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Abstract— In this paper, we study the control strategy for
connectivity guaranteed migration and trajectory tracking for
multi-agent groups using artificial potential field (APF) based
approach. Some agents, called active agents (AAs), that are
attracted by the reference point (modeled as the virtual leader)
lead the rest of the group to perform the tasks. An AA switching
rule and the coupled flocking controller are proposed to realize
the velocity consensus, inter-agent collision avoidance and
joint connectivity of the group. Further, we show a geometric
characterization and a stronger connectivity result of the group
by the proposed controller under an additional assumption.

I. INTRODUCTION

Connectivity is a key issue in the consensus and formation
control of multi-agent systems [1], [2], [6], [5], [4], [3], [11],
[12], [9], [17], [18]. A flock, although without universally
accepted definition in control literature, is considered to
be at least connected. But as a “loose” formation, a flock
does not necessarily be in a unique geometric pattern. It is
widely acknowledged that one of the pioneering works in
constructing man-made flocking was done by Reynolds in
computer graphics field. In [10], he proposes the well known
Reynolds’ rule by which a flocking simulation of a group
of ideal agents, called boids, is successfully realized. In
control society, many existing results on flocking control of
multi-agent systems rely on the design of so called artificial
potential fields or potential functions, from which the inter-
agent virtual attraction/repulsion force is generated. It is
hoped that by elaborately cooking the potential functions,
all the agents in the group will eventually move in the same
velocity, while simultaneously the configuration of the group
converges to the local or global extremes of the collective
potential function, which correspond to the desired geometric
pattern or range.

The problem of flocking control for particle vehicles, with
single or double integrator model, is worthy of study not
only because it can provide high level control strategies for
flocking control of multi-vehicle teams with more complex
dynamics, but also due to its value in determining the effects
of information flow in the distributed control of coupled
systems. In the early paper [13], virtual leaders of the group
are introduced and pair-wise potential not only exist between
real agents in the group but also between a real agent and a
virtual leader. But there, the aim of adding virtual leaders is
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to help shaping the potential function for the group so that it
can be stabilized at the desired geometric pattern (not only a
flock). The authors of [11] and [12] propose smooth or non-
smooth pair-wise potential function whose gradient specify
the inter-agent virtual attractive/repulsive force. It is proved
in [11] that the control law combining the potential’s gradient
with velocity matching terms coincide with the Reynolds
rules but will generically lead to regular fragmentation of
the group. The paper further asserts (without proof) that
by adding a destination feedback term in the control of
each agent can successfully generate a flock with arbitrary
initial conditions. Recently, the authors of [16] and [15]
propose connectivity preserving controllers, by designing
novel inter-agent potentials, to realize swarm aggregation and
flocking of multi-agent systems under the initial connectivity
assumption.

In this paper, we propose control strategies aimed at con-
nectivity guaranteed migration and trajectory tracking of a
group of agents with arbitrary initial positions and velocities.
By “connectivity guaranteed”, we mean that while the group
performs migration or trajectory tracking, its graph is ensured
to be jointly connected or eventually connected. A virtual
leader is used to represent the stationary destination or the
reference point on the trajectory being tracked by the group.
Along the lines in [13], [11] and [12], we revisit APF based
design approaches. It is assumed that some of the agents,
called active agents (AAs), in the group are controlled by the
virtual attractive force from the virtual leader as well as the
attractive/repulsive force from its neighbors; while the others
are only affected by the attractive/repulsive force from their
neighbors. Unlike in Algorithm 2 in [11], where every agent
can be seen active all the times, an AA switching rule and
time-varying controller is presented to realize the velocity
consensus, inter-agent collision avoidance, and some type of
joint connectivity of the group. Further, under the additional
assumption on the velocity consensus, we show that the
proposed controller can drive the group to be eventually
connected.

The rest of the paper is organized as follows: In Section II,
we introduce some basics of graph theory and the properties
of the potential functions used in this work. In Section III,
we present our main results on the connectivity guaranteed
migration and trajectory tracking control laws. Lastly, con-
cluding remarks will be made in Section IV.

II. PRELIMINARIES

A. Graph theory

To make this paper self-contained, we recall some basics
of graph theory from the past literature, see, e.g. [7]. G(V, E)
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is an undirected graph which consists of a vertex set V and
an edge set E ⊂ V × V . For any i, j ∈ V , the ordered
pair (i, j) ∈ E if and only if i is a neighbor of j. A path
from vertex i to j is defined as a sequence of directed
edges (v1, v2), (v2, v3), · · · , (vn−2, vn−1), (vn−1, vn), where
n ≥ 1, v1 = i, vn = j, and v1, · · · , vn are distinct. An
undirected graph is said to be connected if and only if there
is a path between any pair of vertices.

