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Abstract— This paper concerns the problem of optimizing
switched-mode hybrid dynamical systems, where it is required
to balance the tracking of a reference signal with an attempt
to reduce a state-dependent cost-penalty associated with the
switchings among the modes. We propose an algorithmic
approach to the problem and we illustrate it on a specific
example. The investigation has been motivated by design issues
in power electronics, where it is desirable to regulate the load
current in a switching circuit by controlling the state of a switch.
On one hand tighter regulation requires switching at a higher
frequency, and on the other hand each switching requires a
certain amount of energy. Our algorithmic approach brings
together various techniques that we recently have developed for
optimizing hybrid systems, and its demonstrated application on
a specific example suggests its potential viability in a broader
array of problems in power electronics.

I. INTRODUCTION

Optimal mode-scheduling in switched-mode hybrid dy-

namical systems has been extensively investigated in the

past few years, and several algorithmic techniques have been

developed [1], [2], [3], [4], [7], [8]. In such problems, the

system’s dynamics typically have the following form,

ẋ ∈ {fα(x) : α ∈ A}, (1)

t ∈ [0, T ], where x ∈ Rn is the state variable, the initial

state x0 := x(0) and the final time T > 0 are given, and

fα : Rn → Rn are continuously differentiable functions

indexed by α in a given finite set A. Each one of the

functions fα corresponds to a mode of the system and hence

it is labelled a modal function. The modes’ schedule consists

of the sequence of deployed modal functions in the interval

[0, T ] and the timing of switching between consecutive

modes. The sequence of modal functions, henceforth called

the modal sequence, is characterized by a finite or countable

sequence {α1, α2, . . . , } of elements in A, and the switching

times are denoted by τ1, τ2, . . ., in increasing order. If the

modal sequence is finite, and consisting of N +1 modes for

some integer N , then there are N switching times among

them, τ1, . . . , τN , and in this case we use the vector notation

τ̄ := (τ1, . . . , τN )T ∈ RN to denote them. Furthermore,

we define τ0 := 0 and τN+1 := T , and observe that the

switching-time vector satisfies the following inequalities,

0 = τ0 ≤ τ1 . . . ,≤ τN ≤ τN+1 = T. (2)

The ith modal function is active during the interval [τi−1, τi),
and thus, defining the function F (x, t) by

F (x, t) := fαi
(x) for all t ∈ [τi−1, τi), i = 1, . . . , N +1,

(3)
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the system’s dynamics are defined by the equation

ẋ = F (x, t). (4)

Let L : Rn → R be a continuously differentiable function,

and consider the cost functional J , defined by

J =

∫ T

0

L(x)dt. (5)

This cost functional is a function of the modes’ schedule, and

the problem of minimizing it has been studied extensively in

the past few years. Most of the published works, such as

[3], [7], [8], considered a fixed mode-sequence and devised

gradient-descent algorithms for optimizing J with respect to

the switching times (and possibly a control input u which is

not considered here). A systematic treatment of the discrete,

mode-sequencing parameter was carried out in [2], where

an inherently NP-hard problem was addressed by variational

techniques yielding local minima in a suitable sense. The

algorithms proposed there can result in increasing numbers

of switching points, and therefore an iteration sequence can

approach a sliding-mode control.

The optimal scheduling problem described above arises

in a number of application domains; see, e.g., [3] for a

survey. This paper is motivated by applications in power

electronics, where switching devices must be controlled in

order to balance the tracking by a certain current of a given

reference signal, with energy-related costs associated with

the switching actions. Switching at high frequency may yield

a good tracking of the reference signal, but it may result in

excessive heating of the switch or in the depletion of an

energy source like a battery. We formulate such balancing

problems in an abstract setting, where it is desirable to

minimize the sum of a tracking cost function in the form

of (5) with the sum of energy-related costs associated with

the switchings.

