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Abstract— A parameter dependent Lyapunov-Krasovskii
based approach is developed to deal with robust stability
analysis as well as with the robust stabilization of discrete time-
varying systems with time-varying delay. It uses a polytopic
representation of uncertainties which can affect dynamic and
control matrices. Both robust analysis conditions and synthesis
of robust state feedback gains conditions are presented as simple
convex feasibility tests. Some numerical examples are presented
to illustrate the efficacy of the proposed LMI conditions.

I. INTRODUCTION

In this paper it is considered the existence of linear param-

eter dependent Lyapunov-Krasovskii functionals assuring the

robust stability of uncertain discrete time-varying systems

with time-varying state delay, or simply uncertain discrete

time-varying delay system (DTVDS). These functionals are

also used to obtain convex synthesis conditions that allow

the design of robust state feedback gains.

The study of DTVDS is an important issue and, recently,

lots of attention have been paid to this subject mainly

because digital control systems have unavoidable delays,

which can degenerate performance and even lead systems

to instability, see for example [5], [6], [2], [16], [8]. In other

cases, control actions can introduce delayed states into the

closed-loop system [10, pp. 3]. However, the problems of

robust stability and robust stabilization of DTVDS remain

open, since most of the solutions found in the literature are

based on quadratic stability (QS) approach, i.e., constant

and parameter independent Lyapunov-Krasovskii matrices

are employed.

Notice that, stability of time-varying systems has been

focused on delay-free systems during the last decades. In this

context, several results for linear time-varying systems can be

found in the literature. For instance, see [1] for QS approach;

[4] for a study on parameterized Lyapunov functions on

stability problems of time-invariant systems and their appli-

cation to the stability analysis for a class of time-varying

systems; [24] and [13] for switched Lyapunov functions

applied to time-varying systems; [3] for affine parameter de-

pendent Lyapunov functions applied to time-varying systems;

[23] for the proposition of the biquadratic stability analysis

with a Lyapunov function depending quadratically on the

uncertain parameters and on the states; [11] and references
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therein for the stability of piecewise linear systems. Although

the existence of all these different approaches to deal with

discrete time-varying delay-free systems, in case of DTVDS,

QS approach has been the most used [17]. QS approach has

been widely used to deal with norm-bounded and polytopic

type uncertainties, yielding convex optimization problems

that can be efficiently solved by means of commercially

available LMI solvers [22], [7]. For polytopic systems with

time-varying uncertainties subject to arbitrary variation rates,

a parameter dependent Lyapunov function is proposed in [3],

encompassing the quadratic stability case.

However, to the best author’s knowledge, convex for-

mulations to deal with DTVDS are limited to QS based

approach and, usually, consider delayed systems affected

by norm-bounded uncertainties. Note that, in this case,

parameter dependent Lyapunov-Krasovskii functionals are

useless [9]. The conditions presented in [3] have motivated

the development of the conditions formulated in this paper,

for uncertain DTVDS. These conditions are convex for both

robust stability analysis and robust state feedback gains

design.

In the next section, some definitions and the problem

statement are presented. Then, in section III the main results

are given. Some examples are given in section IV. Finally,

some conclusions are given in the section V.

Notation: The notation used here is quite standard. R is the

set of real numbers and N
∗ is the set of natural numbers

excluded the zero. In and 0 denotes, respectively, the n× n

identity matrix and the null matrix of appropriate dimensions.

M > 0 (M < 0) means that matrix M is positive (negative)

definite. M ′ is the transpose of M . The symbol ⋆ stands for

symmetric blocks in the LMIs. αk (dk) means α(k) (d(k))
and αki is the i-th entry of αk.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider the following uncertain time-varying discrete-

time system with delayed states given by

xk+1 = A(αk)xk + Ad(αk)xk−dk
+ B(αk)uk,

xk = φ(k), k ∈ [−d̄, 0] (1)

where k is the sampling time, xk ∈ R
n is the state vector,

uk ∈ R
p is the input control signal, dk is the time-varying

state delay which is limited by

d ≤ dk ≤ d̄ (2)

with (d, d̄) ∈ N
∗ × N

∗ representing the possible variation

band of the delay value, dk. B ∈ R
n×p is a fixed input con-

trol matrix and [A(αk)|Ad(αk)|B(αk)] ≡ [A|Ad|B](αk) ∈
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R
n×2n+p are unknown time-varying matrices belonging to

polytope P

P ≡
{

[A|Ad|B](αk) : [A|Ad|B](αk) =

N
∑

i=1

[A|Ad|B]iαki, αk ∈ Ω
}

(3)

Ω ≡
{

αk : αk ∈ R
N ,

N
∑

i=1

αki = 1, αki ≥ 0
}

(4)

where the vertices Υi = [Ai|Adi|Bi] ≡ [A|Ad|B]i are

precisely known and αk is the bounded time-varying pa-

rameter. In particular, observe that if αk = α, ∀k, then the

description given in (1) recovers the case where the dynamic

matrices of the system are time-invariant, but the delay is still

time-varying.