Let G(V, E(t)), t ∈ R be a graph with vertex set V
and time-dependent edge set E(t), we use

⊎
t G(V, E(t)) to

represent the graph composed of node set V and edge set⋃
t E(t). The graph G(V, E(t)) is said to be jointly connected

across [t1, t2] if and only if, for any i, j ∈ V , there is a path
between i and j in

⊎
t∈[t1,t2]

G(V, E(t)). In this case, it is
also said that all the vertices in V are jointly connected across
[t1, t2]. If for a given finite time t1, there exists t2 ≥ t1 such
that G(V, E(t)) is jointly connected over [t1, t2], we say that
G(V, E(t)) (or all the vertices in V) is (are) jointly after t1.

In this work, we use Gp(V, E(t)), sometimes simply Gp(t),
to denote the group induced graph. The vertex set V and the
edge set E(t), t ≥ t0 are defined as:

V = {1, 2, · · · , N}, (1)

E(t) = {(i, j) : ‖xi(t)− xj(t)‖ ≤ rnb, i, j ∈ V}, t ≥ t0
(2)

where N is the number of agents in the group, rnb is a
positive real number less than rs, the physical sensing and
communication range of each agent. From the definitions
above, we see that the graph Gp(t) is a undirected graph. A
vertex (agent) set V1(t) ⊆ V is said to be a subgroup of the
group at time t if ∀ i ∈ V1(t), ∀ j ∈ V\V1(t), (i, j) /∈ E(t).
A subgroup is said to be connected if all the vertices (agents)
in it are connected.

The adjacency matrix Ap(t) ∈ RN×N and the Laplacian
Lp(t) ∈ RN×N of the graph Gp(t) are, by convention,
defined as [7]:

Ap(t) = [aij(t)], with aij(t) =
{

a∗ij > 0, if (i, j) ∈ E(t)
0, otherwise

(3)
where a∗ij = a∗ji, ∀ i, j ∈ V; and

Lp(t) = [lij(t)], with lij(t) =
{ ∑

k 6=i aik(t) , if i = j

−aij(t) , otherwise
(4)

In this paper, we call an agent, which utilizes the motion
information of the virtual leader as a reference in its con-
troller, an active agent (AA) of the group. The set of the
AAs at time t, t ≥ t0, is denoted as W(t). In addition, we
define matrices

B(t) = diag{b1(t), · · · , bN (t)}, (5)
La(t) = Lp(t) + B(t). (6)

with

bi(t) =
{

b∗i > 0 , if i ∈ W(t)
0 , otherwise (7)

B. Potential functions

In this subsection, we introduce our potential functions
that characterize, respectively, the inter-agent and leader-
agent attraction and repulsion.

1) Inter-agent potential: Inter-agent potential function
ψa(·) : (0, +∞) → [0, +∞) is a C2 function with the
following properties: for some positive numbers da, ra sat-
isfying 0 < da < ra < rnb,

a) dψa(x)
dx < 0, x ∈ (0, da); dψa(x)

dx > 0, x ∈ (da, ra);
dψa(x)

dx = 0, x ∈ [ra, +∞);
b) limx→0 ψa(x) = +∞;
c) ψa(x) has a unique minimum at x = da.

Following the idea in the work [11], we pick an example of
inter-agent potential as:

ψa(x) =
∫ x

da

10·
(
− 1

ξ2
+

1
d2

a

)
%h

(
ξ

ra

)
dξ, x ∈ (0, +∞)

(8)
where %h(z) is a bump function which is defined in [11]:

%h(z) =





1, z ∈ [0, h)
1
2

[
1 + cos

(
π z−h

1−h

)]
, z ∈ [h, 1]

0, z ∈ (1, +∞)
(9)

2) Leader-agent potentials: The leader-agent potential
ψl(·) : [0, +∞) → (0, +∞) is a C1 function with the
properties:

a) dψl(x)
dx · 1

x is locally Lipschitz over [0, +∞), and there-
fore is uniformly continuous on [0, x∗] for any x∗ <
+∞;

b) dψl(x)
dx = 0, x = 0; dψl(x)

dx > 0, x ∈ (0, +∞);
c) limx→+∞ ψl(x) = +∞;
d) For any given x∗ > 0, ∃ ε(x∗) > 0 such that dψl(x)

dx > ε,
∀x ≥ x∗.

