
  

Abstract—Grinding circuit (GC) of mineral processing 
industry is characterized by its multivariable, severe coupling 
and multiple time delay nature. The product particle size and 
the mill throughput of GC are the important performance 
indexes directly related to the performance of the subsequent 
process and the production rate of the overall mineral 
processing plant respectively. However, they are hard to control 
effectively with conventional control strategies due to the above 
complex characteristics of GC. In this paper, a multivariable 
decoupling internal model control (MDIMC) scheme is adopted 
to handle such intricate process. Control studies have been 
performed by simulation tests for servo, regulatory, disturbance 
rejection and robustness problems.  

I. INTRODUCTION 
RINDING circuit (GC) is the most important operation 
unit in mineral processing industry. The function of it is 

to liberate the valuable minerals from the discardable gangue 
so as to help the subsequent beneficiation process [1]. The 
product fineness from GC affects the performance of the 
subsequent beneficiation process in terms of product 
concentrate grade and metal recovery rate, and the grinding 
yield decides the production rate of the overall mineral 
processing production. Therefore, a close control of GC is 
extremely important in order to provide fine product for 
downstream operations, improve the grinding yield and save 
energy losses. 

Controlling the performance of a closed GC is a 
challenging problem due to its complex dynamic 
characteristics, such as multivariable, severe coupling, and 
multiple time delays. Traditionally, the GC is controlled by 
multi-loop PI/PID controllers which are heavily detuned to 
avoid multivariable interactions [2]. However, this strategy 
cannot eliminate the interactions exist in system well. 
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Moreover, it results in highly sluggish closed loop responses. 
Therefore, some advance control strategies, such as adaptive 
control and artificial neural network (ANN) based control 
[3,4], have been applied in control of GC. Especially, in 
recent years, model predictive control (MPC) scheme, a 
widely used multivariable control algorithm in chemical 
process, has been applied in GC successfully [5-8]. 

Up to present, multivariable internal model control scheme 
has been a new and extensive concerned multivariable control 
algorithm in chemical process industries and other areas 
[9-13]. Compared with other multivariable control strategies, 
especially the widely used MPC scheme, the multivariable 
internal model control is found to be of many advantages, 
such as insensitive to the plant-model mismatches, higher 
robustness and better performance of disturbance rejection, 
expeditiousness and flexibility. Especially, it can be easy to 
design the stability and robustness by tuning the adjustable 
filter time parameters. Therefore, for GC characterized by 
multivariable, severe coupling and multiple time delays, the 
multivariable internal model control is more suitable in this 
case. 

This paper presents an application of multivariable 
decoupling internal model control (MDIMC) in GC. The rest 
of the paper is organized as follows: the description of a 
typical GC, its control problem and process model are given 
in Section 2. After a brief description of MDIMC scheme in 
Section 3, the detailed process of the controller design for GC 
is illustrated in Section 4, and the simulation tests are 
conducted in Section 5. Section 6 concludes the paper.  

II. GRINDING CIRCUIT DESCRIPTION 

A. Process Description 
The grinding circuit under study operates in a 

closed-circuit as shown in Fig.1. It consists of a ball mill, a 
hydrocyclone, a sump and other associated conveying sets.  

Fresh ore from an ore bin is fed onto the conveyer belt by a 
vibratory feeder at a certain speed, and then is conveyed into 
the ball mill inlet, together with certain amount of water flow 
(called mill water). The knocking and tumbling action of iron 
balls within the revolving mill crush the ore inside to fine 
particles. The slurry containing the fine product is discharged 
from the mill to the sump, and pumped to the hydrocyclone 
for classification. The slurry is separated into two streams by 
the centrifugal force of hydrocyclone: an overflow stream 
containing the finer particles and an underflow stream 
containing the coarser particles as circulating load. The 
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underflow is recycled back to the mill for regrinding, while 
the overflow is the final desired product and then transported 
to the subsequent beneficiation procedure. 

