direct design approach for this SD stabilization
problem, where no approximate discretization of the
plant Σ or of the controller is used to obtain the
solution.

3.1 H∞ Direct Design

Now, we introduce a design algorithm that is
based on the result obtained from theorem 1.

Design procedure:

Step 0. Set the sampling time h > 0 and the
Lipschitz constant α.
Step 1. Calculate the entries of Ĝ(s) where Ĝ(s) is
given from (6) with the matrices defined by (7)-(8).

Step 2. Compute the discrete equivalent Ĝ(z) which

is function from Ĝ(s), h and α (See [16] for more
details).
Step 3. Test solvability of the discrete-time H∞

problem related to the setup in Figure 2(a) and
defined as: “Find Sd, the set of stabilizing controllers
Kd such that ‖ T̂ζω(z) ‖∞< 1

α
”. If test fails then

go to Step 4 ; otherwise solve the problem (using
available software packages) and any Kd ∈ Sd is a
solution for the SD stabilization problem shown in
Figure 1.
Step 4. Decrease α. If α < certain threshold then
stop the algorithm; otherwise go to Step 1.

4. APPLICATION IN ROBOTICS

4.1 Robot Manipulators as Lipschitz Systems

The dynamic equations of a robot manipulator
can be represented by the following structure [18]:

u = M(θ) θ̈ + V (θ, θ̇) (9)

where θ, θ̇ and θ̈ ∈ ℜn are vectors representing the
position, velocity and acceleration of the n robot
joints respectively, u ∈ ℜn represent the actuator
torques applied at these joints, M(θ) is referred to

as the inertia matrix, and V (θ, θ̇) is a vector repre-
senting the centrifugal, coriolis, gravity and friction
terms. In our formulation, sensors may not be avail-
able to measure all the joints positions and velocities.
Therefore, θ and θ̇ are not assumed measurable for
control purposes. By defining the state variables as
x1 = θ, x2 = θ̇ (note that here x1, x2 represent n-
dimensional vectors) we get the state space model:

ẋ = f(x) + g(x)u (10)

where x =

[

x1

x2

]

, f(x) =

[

x2

−M−1(x1)V (x1, x2)

]

and g(x) =

[

0n

M−1(x1)

]

. This can also be repre-

sented as:

ẋ = Ax + Φ(x, u) (11)

where:

A=

[

0n In

0n 0n

]

, Φ=

[

0n

M−1(x1)u − M−1(x1)V (x1, x2)

]

.

It is important to note that the nonlinear terms in
Φ are mainly trigonometric terms which are locally
Lipschitz, and an upper bound on the Lipschitz
constant can be found by computing ‖Φ(x, u)‖ over
the operating range. Another representation of (10)
around an operating point x∗ of interest is:

ẋ = Ax + Bu + Φ(x, u) (12)

where A =
(

∂f
∂x

)

|x∗ , B =
(

∂g
∂x

)

|x∗ , and where

Φ = (f(x) − Ax + g(x)u − Bu).

It is also important to note that (11) and
(12) are both exact models of (10). By neglecting
the terms in Φ in (12), one gets the well known
approximate linearized model around the operating
point x∗, i.e:

ẋ = Ax + Bu (13)

where A =
(

∂f
∂x

)

|x∗ , B =
(

∂g
∂x

)

|x∗ , which is an

approximate model of (10). In our formulation, how-
ever, no approximation is needed and one can di-
rectly use the exact Lipschitz model in (12) for the
stabilization purpose. Note that (12) is a special case
of the general form in (1) and that the system output
can be assumed as any “sampled” linear combination
of the states as long as the pair (A, C) is detectable.
It is also important to note that, as long as the
operating point x∗ is not a singular point of the
manipulator inertia matrix, the pair (A, B) in (12)
will always be stabilizable.

4.2 Simulations on a Flexible Joint Robot

In this section, simulation experiments are
used to illustrate the performance of the stabilizing
controller proposed in section 3. A 4th order model
of a single-link flexible joint robot is considered in
these experiments [17]. The robot is represented
schematically in Figure 4, and its parameters can be
found in [17]. The system variables are θm (rad), ωm

(rad/sec), θl (rad) and ωl (rad/sec), which represent
the motor angular rotation, the motor angular ve-
locity, the link angular rotation and the link angular
velocity respectively. The control input is the DC
voltage u (V).

The state space representation of the system
is as follows:

372



Fig. 4. Schematic of the single link flexible joint
robot.