Whereas a cost-performance like (5) can be handled by

variational techniques, the energy cost has a discrete variable,

since it is related to the number of switchings. Such a vari-

able has not been treated in the aforementioned references,

and it appears to provide a new challenge to the general

problem of optimizing switched-mode systems.

The power-electronics problem we have in mind is de-

scribed in Section II, and it is then simplified by heuristic

considerations. Our algorithmic approach is described in

detail in Section III, and numerical examples are provided.

Finally, Section IV concludes the paper and suggests direc-

tions for future research.
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II. EXAMPLE: SWITCHING CIRCUIT

Consider the current-regulation circuit shown in Figure 1,

whose purpose is to deliver a specified current level, denoted

by Iref , to the load inductor. The voltage source has a given

constant value V > RIref , and therefore the actual current

delivered to the load is regulated by opening and closing the

transistor switch. The state of the switch is controlled by the

base drive circuit. When the switch is turned on (closed) the

diode is reverse biased, and most of the current i(t) flows

through the transistor. On the other hand, when the switch is

turned off (opened), the diode is forward biased, and most

of the current i(t) flows through it.
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Fig. 1. Switching circuit for current regulation.

In order to study the load current i(t), it is reasonable to

assume that the switch is opened and closed instantaneously;

in the on state the switch is a short circuit and the current

through it is the load current i(t), while the diode is an open

circuit. On the other hand, in the off state the switch is an

open circuit and the voltage across it is V , while the diode

is a short circuit. The two corresponding circuit diagrams,

labeled “on” and “off”, are shown in Figure 1.

To study the power loss at the switch, we cannot assume

that its change-of-state is instantaneous, but rather that it

takes a certain finite amount of time due to parasitic junction

capacitances in the transistor. We assume that it takes a

constant amount of time, ts seconds, to open or close the

switch. During that period the voltage and current at the

switch change rapidly, and will be simultaneously large over

an interval of time, giving rise to power loss. Moreover, the

load current i(t) is continuous in t during a change of state,

and hence if ts is much smaller than the time constant of

the circuits, then i(t) can be assumed to have a constant

value during a closing or opening of the switch. It must be

mentioned that power loss also occurs during conduction,

but we chose to neglect it in the present study in order to

focus on the salient features of our algorithms when applied

to optimal control problems having discrete, discontinuous

switching costs.

Consider an opening of the switch which starts at time τ ,

when the switch is closed, and ends at time τ + ts, when the

switch becomes fully open. Making the common assumption

of linear voltage and current during the opening of the switch

(see, e.g., [5], Chapter 2, Section 4), we note that first the

voltage across the switch, vT (t), changes in a linear fashion

from 0 to V volts, and then the current through the switch,

iT (t), changes in a linear fashion from the load current i(τ)
to 0. This is shown in Figure 2, where the time it takes

the voltage to rise is tm seconds, and the time it takes the

current to decline is ts−tm seconds. Accordingly, the power

dissipating at the switch during its opening, p(t), is given by

p(t) := vT (t)iT (t) =
{

V
tm

(t − τ)i(τ), t ∈ [τ, τ + tm),
(

i(τ) − i(τ)
ts−tm

(t − τ − tm)
)

V, t ∈ [τ + tm, τ + ts).
(6)

Integrating p(t) over the interval [τ, τ + ts] we obtain the

energy lost due to the opening of the switch. Denoting it by

q(τ), it follows from (6) after some algebra that

q(τ) =
1

2
V tsi(τ). (7)

This expression for the energy loss is also valid when the

switch is being closed, since we assume that both closing

and opening the switch takes the same amount of time, ts
seconds. As for the diode, its energy loss can be neglected.
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Fig. 2. Voltage and current during switch opening.

The particular circuit we shall consider in the next section

has the following parameter values: R = 5.1 Ω, L = 10 mH,

V = 150 V, and ts = 0.5 µs. By Equation (7), the energy

term q(τ) is given by

q(τ) =
1

2
V tsi(τ) = 0.375 × 10−4i(τ). (8)

We also point out that the time constant of the circuit is

roughly 2 ms, which is two orders of magnitude larger than

ts.