In this paper, it is considered the following control law

u(k) = Kxk + Kdxk−dk
(5)

where [K|Kd] ∈ R
p×2n are the robust state feedback gains

that assure the robust stability of the closed-loop system (1)-

(4), i.e., the stability of (1)-(4) with (5) is assured ∀ αk ∈
Ω. Therefore, the uncertain time-varying closed-loop system

(1)-(4) with (5) is given by

xk+1 = Ã(αk)xk + Ãd(αk)xk−dk
(6)

with
Ã(αk) ≡ A(αk) + B(αk)K

Ãd(αk) ≡ Ad(αk) + B(αk)Kd

}

(7)

where [Ã|Ãd|B](αk) ∈ P̃ with

P̃ ≡
{

[Ã|Ãd](αk) : [Ã, Ãd](αk) =

N
∑

i=1

[Ã|Ãd]iαki, αk ∈ Ω
}

(8)

It is worth to mention that, if the delay dk is not known,

then it is enough to make Kd = 0 in equation (5). If dk is

known, then the possibility of using K and Kd may improve

the performance of the closed-loop system (6). Notice that

this can occur in systems where some kind of time-stamped

measurements or state estimative is used [21].

The objective of this paper is to give convex conditions

solving the following problems:

Problem 1 Given d(k) subject to (2), determine if the time-

varying uncertain DTVDS given in (6) is robustly stable.

Problem 2 Find a pair of gains [K|Kd] such that the system

(1)-(4) controlled by (5) be robustly stable.

III. MAIN RESULTS

In this section, it is considered the following Lyapunov-

Krasovskii candidate functional

V (αk, k) =
3

∑

v=1

Vv(αk, k) (9)

with

V1(αk, k) = x′

kP (αk)xk, (10)

V2(αk, k) =

k−1
∑

j=k−dk

x′

jQ(αj)xj , (11)

V3(αk, k) =

1−d
∑

ℓ=2−d̄

k−1
∑

j=k+ℓ−1

x′

jQ(αj)xj , (12)

where matrices P (αk) and Q(αk) can assume different

values at each instant k.

A. Robust Stability Analysis

Theorem 1 The time-varying system (6) subject to (2), (4)

and (8) is robustly stable if there exist symmetric matrices

0 < P (αk) ∈ R
n×n, 0 < Q(αk) ∈ R

n×n and a scalar

β = d̄ − d + 1, with d and d̄ known, such that one of the

following equivalent conditions is verified

a)

Γ(αk) ≡
[

Γ11(k) Ã(αk)′P (αk+1)Ãd(αk)
⋆ Γ22(k)

]

< 0 (13)

with Γ11(k) ≡ Ã(αk)′P (αk+1)Ã(αk) + βQ(αk) − P (αk)
and Γ22(k) ≡ Ãd(αk)′P (αk+1)Ãd(αk) − Q(αk−dk

).

b) There exist parameter dependent matrices F (αk) ∈
R

n×n, G(αk) ∈ R
n×n and H(αk) ∈ R

n×n, such that

M(αk) ≡




M11(αk) G(αk)′ − F (αk)Ã(αk)
⋆ M22(αk)
⋆ ⋆

H(αk)′ − F (αk)Ãd(αk)

−Ã(αk)′H(αk)′ − G(αk)Ãd(αk)
M33(αk)



 < 0 (14)

with M11(αk) = P (αk+1) + F (αk)′ + F (αk), M22(αk) =
βQ(αk) − P (αk) − Ã(αk)′G(αk)′ − G(αk)Ã(αk)
and M33(αk) = −(Q(αk−dk

) + H(αk)Ãd(αk) +
Ãd(αk)′H(αk)′).

In both cases, functional (9)-(12) verifies

V (αk, k) > 0, ∆V (αk, k) < 0, ∀ [x′

k x′

k−dk
]′ 6= 0 (15)

and is called a Lyapunov-Krasovskii functional, assuring the

robust stability of (6).