θ̇m = ωm (14)

ω̇m =
k

Jm

(θl − θm) −
B

Jm

ωm +
Kτ

Jm

u (15)

θ̇l = ωl (16)

ω̇l = −
k

Jl

(θl − θm) −
mgl

Jl

sin (θl) (17)

By assuming that only the motor position
and velocity are measurable, and using the state
as x = [ x1 x2 x3 x4]

T where x1, x2, x3 and x4

represent θm, θl, ωm, ωl respectively, the model can
be represented by:

ẋ(t) = Ax(t) + Bu(t) + Φ(x, u)

y(t) = Cx(t)

with:

A =







0 0 1 0
0 0 0 1

−48.6 48.6 −1.25 0
19.5 −19.5 0 0






, B =







0
0

21.6
0






,

Φ(x, u) =







0
0
0

−3.33 sin(x2)






, and C =

[

1 0 0 0
0 0 1 0

]

.

The model is in the form of (12), and the Lipschitz
constant α = 3.33. The stabilization problem consid-
ered here is trying to bring x to rest starting from
x(0) = [ 0 0 3 0]T . The simulation time is taken as
10 seconds. The result of continuous-time stabiliza-
tion is shown in Figure 5 where the controller K is
obtained by using a continuous-time H∞ technique 4

and is given in (18). The four states of the system
converge to zero (only the first two are shown in
Figure 5) with ‖ x ‖L2

= 13.9361.

4 The continuous-time controller is to be discretized later on.
Its matrices are denoted by the subscript “c”. It is included
here for the sake of comparison between the different SD
designs.

AKc
=







−1.718 0.1178 0.1433 0.003
−315.8339 −44.2023 −6.0686 −743.6544
−6.8772 −9.1322 0.7208 40.0273
1.8055 −0.5313 −0.4602 0.0044






,

BKc
=







0.37 0.19
0.19 2.27
1.48 1.96
0.03 0.11






, CKc

=







−58.62
−7.13
−4.05

−163.67







T

,DKc
=

[

0
0

]T

(18)
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motor angular rotation (rad)
motor angular velocity (rad / sec)

Fig. 5. H∞ Continuous stabilization.

To simulate the SD stabilization, two design tech-
niques are considered for the discrete-time controller
Kd: (i) The first design is by using the emulation
method where Kd is obtained by discretization of
the continuous controller in (18) (two discretization
methods are used here: the zoh and the bilinear
“Tustin” discretizations), (ii) The second design is
the direct H∞ design technique proposed in section
3. Table 1 below shows the trend of the L2 norm of x
for these two techniques and for different selections
of the sampling time h.

Table 1. L2 norm of x for different SD
stabilization methods

h = 0.001 sec h = 0.01 sec h = 0.1 sec

Zoh 14.0371 15.5256 ∞

Bilinear 13.9795 14.4688 ∞

Direct H∞ 17.9455 18.4124 20.8695

As seen from Table 1, for large sampling time
(h = 0.1), the direct H∞ design method is the only
one that converges and the response for this case is
shown in Figure 6 where the discrete-time controller
obtained using the design algorithm suggested in
section 3 is given in (19).

AK =







−0.1342 0.0351 0.0358 −0.3946
−2.8096 −0.7561 0.6552 −6.6464
−4.0948 −1.5639 0.9109 3.8428
−0.2761 −0.0867 −0.0442 0.8769






,

BK=







0.82 0.07
−3.8 0.5
4.6 1.6
0.46 0.1






, CK=







0.4
0.3
−0.2
−4.5







T

, DK=

[

−1.7
−0.9

]T

(19)
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Fig. 6. H∞ SD stabilization for h = 0.1 sec.

The two discretization methods fail to con-
verge when h = 0.1 sec (as shown by the ∞’s in
Table 1). By trying different sampling times for this
simulation example, the maximum sampling time h
stabilizing the manipulator using the “zoh” method
is ≃ 0.02 sec, using “bilinear discretization” is ≃ 0.05
sec and using the “H∞ direct design” approach is
≃ 0.2 sec (10 times the zoh and 4 times the bilinear).
Finally, Figure 7 compares the response of the motor
angular velocity in case of the H∞ direct design tech-
nique with that of the bilinear discretization when
the sampling time h is fixed at 0.05 sec. This figure
also shows the improvement in the transient response
when using the direct design approach.

0 1 2 3 4 5 6 7 8 9 10
−6

−4

−2

0

2

4

6

time (sec)

Bilinear discretization (h=0.05 sec)
H−infinity direct design (h=0.05 sec)

Fig. 7. (H∞ direct design) vs (emulation design).

5. FUTURE WORK

Future works includes dealing with modeling
uncertainties, and calculation of the controller in
real-time for more complex systems.
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