e) ∃C > 0 such that
∣∣∣dψl(x)

dx

∣∣∣
/
|ψl(x)| < C, ∀x ∈

[0,+∞),
f) ∃Cl > 0 such that ψl(x) ≥ Cl, ∀x ∈ [0, +∞).
It is easy to see that ψl(x) has a unique minimum, which

is positive, at x = 0. An example of function ψl is x2

2 + 1.
Throughout this paper, we use N,R+,Z+ to denote,

respectively, the set of natural numbers, nonnegative real
numbers and nonnegative integers. In addition, we use 1N

and 0N to represent the N × 1 vectors with all the elements
being 1 and 0. Lm

p [t0, +∞) is used to denote the set of all
piecewise continuous functions u : [t0,+∞) → Rm such

that
(∫ +∞

t0
‖u(t)‖pdt

)1/p

< +∞, [8].

III. FLOCKING CONTROLLER

In this section, we consider the model of each agent in
the group as:

ẋi(t) = vi(t), v̇i(t) = ui(t), i ∈ V, (10)

where xi(t) ∈ Rn and vi(t) ∈ Rn (n = 2, 3) are the position
and velocity of the ith robot respectively; and ui(t) is the
control input (acceleration) of the ith robot. The model for
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the virtual leader is in the same form as that of the agent,
i.e.,

ẋl(t) = vl(t), v̇l(t) = ul(t) (11)

where “l” stands for the word “leader”.
It is known that the mobility and limited sensing range of

the agents in the group raise the issue that the neighboring
relationship of the group may be time-varying. For this
reason, to start with our discussion, we define the following
time-dependent agent sets:

Definition 1: Agent sets Si(t),Ni(t), Ii(t), i ∈ V, t ∈
[t0,+∞) are defined as

Si(t) = {j ∈ V : ‖xi(t)− xj(t)‖ < rs}, (12)
Ni(t) = {j ∈ V : ‖xi(t)− xj(t)‖ < rnb}, (13)
Ii(t) = {j ∈ V : ‖xi(t)− xj(t)‖ < ra}, (14)

where rs and rnb have been mentioned in Subsection II-
A; and ra is as in Subsection II-B. Obviously, we have the
relation: ra < rnb < rs.

Note that in [12], the solutions of the switching closed-
loop system is discussed using the tool of differential inclu-
sion. But in this way, one cannot specify the single rate of
change of the state when system switches since it is only
can be said to lie in a set. In view of this, in the analysis
of the closed-loop system, we introduce dwell time in the
system dynamics. Our control strategy can be described as:
Consider the time sequence

T := {t0, t1, · · ·} with tk+1 − tk = τd > 0. (15)

Each agent determines its neighbor set at every moment in
T . Simultaneously, the AAs of the group are determined by
the rule:

(AASR) For any t ∈ [tk, tk+1), k ∈ Z+, tk ∈ T , the set of
AA is determined as

W(t) = {i ∈ V : i = min SGj(tk), j = 1, 2, · · · ,m(tk)},
(16)

where SGj(tk), j = 1, 2, · · · ,m(tk), 1 ≤ m(tk) ≤ N ,
are the subgroups of the group at time tk such that
∀ j = 1, 2, · · · ,m(tk), SGj(tk) is connected, and⋃m(tk)

j=1 SGj(tk) = V .

And for all t ∈ [tk, tk+1), k ∈ Z+, agent i, i ∈ V implements
the control law

uas
i (t) =

∑

j∈Ni(tk)

fa(dij)nji + g̃i(t)fl(dil)nli −
∑

j∈Ni(tk)
⋂Si(t)

a∗ij(vi − vj)− bi(t)(vi − vl) + ul (17)

where

fa(dij) =
dψa(dij)

ddij
, fl(dil) =

dψl(dil)
ddil

, dij = ‖xi − xj‖,

dil = ‖xi − xl‖, nji =
xj − xi

dij
, nli =

xl − xi

dil
;

piecewise constant function bi(t) is as in (5); and time de-
pendent function g̃i(·) : [t0, +∞) → R+ is defined coupled
with a new energy function $i(t) : [t0 − 0,+∞) → R+ as

g̃i(t) =

{
0, i /∈ W(t)