III. CASE STUDY: OPTIMAL CURRENT REGULATION

This section considers the current regulation problem for

the circuit shown in Figure 1. It can be seen that, when the

switch is closed, the steady-state load current is Is := V/R,

and when the switch is open, the steady-state load current is

0. Let Iref ∈ (0, Is) be a given reference value; the objective

of current regulation is to control the switch in order to

have the current i(t) track the reference value Iref . Perfect

3966



tracking, where i(t) = Iref for every t in an open interval, re-

quires a sliding-mode control, and hence an infinite switching

cost. Thus, the optimal regulation problem that we consider

aims at balancing the tracking performance measure with the

cumulative cost associated with the switchings.

This current regulation problem can be transcribed into an

optimal control problem with a discontinuous cost functional.

The underlying dynamical system consists of the circuit, and

its state variable x(t) is the current, namely x(t) = i(t).
According to the model set forth in Section II, the state

equations have the following forms,

ẋ = −
R

L
x +

V

L
= −510x + 15000 (9)

when the switch is closed, and

ẋ = −
R

L
x = −510x (10)

when the switch is open. It can be seen that Is = V
R

= 29.4
A, and we assume, somewhat arbitrarily, that at the initial

time t = 0 the switch is closed and x0 = Is is the initial

condition of the state variable. We will track half this value,

namely Iref = 14.7 A.

Following the notation established in Section I, given a

final time T > 0, let τi, i = 1, . . . , N , be the switching times

between the modes associated with the states of the switch,

and let τ̄ := (τ1, . . . , τN )T denote the vector of switching

times. Define the cost function L(x) as L(x) = (x− Iref)
2,

and following (5), define the cost functional J by

J =

∫ T

0

(x − Iref)
2dt; (11)

we chose T = 0.01 seconds and, as mentioned earlier, Iref =
14.7 A. Obviously J := J(τ̄) is a function of τ̄ by the state

equations (9) – (10). Furthermore, define Q(τ̄) by

Q(τ̄) =
N

∑

i=1

q(τi), (12)

where q(τi) is given by (8). Given a constant K > 0, we

define the combined cost functional, W (τ̄), by

W (τ̄) = J(τ̄) + KQ(τ̄). (13)

The objective of the optimal regulation problem is to

minimize W (τ̄) over all switching schedules. This section

describes an algorithm for minimizing W . Its presentation

proceeds in the following four steps, corresponding to in-

creasingly more complicated problems.

1) We first consider minimizing only J without regard to

Q, and we assume a given fixed number of switching

points.

2) We still consider only J , but now we allow the number

of switching points to be part of the variable.

3) We consider only minimizing Q without regard to J .

4) We put everything together and minimize W (τ̄) as a

function of the switching schedule τ̄ .

In order to reduce the cost (whether J , Q, or W ) with respect

to the continuous timing variable we use a feasible gradient

descent technique with Armijo step sizes; see [6] for its

details, analysis, and convergence properties. This algorithm

performs approximate line minimization along a suitable

feasible descent direction, whose choice will be described

later.

A. The tracking problem with fixed numbers of switchings

Consider the problem of minimizing J as defined in (11),

where the number of times the state of the switch is changed

(N) is fixed. Recall that the initial condition is x0 = Is, and

hence the state trajectory depends on the switching-times

vector τ̄ := (τ1, . . . , τN )T ∈ RN . Since the order of the

modes is given, τ̄ must lie in the constraint set defined by

Equation (2). When two or more switchings co-occur, namely

τi−1 = τi for some i = 1, . . . , N + 1, we consider them as

two distinct switchings, since this allows them to diverge at a

later time and keeps the problem’s dimension (N) a constant.

We applied a feasible direction algorithm with Armijo

step sizes, whose descent directions are defined as follows.