 
Fig. 1. Schematic diagram of grinding circuit 

B. Control Problem Description 
There are two important performance indexes existing in 

the GC shown above: product particle size (PPS) and mill 
throughput (MT). The PPS directly affects the performance 
of the subsequent beneficiation process. The MT directly 
relates to production rate of the overall mineral processing 
plant. Therefore, the control objective of GC can be stated as 
a fixed PPS setpoint at a MT setpoint corresponding to a 
value just below the maximum tonnage constraint. The 
manipulated variables available to achieve the above control 
objective are the fresh ore feed rate to the mill and the sump 
water addition rate to the sump. In addition, the sump level 
and the percent solids in the mill are controlled by 
manipulating the pump rate and the mill water addition rate to 
the mill in proportion to the fresh feed rate respectively, by 
using local controllers. 

C. Process Model 
Traditionally, process mode for automatic control can be 

established on the basis of physical laws governing the 
behavior of the true system and often be referred to as a 
first-principle model. Alternatively the model is derived from 
measurements of input-output data (open loop responses) 
from the real plant. This method relies heavily on system 
identification and the resulting model is called an empirical 
model or input-output model [8]. The input-output model 
provides necessary information required for the selection of a 
proper control strategy, design and tuning of appropriate 
controllers [7].  

For the above shown GC, an input-output model developed 
by Ref. [7] at a certain operating condition is shown in Eq. 
(1).  
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where 1y  stands for product particle size (PPS), defined as 
the fraction of particles in cyclone overflow passing a sieve of 
104 m.μ aperture; 2y  is the mill throughput (MT), defined as 
the flow rate of slurry through the mill (kg/min); 1 2,u u  denote 
manipulated variables, namely the fresh feed rate (kg/min) 
and water addition rate to the sump (kg/min) respectively. 

It is evident that severe interactions exist between the 
manipulated and controlled variables. Moreover, these 
input-output loops in the GC system have different time 
delays, and for a particular loop its output could be affected 
by all the inputs trough different time.  As for conventional 
multi-loop PI/PID controllers, the generally become sluggish, 
leading to poor control performances and precise control of 
the process is impossible in real practice. Multivariable 
decoupling internal mode control (MDIMC) scheme is much 
suitable for this case. 

III. MULTIVARIABLE DECOUPLING INTERNAL MODE 
CONTROL ALGORITHMS  

MDIMC is proposed to effectively control multivariable 
processes with multiple time delay [9-13]. The underlying 
algorithms of MDIMC scheme for a two inputs two outputs 
(TITO) process can be simply described as following.  

Consider the IMC system in Fig.2, where ( )G s  and ( )G s  
respectively represent the transfer functions of the plant and 
its model, and ( )K s is the IMC controller. Assume the 
decoupling control of the system is solvable, which also 
means that ( )G s  is stable and non-singular [9,13]. Moreover, 
assume  
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where 0( ) ( ) −= ij s
ij ijg s g s e τ and  0 ( )ijg s  are strictly proper and 

stable transfer functions, and 0≥ijτ . 

 
Fig. 1. Internal model control 

The closed-loop transfer matrix H  can be derived from 
Fig. 2 as 1[ ( ) ]−= + −H GK I G G K , which reduces to GK under 

the condition =G G . Thus, the closed-loop is decoupled if 
and only if GK is decoupled (diagonal and non-singular) and 
the IMC system is internally stable if and only if K is stable. 
Therefore, the task is to characterize all stable and realizable 
controllers K and the resulting 11 22diag( , )=H h h  such that 

=GK H  is decoupled. 
It can be conducted that in order for 11 22diag( , )= =GK H h h , 

the elements of K should satisfy the condition: 
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11 22diag( , )=H h h  usually being take as follows [9] 
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where ( ), 1, 2if s i =  is the ith loop IMC filter, which is 

usually chosen as ( ) 1 ( 1) ir
i if s s= +α , where iα  and ir  are 

the filter time constants and order respectively, ( )iihτ  denotes 
time delay of iih , ( ), iiz ii G

h z Zη +∈ denotes an integer v  such 

that lim ( )v
iis z

h s z
→

−  exists and is non-zero, GZ +  is the set of 

unstable zeros. The values of ( )iihτ  and ( )z iihη  need to meet 
the following conditions [9]  

( ) ( )ii ih Gτ τ τ≥ −                              (5) 

 ( ) ( ) ( )z ii z ih G zη η η≥ −                         (6) 
Eq. (5) is a characterization of the decoupled ith loop transfer 
function in terms of their time delays and unstable zeros 
which indicates the minimum amount of time delay and 
unstable zeros that the ith decoupled loop transfer function 
must contain. In Eq. (5) and Eq. (6), iτ  and ( )i zη are 
determined as follows [9] 