$i(T
i
1−)

ψl(dil(T i
1))

, i ∈ W(t)
(18)

$i(t0−) = ψl(dil(t0)),

$i(t, dil(t)) =
{

$i(T i
2−), i /∈ W(t)

g̃i(t)ψl(dil(t)), i ∈ W(t) , t ≥ t0(19)

with

T i
1(t) ∈ T s.t. i ∈ W(τ),∀ τ ∈ [T i

1, t] (20)
T i

2(t) ∈ T s.t. i /∈ W(τ),∀ τ ∈ [T i
2, t] (21)

In the third term of (17), we must add j ∈ Si(t) since,
taking the sensing capability of the agents into consideration,
it is possible that some agent in the set Ni(tk) moves out of
the sensing range of agent i at some t ∈ [tk, tk+1). However,
j ∈ Si(t) is not necessarily for the first term due to the
property of the function fa(·) that fa(dij) = 0 for dij ≥ rnb.

Remark 1: By AASR, each connected subgroup needs to
identify the agent with minimum index, which is distribut-
edly doable but not a scalable process as the group size
increases. Here, as preliminary research, we assume that the
AA switching process by AASR is completed instantly.

Note that by AASR, the following Assumption 1 naturally
holds.

Assumption 1: For all t ≥ t0, there is a path connecting
any agent in V\W(t) to some agent in W(t).

Also, it is not difficult to see that the functions g̃i(t) and
$i(t, dil(t)) are well defined. In addition,
• g̃i(t) can be obtained at every moment the agent i

changes from non-AA to AA, or from AA to non-AA;
and it is constant in each time interval [tk, tk+1), k ∈
Z+;

• $i(t, dil(t)) can be seen as a shaped leader-agent po-
tential, which is continuous w.r.t. t over [t0, +∞), and
is constant over [tk, tk+1) if i /∈ W(t), ∀ t ∈ [tk, tk+1).

• If i ∈ W(t), ∀ t ∈ [t0,+∞), then g̃i(t) = 1,
$i(t, dil(t)) = ψl(dil(t)),∀ t ∈ [t0, +∞); if i /∈
W(t), ∀ t ∈ [t0,+∞), then g̃i(t) = 0, $i(t, dil(t)) =
ψl(dil(t0)), ∀ t ∈ [t0, +∞). Since agent 1 is always an
AA in the group by AASR, we have g̃1(t) = 1, and
$1(t, dil(t)) = ψl(d1l(t)), ∀ t ≥ t0.

Before moving on to analyze the controller (16) and (17),
we need to point out that if the AAs in the group are fixed as
the system evolves (AASR is not applied) as in Algorithm
2 in [11], then the the connectivity may not be guaranteed
by (17) even Assumption 1 holds. This can be illustrated by
the following example:

Example 1: Consider a group of N = 40 agents moving
in R2 space. Assume that all agents are the AAs at any time
t ≥ t0. In addition, suppose that at some time t1 ≥ t0, the
velocities of the group satisfy vi(t1) = vl(t1), ∀ i ∈ V; and
the positions of the agents are:
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For i ∈ V1 := {1, 2, · · · , 10},

xi1(t1) = xl1(t1) + 1.4557 cos(2π(i− 1)/10),
xi2(t1) = xl2(t1) + 1.4557 sin(2π(i− 1)/10), (22)

and for i ∈ V2 := {11, 12, · · · , 40},

xi1(t1) = xl1(t1) + 3.0503 cos(2π(i− 11)/30),
xi2(t1) = xl2(t1) + 3.0503 sin(2π(i− 11)/30). (23)

where xi = [xi1 , xi2 ]
T .

If rs = 1.5, and the inter-agent and leader-agent potentials
are chosen as in Section I with da = 1, ra = 1.2 and h = 0.8.
Then each agent in the subgroup V1 and V2 is only affected
by the virtual forces applied by the virtual leader and the
two closest agents in the same subgroup. And, according to
(17), it is straightforward to check that

ui(t1) = ul(t1), i ∈ V (24)

which implies that the inter-agent and leader-agent distances
will keep constant for all t ∈ [t1, +∞). Thus, the group can
never be connected after time t1 since no agent in V1 has a
neighbor in V2.