Let τ̄i denote the ith switching schedule computed by the

algorithm. Then, define h̃i to be the projection of -∇J(τ̄i)
onto the feasible set, as defined by (2). Note that if τ̄i lies

in the interior of the feasible set then h̃i = −∇J(τ̄i), while

if τ̄i lies on the boundary of the feasible set, then h̃i is

similar to the descent direction used by the simplex method

in linear programming, which is computationally attractive

when the constraint set is a polygon. Now h̃i may overshoot

the feasible set, and hence we scale it if necessary, and define

the descent direction, denoted by hi, via hi := γih̃i, where

the scaling factor γi is defined by

γi := max{γ ∈ (0, 1] : τ̄i + γh̃i is feasible}. (14)

The gradient ∇J(τ̄) was computed by the following

formula (see [3]). Recall the definition of the function F (x, t)
in Equation (3). Define the costate p(t) by the equation

ṗ = −
(∂F

∂x
(x, t)

)T

p −
(∂L

∂x
(x)

)T

, (15)

with the boundary condition p(T ) = 0. Then, for all i =
1, . . . , N ,

dJ

dτi

= p(τi)
T
(

fi(x(τi)) − fi+1(x(τi))
)

. (16)

We made several runs of the algorithm with various

numbers of switchings. The results of a typical run, with

N = 23, are shown in Figures 3 – 4. The final time is

T = 10 ms, and the initial iteration consists of equally-

spaced switching times. Figure 3 shows the graph of the

cost J as a function of the iteration count, and we notice

a significant decline in the cost until it flattens out. Figure

4 shows the trajectory of the current at the final iteration,

where the horizontal line at i = 14.7 indicates Iref . These

results are not surprising, since we expect the circuit to open

immediately in order to let the current go down to Iref , and

then bounce back and forth around that value at roughly

equally-spaced switching times. Several additional runs with

different initial schedules yielded similar results.
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Fig. 4. Problem 1: Current trajectory vs. time.

B. The tracking problem with variable numbers of switchings

Consider the problem of minimizing J as a function of the

entire schedule of modes, namely the number and timing of

the switchings. Reference [2] has addressed this problem in

a general theoretical setting, and devised an algorithm that

computes locally-minimal schedules in a suitable sense. To

explain that algorithm, consider for a moment a fixed value of

N (the number of switchings), and suppose that the algorithm

described in the previous subsection has computed a solution

point to the problem with the given N . Now consider a time

t ∈ [0, T ] that is not a switching time, and denote the modal

function at that time by f(x); this modal function is given by

the right-hand side of (9) or (10), depending on whether the

switch is closed or open at time t. Let f−1 denote the other

modal function corresponding to the complementary state of

the switch. Now suppose that we insert the complementary

mode for a brief interval of length δ seconds, centered at

time t. As a result we introduce two additional switchings at

the times t− 1
2δ and t+ 1

2δ. Consider the dependence of the

cost functional J on δ, and denote it by J̃(δ). Now denote

by Df (t) the one-sided derivative of this functional at δ = 0,

which was shown in [3] to have the following form:

Df (t) :=
dJ̃

dδ+
(0) = p(t)T

(

f−1(x(t)) − f(x(t))
)

, (17)

where p(t) is the costate defined by (15). Observe that if

Df (t) > 0 then such an insertion would result in a higher

cost, while if Df (t) < 0 then the insertion would result in a

lower cost. In this case the insertion of the two switchings

can be done at the same time t, and if an Armijo step follows

the insertion, it would separate the two switchings while

reducing the cost. The following algorithm makes this point

clear.

Algorithm 3.1: Step 0. Fix N0 > 0, and choose a switch-

ing schedule τ̄0 having N0 switching times. Set k = 0.

Step 1. Minimize J(τ̄) under the constraint that the number

of switching points must be Nk, by using the algorithm

described in the last subsection. Denote the final point by

τ̄k.

Step 2. Fix a fine grid of the time-interval [0, T ], denoted by

G, and for each point t on the grid, compute Df (t). Define

G− := {t ∈ G : Df (t) < 0}.