1 22 21min{ ( ), ( )}g gτ τ τ                         (7-1) 

2 11 12min{ ( ), ( )}g gτ τ τ                         (7-2) 

1 21 22( ) min{ ( ), ( )}z zz g gη η η                    (8-1) 

2 12 11( ) min{ ( ), ( )}z zz g gη η η                    (8-2) 
In addition, the time delays and unstable zeros of controller 
K diagonal elements iik need to meet the following 
conditions [9]  

11 22 1( ) ( )≥ −k gτ τ τ                          (9-1) 

22 11 2( ) ( )≥ −k gτ τ τ                          (9-2) 

2211 22 1( ) ( ) ( ),z z gk g z z Zη η η +≥ − ∈                (10-1) 

1122 11 2( ) ( ) ( ),z z gk g z z Zη η η +≥ − ∈                (10-2) 

IV. DESIGN OF MDIMC FOR GC 
From the input-output model (described as Eq. (1))of GC 

can be obtained 
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and  
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(12) 
Notice that ( )G s  described as Eq. 11 is stable and 

non-singular, therefore, the decoupling problem with stability 
via the IMC structure is solvable. However, ( ) =s Gφ  is a 
complicated form, which is difficult to acquire time delay and 
unstable zeros by the above MDIMC algorithm. Therefore, it 
is need to employ a model reduction based method to find a 
much simpler form yet good approximation to ( ) =s Gφ .  

A. Model Reduction Based on Recursive Least Squares (RLS) 
in Frequency Domain  

Because that two-order model can cover a wide range of 
dynamics and yet to be low enough for its economic 
implementation [9], the complicated Eq. (12) is translated 
into a two-order rational function plus dead time model 
described as Eq. (13) by the improved employing frequency 
domain RLS identification algorithm in this paper. 
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where 1 2 0 1 2, , , ,a a b b b  are the parameters to be estimated, L  
is the time delay to be identified. 

The identification process based on improved frequency 
domain RLS algorithm is given following 

Step 1: Choose 100=N , set 0.02Δ =L , and obtain 
0 ( 1) , 1, ,= + − Δ =iL L i L i N . 

Step 2: For each iL , find a rational approximation solution 

0 ( )sφ  to modified model 0 ( ) ( )= =i iL s L ss s e G eφ φ  with 
following algorithms 
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where  
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1( ) ( )r ru j j −=ω ω  denotes the step input signal.  

Step 3: For each rational approximation solution 0 ( )sφ  

obtained in step 2, calculate 0 ( ) ( )= iL ss s eφ φ , and then 
evaluate the corresponding approximation error e  in Eq. (15) 
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Step 4: Take as the solution ( )sφ  that yields the minimum 
error e  in Eq. (15). 
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The above identification procedure is implemented by 
Matlab language, the initial parameters are evaluated as 
following 
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Finally, the best approximation reduced-order model of 
( ) =s Gφ  is obtained as shown in Eq. (16) 
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It is easy to find (0) (0) (0) 0.765= = = −Gφ φ .Therefore, 

there is no steady error between ( )sφ  and G .  The excellent 

model approximation effect of ( )sφ  can be seen in Fig. 3.  

 
Fig. 3. Effect curves of model approximation. 

A: with unit square wave input; B: with unit sine input 
 

B. Multivariable Decoupling Internal Model Controller 
Design 

According to the best reduced-order model  φ  of G , it is 

clear that ( ) 1.24=τ φ  , and  
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hence, 1( ) 1.24− =τ φ τ  and 11 22 1( ) ( ) 2.26≥ − =k gτ τ τ . 

Since φ  is of minimum phase, 
G

Z { }+ = φ  and there is no 

need to calculate 1( )zη .  
According to Eq. (3), we have 1.24

11 1( ) ( 1)−= +sh s e sα  
with the filter chosen as 1 1( ) 1 ( 1)= +f s sα .  From Eq. (2), 11k   
and 21k  are obtained as  
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By the similarly calculation, with 1.24
22 2( ) ( 1)−= +sh s e sα , 

22k   and 12k  can be obtained as  
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The open-loop response of the developed controller K   
with 1 2 0.1= =α α  is shown in Fig. 4. Obviously, controller 
K  is stable. Because that the G also is stable, the designed 
nominal MDIMC system is closed –loop stable. 