Now define the energy functions:

Va(x) =
1
2

N∑

i=1

∑

j 6=i

ψa(dij), (25)

Vsl(t, x, xl) =
N∑

i=1

$i(t, dil(t)), (26)

H(v, vl) =
1
2

N∑

i=1

‖vi − vl‖2, (27)

Js(x, xl, v, vl) = Va(x) + Vsl(t, x, xl) + H(v, vl),(28)

where x = [x>1 , · · · , x>N ]>, v = [v>1 , · · · , v>N ]>. Va, Vsl are
called, respectively, the collective inter-agent and leader-
agent potentials; H is the collective kinematic energy w.r.t.
the virtual leader; and Js is the total energy of the group.

It can be proved that if τd < min{rs − rnb, rnb −
ra}/(2

√
2Js(t0)), then for all t ∈ [tk, tk+1), we have

j ∈ Si(t) for any j ∈ Ni(tk), and j /∈ Ii(t) for any
j /∈ Ni(tk). This gives that the control law (17) can be put
into the form: ∀ i ∈ V , ∀ t ∈ [tk, tk+1),

uds
i (t) = −

∑

j 6=i

∇xiψa(dij)− g̃i(t)∇xiψl(dil)−
∑

j∈Ni(tk)

a∗ij(vi − vj)− bi(t)(vi − vl) + ul (29)

or compactly,

uds(t) = −∇xVa −∇xVsl − (La(tk)⊗ 1N )(v − vl)
+1N ⊗ ul, ∀ t ∈ [tk, tk+1). (30)

In the rest of this section, we always assume that τd is
small enough and the initial condition (x0, v0) satisfies xi

0 6=
xj

0,∀ i, j ∈ V, i 6= j.
Before presenting the main results in this paper, we

introduce an extension of the celebrated Barbalat Lemma,

which will play an important role in the proofs of some
results followed.

Definition 2: The function f(·) : R → R is said to
be piecewise uniformly continuous over [t0, +∞) w.r.t. an
infinite sequence {t̂i}∞i=0, with t̂0 = t0 and inf t̂i − t̂i−1 ≥
τ̂ > 0, if ∀ t ∈ [t̂i−1, t̂i), i ∈ N, ∀ ε > 0, ∃ δ̂ε > 0,
|f(t̃) − f(t)| < ε, ∀ t̃ ∈ Bδ̂ε

(t)
⋂

[t̂i−1, t̂i), where Bδ̂ε
(t)

is the open ball centered at t with the radius δ̂ε.
Lemma 1: Let f(·) : R→ R be piecewise uniformly con-

tinuous over [t0, +∞) w.r.t. {t̂i}∞i=0, and h(·) : R→ R sat-
isfy limt→+∞ h(t) = 0. Suppose that limt→+∞

∫ t

t0
(f(s) +

h(s))ds exists and is finite. Then limt→+∞ f(t) = 0.
Remark 2: If the function f is uniformly continuous over

[t0, +∞), then the conclusion in Lemma 1 naturally follows.
Now, we are in a position to propose the main theorem of

this section.
Theorem 1: By the control strategy (16)-(17), limt→+∞

‖vi(t) − vl(t)‖ = 0, ∀ i ∈ V; limt→+∞ d1l(t) = 0; inter-
agent collision is avoided; and for any T ∈ [t0,+∞), the
group is jointly connected across [T, +∞).

Proof: Let x̃i = xi − xl, ṽi = vi − vl, and
x̃ = [x̃>1 , · · · , x̃>N ]>, ṽ = [ṽ>1 , · · · , ṽ>N ]>. And define new
functions

Ṽa(x̃) :=
1
2

N∑

i=1

∑

j 6=i

ψa(d̃ij) = Va(x),

Ṽsl(t, x̃) :=
N∑

i=1

$i(t, d̃i(t)) = Vsl(t, x, xl), (31)

where d̃ij = dij , d̃i = dil. It can be easily seen that
∇xVa(x) = ∇x̃Ṽa(x̃),, ∇xVsl(t, x, xl) = ∇x̃Ṽsl(t, x̃).