Step 3. Make an insertion of the complementary mode at

each point t ∈ G−, and call the resulting schedule τ̄k+1. Let

Nk+1 be the resulting number of switchings. Set k = k + 1,

and goto Step 1.

The results of a typical run are shown in Figures 5 –

6. Figure 5 shows the cost performance J as a function of

the iteration count, where by “iteration” we mean a descent

according to the Armijo stepsize. It is readily seen that during

a run of the algorithm in Subsection A for a fixed number of

switching times, the cost goes down until it flattens out. Then

an insertion is made, which results in a dramatic decline in

the cost. The number of switching times was initially 3, it

was 11 at the knee of the curve, and eventually it grew to

150. This number is shown at selective iteration counts in

the bottom of the figure. We note that most of the decline

in the cost occurred by the time we had 11 switching times,

and from this point on the algorithm declined slowly. Figure

6 shows the trajectory of the current at the final iteration

point, and it is not surprising to see it bouncing around Iref ,

in light of the fact that the optimal switching schedule is

known to be a sliding mode at that value.

C. Optimizing the switching cost

To further test the descent algorithm with Armijo stepsizes,

we apply it to minimizing the switching-cost function Q(τ̄)
as defined in (12) and (8). Of course the minimum is obtained

when there are no switchings at all, since in this case

Q(τ̄) = 0. However, our objective is to test the gradient-

descent algorithm with Armijo stepsizes on problems in-

volving switching costs, and hence this subsection serves to

illustrate its efficacy on Q(τ̄) in isolation. Observe that q(τ)
is proportional to x(τ), and hence the algorithm is expected

to drive the switchings to occur at times of low currents.

When two switching times co-occur we remove them from
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Fig. 6. Problem 2: Current trajectory vs. time.

the schedule and eliminate the mode between them; this

is a reasonable step because it results in an instantaneous

reduction in the cost Q. Since initially the switch is closed

and the current is set to Is, any small increase in the ith
switching time will result in larger currents if i is odd, and

in smaller currents if i is even. Consequently, dQ
dτi

> 0 if i

is odd, and dQ
dτi

< 0 if i is even. If N is even, the algorithm

is expected to push pairs of odd and even switching times

towards each other until they merge and are eliminated,

leaving no remaining switchings. A similar situation arises

when N is odd except that τ1 would move towards 0 and

will be the time of the sole remaining switching.

To verify these predictions, we started the algorithm with

51 switchings equally spaced in the time-interval [0, T ], and

let it run its course from there. The cost declined rapidly over

30 iterations, from 0.035 down to 0.001, while the number

of switchings declined from 50 to 1.

D. Minimize the combined tracking/switching cost

At last, we consider the problem of minimizing W (τ̄) as

defined by (13), whose solution point is expected to comprise

a balance between the tracking performance measure and

the cost of switching. The idea is to alternate between

the gradient-descent algorithm with Armijo stepsizes, and

the insertion of new modes. During the gradient-descent

algorithm, it may happen that two switching times coalesce;

in this case we cancel the two switchings and eliminate the

mode between them. This is a reasonable strategy since it

results in reductions in the switching costs while it does not

change the tracking performance measure. Mode insertion

is more problematic, since it results in an instantaneous

rise in the switching cost. In this case, it is hoped that the

subsequent gradient descent algorithm would offset this rise.

Thus, whenever we make an insertion, we store the switching

schedule prior to the insertion, τ̄ , and its cost, W (τ̄). We

then use the schedule resulting from the insertion as the

starting point for the gradient descent procedure, and when

that converges to a switching schedule τ̄+, we compare the

cost terms W (τ̄+) and W (τ̄). If the former is smaller, we

take τ̄+ as the next point, and otherwise, we return to τ̄ and

increase the grid size for the next insertion.