 
Fig. 4. Open-loop response for the developed controller 

V. SIMULATION TESTS  
Firstly, the closed-loop responses of the grinding circuit 

with the developed nominal MDIMC scheme are simulated 
for step change setpoints. For comparison, two groups of 
filter time parameters 1 2 0.5= =α α  and 1 2 5= =α α  are 
tuned. By adding step change at 18min .=t  and 

100min.=t to the twofold setpoint inputs respectively, the 
nominal MDIMC system responses according to the two 
groups of filter time parameters are obtained as shown in Fig. 
5. 

From Fig. 5, it is clearly seen that no matter the setpoint 
changes in PPS or MT, the setpoints are reached smoothly 
with no overshoot by using the proposed method, and the 
twofold process output responses are accurately decoupled 
from each other.  Moreover, it can be observed that lesser 
filter time parameters 1 2 0.5= =α α  can quicken the response 
speed, however, the magnitudes of manipulated variables 
response, especially the fresh feed rate, are increased, and 
vice versa.  

To demonstrate effectiveness of the proposed MDIMC 
scheme for GC further more, square pulse setpoint inputs are 
added to the MDIMC system.  To simulate the influence on 
system caused by the fluctuations in size distribution and 
hardness of the feed material in actual grinding process, a step 
change of load disturbance with a magnitude of 0.02 to each 
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of the twofold process inputs at 140min.=t  simultaneously. 
Moreover, two-way white noises with the maximal 
magnitude of 0.0005  and 0.005  are merged into the 
feedback channel of the grinding process, which can imitate 
the 5%  stochastic errors arose from measuring of the PPS 
and the MT in actual operation. Simulation results according 
to two groups of filter time parameters 1 2 0.5= =α α  and 

1 2 5= =α α  are shown in Fig.6. 

 

 
Fig. 5. Closed-loop response of the nominal MDIMC system 

 
It is clearly seen that even if load disturbances and white 

noises are existed, the twofold process output responses are 
almost decoupled from each other, and able to reach the 
setpoints smoothly with no overshoot for both the positive 
and negative setpoint changes. 

While taking the less filter time constants 1 2 0.5= =α α , 
the manipulated variable of fresh feed rate trembles with a 
certain extent because of white noise existing, however,  the 
sump water rate is influenced less. Under the load 
disturbances, the PPS and the MT departure their setpoints 
and produce peak jumps, however, they will come back to 
track their respective setpoints quickly. Such results show the 
developed MDIMC system for GC with better performance 
of load disturbance rejection and fault tolerance.  

 

 
Fig. 6. Closed-loop response of the nominal MDIMC system with load 

disturbance and white noise  
 

 To demonstrate the robustness of the proposed scheme, 
another input-output model developed by Ref. [7] at a 
different operating condition, which is shown in Eq.(17), is 
employed to denote the grinding process.  
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Obviously, the parameters of the Eq. (17) have much 
changes compared with the Eq. (1). For comparison, the same 
simulation tests as above doing are taken for this perturbed 
system, and the simulation results are shown in Fig. 7.  

It is seen from Fig.7 that the closed-loop responses of the 
perturbed system are still very smooth with no overshoot or 
offset, and the performance of decoupling, load disturbance 
rejection and fault tolerance are uniformly satisfactory. Such 
simulation results prove the perfect robustness performance 
of the developed MDIMC system. This is because that the 
controller contains filters, thus insensitive to the plant-model 
mismatches.  
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Fig. 7. Closed-loop response of the perturbed MDIMC system with load 

disturbance and white noise 

VI. CONCLUSION 
Multivariable decoupling internal mode control (MDIMC) 

scheme has been employed to handle the strong coupling 
multivariable system of GC. A TITO model of GC has been 
utilized for process control. Model reduction based on 
improved RLS in frequency domain was proposed to simplify 

controller design. At last, several simulation tests show the 
better performance of decoupling, setpoint response, load 
disturbance rejection, fault tolerance and robustness of the 
developed MDIMC system for GC. 
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