Note that since g̃i(t) is constant over [tk, tk+1), ∀ k ∈ Z+,
it follows that ∀ t ∈ (tk, tk+1), ∀ k ∈ Z+,

d$i(t, d̃i(t))
dt

=
(
∇x̃i$i(t, d̃i(t))

)>
ṽi, (32)

Taking derivative of Js w.r.t. t along the system (10), (16),
(17), we have ∀ t ∈ (tk, tk+1), k ∈ Z+,

J̇s = ˙̃V a(x̃) + ˙̃V sl(t, x̃) + ṽ>(uds − 1N ⊗ ul)
= (∇x̃Ṽa)>ṽ + (∇x̃Ṽsl)>ṽ +

ṽ>(−∇x̃Ṽa −∇x̃Ṽsl − (La(tk)⊗ 1N )ṽ)
= −ṽ>(La(tk)⊗ 1N )ṽ (33)

Since the group can only has finite interconnection topolo-
gies, it follows from Lemma 3 in [14] that there exists a
positive real constant λ∗2 such that, for all k ∈ Z+,

J̇s ≤ −λ∗2‖ṽ‖2. (34)

We know that Js(t) is continuous over [t0, +∞) by the
continuity of $i(t), ∀ i ∈ V . This, together with (33) and the
positiveness of Js, give that ∀ t ≥ t0,

2λ∗2

∫ t

t0

H(s)ds = λ∗2

∫ t

t0

‖ṽ(s)‖2ds ≤ Js(t0) (35)

On the other hand, from the boundedness of Js, we have
Va and H are bounded over [t0, +∞), which leads to the
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boundedness of ∇xVa and ṽ(t). Also the boundedness of
Js(t) gives that $i(t), i ∈ V are bounded over [t0,+∞). By
property e) of the function ψl, it follows that,

‖∇xiVsl‖ = ‖∇xi$i(t, dil)‖ = ‖g̃i(t)∇xiψl(dil)‖
= |g̃i(t)ψl(dil)| · ‖∇xi

ψl(dil)‖
|ψl(dil)|

=

{
0, i /∈ W(t)

|$i(t)| ·
∣∣∣ dψl(dil)

ddil

∣∣∣
|ψl(dil)| , i ∈ W(t)

is bounded over [t0, +∞). Therefore,

dH

dt
= ṽ>(−∇xVa −∇xVsl − (La(t)⊗ IN )ṽ)

∈ L∞[t0, +∞), (36)

which implies that H is uniformly continuous with re-
spect to t for all t ≥ t0. Thus, by Barbalat Lemma,
limt→+∞H(v(t), vl(t)) = 0, which means that ∀ i ∈
V, ‖vi(t)− vl(t)‖ → 0 as t → +∞.

The collision avoidance argument is easily justified by the
boundedness of Va(t) over [t0, +∞); and the fact that inter-
agent potential approaches infinity when dij goes to zero.

Now, we prove that the group is jointly connected across
[T, +∞) for any finite T ≥ t0. First, we show that
limt→+∞ d1l(t) = limt→+∞ ‖x1(t) − xl(t)‖ = 0. If this
is not true, there exist δd > 0 and a time sequence {T̃i}∞i=1

such that d1l(T̃i) > δd for all i ∈ N. Suppose ‖ṽ(t)‖ ≤ γv ,
∀ t ∈ [t0, +∞), where γv ∈ (0, +∞). Then we have for all
t ∈ [T̃i, T̃i + ∆T ), ∀ i ∈ N

d1l(t) ≥ δd/2, and ∠(nl1(t), nl1(T̃i)) ≤ δd/2
δd/2

= 1 rad.

(37)
where ∆T = δd

2γv
.

Let ∆T̃ = min{∆T, τd} and mf = infd1l≥δd/2 fl(d1l).
By property d) of ψl, we have mf > 0. Since
limt→+∞ ‖ṽ(t)‖ = 0, there exists K ∈ N such that

‖ṽ(t)‖ < ε :=
mf∆T̃ cos(1)
4N + b∗1∆T̃

, ∀ t ≥ T̃K . (38)

From the definition of ∆T̃ , it is easy to see that there is at
most one element in T which lies in the interval [T̃K , T̃K +
∆T̃ ]. Assume this element exists and denote it by tI . (If
it is not the case, the proof is similar and thus omitted.)
Now, according to the AASR, agent 1 is always an AA in
the group; and what is more, the only AA in the connected
subgroup it resides. Denote SG1(t), t ∈ [t0, +∞) as the
connected subgroup at time t with agent 1 as the AA, then,

4Nε ≥
∥∥∥∥∥∥

∑

j∈SG1(tI)

ṽj(T̃K + ∆T̃ )− ṽj(tI)

∥∥∥∥∥∥
+

∥∥∥∥∥∥
∑

j∈SG1(T̃K)

ṽj(tI)− ṽj(T̃K)