The procedure for selecting insertion times is similar to

what was used in subsection B, except for the following two

differences. First, the insertion gradient Df (t) (see (17)) has

to take into account not the cost J(τ̄), but the cost W (τ̄),
and this results in a modification of (17). Second, instead of

inserting a mode at every time-point t on the grid such that

Df (t) < 0, we make only a single insertion, at the grid-

point t where the insertion gradient is the most negative (if

none is negative, there are no insertions). This prevents the

addition of too many new modes and a fast rise in the number

of switching times, which could slow down the gradient-

descent algorithm. We point out that this change from the

procedure in subsection B amounts to an ad-hoc heuristic,

and no comparative study between the two has been made.

All of this is put together in a formal way by the following

algorithm.

Algorithm 3.2: Data. A sequence of progressively finer

grids of the interval [0, T ], denoted by {Gj}
∞

j=1.

Initialize. Pick an integer N0 > 0, and let the initial schedule

τ̄0 consist of N0 equally-spaced switchings in the interval

[0, T ]. Adopt the first grid G1.

Step 0. Set k = 0, and define W (τ̄−1) := ∞.

Step 1. Starting with τ̄k, perform a gradient descent al-

gorithm with Armijo stepsizes until convergence is noted.

Whenever two switching times coalesce, eliminate them and

the mode between them, thereby reducing Nk by 2. Denote

the resulting schedule by τ̄k.

Step 2. If W (τ̄k) − W (τ̄k−1) > 0, then set τ̄k = τ̄k−1, and

take the next-finer grid in the grid-sequence.

Step 3. With the schedule τ̄k, compute the insertion gradients

Df (t) for every t on the grid. If Df (t) ≥ 0 for every t on

the grid, then take the next-finer grid in the grid-sequence,

and repeat Step 3.
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Step 4. Perform a mode insertion, set Nk+1 = Nk + 2, and

denote the resulting schedule by τ̄k+1. Set k = k + 1, and

goto Step 1.

A few remarks are due.

I. In Step 1, convergence of the gradient-descent algorithm

is noted whenever either the gradient ∇W (τ̄), or the Armijo

stepsize, is small enough. By “small enough” we mean that

||∇W (τ̄)|| ≤ 1.0, or the Armijo stepsize is under 10−16.

The former bound may raise an eyebrow since 1.0 does not

appear to be too small. However, due to the stiffness of the

circuit and the associated optimization problem, at the initial

stages of the gradient-descent algorithm the magnitude of

the gradients typically is in the order of 500 – 800, and the

Armijo stepsize is in the order of 10−5.

II. The grids we chose are equally spaced in the interval

[0, T ]; the first grid has 10 points, and each successive grid

has 50% more points than the previous one.

We tested the algorithm on W (τ̄) := J(τ̄) + KQ(τ̄),
with K = 30, and K = 5. The results for K = 30 are

shown in Figures 7 – 8 for N0 = 3 and equally-spaced

initial switchings; additional runs with N0 = 9 and N0 = 15
yielded similar final-cost results. As seen in Figure 7, the

cost declined until it flattened, and after 11 iterations we

performed an insertion, marked by a rise in the cost. The cost

then declined, until another insertion was made at iteration

24. Finally, convergence was obtained with 7 switchings, and

the resulting cost was 0.247. The graph of the state trajectory

at the final point is shown in Figure 8, where we note that

the first switching time is t = 0, and subsequent switchings

occur at the times of sharp turns in the graph.
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Fig. 7. Problem 4: W vs. iteration count, N0 = 3.

IV. CONCLUSIONS

This paper addresses the problem of optimizing the switch-

ing schedule of a current regulator circuit so as to minimize

a weighted sum of a tracking performance functional and

a switching-related cost measure. It proposes an algorith-

mic framework consisting of variational principles for the

tracking performance functional, and ad-hoc heuristics for
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Fig. 8. Problem 4: Current trajectory at the final iteration.

handling the switching costs. We tested the algorithmic

framework on a generic problem, and found it to be effective

for computing locally optimal minima. Encouraged by the

obtained numerical results, it is our plan to apply the

proposed framework to realistic, concrete problems in power

regulation, as well as to more general problems in power

electronics.
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