∥∥∥∥∥∥

≥

∣∣∣∣∣∣∣

∫ T̃K+∆T̃

T̃K


 ∑

j∈SG1(t)

(uj(t)− ul(t))



>

nl1(T̃K)dt

∣∣∣∣∣∣∣

=

∣∣∣∣∣
∫ T̃K+∆T̃

T̃K

(fl(d1l(t))nl1(t)− b∗1ṽ1(t))
>

nl1(T̃K)dt

∣∣∣∣∣
≥ mf · cos(1) ·∆T̃ − b∗1∆T̃ ε,

which contradicts with (38).
Now, define the set of agents that are jointly connected

to agent 1 after any finite time by V1. If V1 6= V , let
p = min{i : i ∈ V − V1}. Clearly, there exists t̃ ≥ t0
such that there is no connection between the sets V and
V − V1. Thus, by the AASR, we have agent p is an AA
in the group and the only AA in the subgroup it resides
after t̃, which, by the similar arguments above, gives that
limt→+∞ ‖xp(t)−xl(t)‖ = 0. This implies that there exists
tc ≥ t0 such that ‖x1(tc) − xp(tc)‖ < rnb for all t ≥ tc,
which is a contradiction. Therefore, it can be concluded that
V1 = V .

In the following, by putting some additional assumption
on the velocity consensus of the group, we render a stronger
result than Theorem 1.

Theorem 2: In Theorem 1, if ṽ(t) ∈ L1[t0, +∞), then
there exists Tf ≥ t0 such that the group is connected at tk ∈
T ⋂

[Tf , +∞). Moreover, the configuration of the group a.e.
converges to some local minimum of the collective potential
Va = 1

2

∑N
i=1

∑
j 6=i ψa(dij).

Proof: From assumption that
∫ +∞

t0
‖ṽ(t)‖dt < +∞, it

is not difficult to show that ∀ i ∈ V , limt→+∞ xi(t)−xl(t) =
d∗iln

∗
il; and ∀ i, j ∈ V , limt→+∞ xi(t) − xj(t) = d∗ijn

∗
ij ,

where d∗il ≥ 0, d∗ij > 0, n∗il, n
∗
ij ∈ Rn, ‖n∗il‖ = ‖n∗ij‖ = 1.

This implies ∃ dM > 0 such that dil(t) < dM ,∀ i ∈ V ,
∀ t ∈ [t0,+∞); and ∀ i, j ∈ V ,

lim
t→+∞

∇xiψa(dij) = fa(d∗ij)n
∗
ij . (39)

By Theorem 1, we know that ∀ i ∈ V ,
∫ +∞

t0
ui(t) −

ul(t)dt = limt→+∞ ṽi(t) − ṽi(t0) = −ṽi(t0); and, in
(29), the term −∑

j∈Ni(tk) aij(vi − vj) − bi(t)(vi − vl)
approaches zero as t → +∞. On the other hand, since
g̃i(t), ∀ i ∈ V is constant over [tk, tk+1), ∀ k ∈ Z+, and
dil(t) is bounded over [t0,+∞), it can be concluded that
−∑

j 6=i∇xiψa(dij) − g̃i(t)∇xiψl(dil) is piecewise uni-
formly continuous over [t0, +∞) w.r.t. {tk}∞k=0. Hence, by
Lemma 1, it follows that ∀ i ∈ V ,

−
∑

j 6=i

∇xiψa(dij)− g̃i(t)∇xiψl(dil) → 0 as t → +∞.

(40)
(40) and (39) give that limt→+∞ g̃i(t)∇xiψl(dil) exists for

any i ∈ V . But we know from Theorem 1 that d∗1l = 0, which
implies d∗il 6= 0 for all i 6= 1. So, limt→+∞∇xiψl(dil) =
fl(d∗il)n

∗
il 6= 0n for all i 6= 1. As a result, limt→+∞ g̃i(t)

exists for any i ∈ V (recall that g̃1(t) = 1 for all t ≥ t0).
Let Ti := {tik

}∞k=0, ik ∈ Z+ with ti0 = t0 be the subset
of T such that agent i switches between being active and
inactive at each tik

, k ∈ Z+ (Ti might be finite, but the
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proof would be similar). Define T i
l , i ∈ V as the set of time

at which agent i is an AA, i.e., T i
l = {t : t ∈ [t0, +∞), i ∈

W(t)}. Now, we prove that ∀ i ∈ V , if T i
l is not empty,

then g̃i(t) is lower bounded above zero over T i
l . Without

loss of generality, assume i /∈ W(t0). Then we have that
T i

l =
⋃∞

k=0[ti2k+1 , ti2k+2). By (18) and (19), it follows that
for all t ∈ [ti2K+1 , ti2K+2),K ∈ Z+,

g̃i(t) =
K∏

k=0

ψl(dil(ti2k
))

ψl(dil(ti2k+1))
. (41)

Since the function dψl(y)
dy is continuous over [0,+∞), there

exists a Lipschitz constant βL such that ∀ y1, y2 ∈ [0, dM ),
|ψl(y1)−ψl(y2)| ≤ βL|y1−y2|. Therefore, combining prop-
erty f) of ψl, we have ∀K ∈ Z+ and ∀ t ∈ [ti2K+1 , ti2K+2),

1
g̃i(t)

=
K∏

k=0

[
1 +

ψl(dil(ti2k+1))− ψl(dil(ti2k
))

ψl(dil(ti2k
))

]

≤
K∏

k=0

[
1 +

βL

Cl

∥∥∥∥∥
∫ ti2k+1

ti2k

vi(t)− vl(t)dt

∥∥∥∥∥

]

≤ exp
{

βL

Cl

∫ +∞

t0

‖ṽ(t)‖dt

}
(42)

By assumption
∫ +∞

t0
‖ṽ(t)‖dt < +∞, (42) implies that

g̃i(t) ≥ mg > 0 for all t ∈ T i
l .

Now, the two facts that for any i ∈ V , limt→+∞ g̃i(t)
exists; and g̃i(t) ≥ mg > 0,∀ t ∈ T i

l ; g̃i(t) = 0,∀ t ∈
[t0,+∞)\T i

l show that there must be Tf ∈ [t0, +∞) such
that for all t ≥ Tf , either i ∈ W(t) or i /∈ W(t). Suppose
that ∃ i 6= 1, the former case holds. Then, by similar argu-
ments as in Theorem 1, we have limt→+∞ ‖xi(t)−xl(t)‖ =
d∗il = 0, which is a contradiction. Therefore, for all t ≥ Tf ,
agent 1 is the only AA in the group, which by the AASR,
implies that the group is connected at tk ∈ T

⋂
[Tf , +∞).

The second part of the Theorem comes from (40) and the
facts that g̃1(t) = 1, ∀ t ∈ [t0, +∞), limt→+∞∇x1ψl(d1l) =
0n, and g̃i(t) = 0,∀ t ∈ [tf , +∞), i 6= 1.

At the end of this section, we show a result on the
robustness of the control law (16) and (17). Consider the
controller, ∀ i ∈ V , ∀ t ∈ [tk, tk+1), k ∈ Z+,

ũas
i (t) =

∑

j∈Ni(tk)

fa(dij)nji + g̃i(t)fl(dil)nli −
∑

j∈Ni(tk)
⋂Si(t)

a∗ij(vi − vj)− bi(t)(vi − vl) + ul + δi
u(t), (43)

where g̃i(t) is as in (18), and δi
u(t) : R → Rn is the

disturbance signal.
Theorem 3: If ∀ i ∈ V , δi

u(t) ∈ Ln
1 [t0, +∞)

⋂
Ln

2 [t0,+∞)
⋂Ln

∞[t0, +∞), then by (16) and (43),
limt→+∞ ‖vi(t)− vl(t)‖ = 0,∀ i ∈ V; limt→+∞ d1l(t) = 0;
and inter-agent collision is avoided. Furthermore, if
∀ i ∈ V , δi

u(t) → 0 as t → +∞, then the group is jointly
connected after any finite time. Lastly, if the assumption
ṽ(t) ∈ L1[t0, +∞) also holds, then, there exists Tf ≥ t0
such that the group is connected at tk ∈ T ⋂

[Tf , +∞).

Moreover, the configuration of the group a.e. converges to
some local minimum of the collective potential Va.

IV. CONCLUSIONS

It has been shown in this paper that when the group
performs migration or trajectory tracking along with inter-
agent collision avoidance, the connectivity of the group may
not be guaranteed if all the members in the group are
attracted by the destination or the moving reference point.
For this problem, in this work, we put forward a switching
strategy that can ensure some kind of joint connectivity, and
by adding another assumption, the ultimate connectivity of
the group. Our future work will focus on the design of de-
centralized and scalable control strategies for the connectivity
guaranteed formation control of multi-agent systems.
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