Proof: The positivity of the functional (9) is assured

with the hypothesis of P (αk) = P (αk)′ > 0, Q(αk) =
Q(αk)′ > 0. For (9) being a Lyapunov-Krasovskii func-

tional, besides its positivity, it is necessary to verify (15)

∀ αk ∈ Ω. From hereafter, the αk dependency is omitted

in the expressions Vv(k), v = 1, . . . , 3, for simplicity of the

notation. To calculate (15), consider

∆V1(k) = x′

k+1P (αk+1)xk+1 − x′

kP (αk)xk (16)
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∆V2(k) = x′

kQ(αk)xk − x′

k−dk
Q(αk−dk

)xk−dk

+
k−1
∑

i=k+1−dk+1

x′

iQ(αi)xi −
k−1
∑

i=k+1−dk

x′

iQ(αi)xi (17)

and

∆V3(k) = (d̄ − d)x′

kQ(αk)xk −

k−d
∑

i=k+1−d̄

x′

iQ(αi)xi (18)

Observe that the third term in equation (17), Ξk ≡
∑k−1

i=k+1−dk+1
x′

iQ(αi)xi, can be rewritten as

Ξk =

k−1
∑

i=k+1−d

x′

iQ(αi)xi +

k−d
∑

i=k+1−dk+1

x′

iQ(αi)xi

≤

k−1
∑

i=k+1−dk

x′

iQ(αi)xi +

k−d
∑

i=k+1−d̄

x′

iQ(αi)xi

(19)

Using (19) in (17), one gets

∆V2(k) ≤ x′

kQ(αk)xk − x′

k−dk
Q(αk−dk

)xk−dk

+

k−d
∑

i=k+1−d̄

x′

iQ(αi)xi (20)

So, taking into account (16), (18) and (20), the following

upper bound for (15) can be obtained

∆V (k) ≤ x′

k+1P (αk+1)xk+1

+ x′

k[βQ(αk) − P (αk)]xk

− x′

k−dk
Q(αk−dk

)xk−dk
< 0 (21)

Replacing xk+1 in (21) by the right hand side of (6) one

gets (13). The equivalence between (13) and (14) can be

established as follows. First, note that (13) can be rewritten

as

Γ(αk) = Π(k)′P (αk+1)
−1Π(k)

−

[

P (αk) − βQ(αk) 0

0 Q(αk−dk
)

]

< 0 (22)

with Π(k) =
[

P (αk+1)Ã(αk) P (αk+1)Ãd(αk)
]

, which by

Schur complement is equivalent to




−P (αk+1) P (αk+1)Ã(αk)
⋆ βQ(αk) − P (αk)
⋆ ⋆

P (αk+1)Ãd(αk)
0

−Q(αk−dk
)



 < 0 (23)

Therefore, the equivalence between a) and b) is the same of

the equivalence between (14) and (23). So, if (23) is verified,

then it is possible to assure condition (14) with F (αk) =
F (αk)′ = −P (αk+1), G(αk) = H(αk) = 0. On the other

hand, if (14) is verified, then Γ(αk) = T (αk)′M(αk)T (αk)
with

T (αk) =

[

Ã(αk) Ãd(αk)
I2n

]

,

completing the proof.

Observe that, conditions stated in Theorem 1 does not

consider a particular structure for matrices P (αk), Q(αk),
F (αk), G(αk) and H(αk). Although conditions (13) and

(14) are not LMIs, nowadays there are some relaxation

techniques that can be applied such as those in [12], [20]

and [19] to obtain convex conditions as done in [14]. From

hereafter, consider that the parameter dependent matrices

P (αk) and Q(αk) are defined as follows

P (αk) =

N
∑

i=1

αkiPi (24)

Q(αk) =

N
∑

i=1

αkiQi (25)

In what follows, sufficient convex conditions to verify The-

orem 1 are given.

Theorem 2 If there exist symmetric matrices 0 < Pi ∈
R

n×n, 0 < Qi ∈ R
n×n, i = 1, . . . , N , and matrices

F ∈ R
n×n, G ∈ R

n×n and H ∈ R
n×n and a scalar

β = d̄− d + 1, with d and d̄ known, such that the following

LMIs are verified

M̃(i, j, ℓ) ≡





Pj + F ′ + F G′ − FÃi

⋆ βQi − Pi − Ã′

iG
′ − GÃi

⋆ ⋆

H ′ − FÃdi

−Ã′

iH
′ − GÃdi

−(Qℓ + HÃdi + Ã′

diH
′)



 < 0,

i, j, ℓ = 1, . . . , N (26)

then the uncertain and time-varying discrete-time system with

state delay described by (6) is robustly stable. Besides this,

(9)-(12) with (24)-(25) is a Lyapunov-Krasovskii functional

for (6).

Proof: Condition (14) given in Theorem 1 can

be obtained from (26) by noting that M(αk) =
∑N

i=1

∑N

j=1

∑N

ℓ=1 M̃(i, j, ℓ)αk,iαk+1,jαk−dk,ℓ, αk ∈ Ω. In

this case, F (αk) = F , G(αk) = G, H(αk) = H and P (αk)
and Q(αk) are given in (24) and (25), respectively.

Both, Theorem 1 and Theorem 2 can deal with system

defined by Ã(αk) and Ãd(αk) as well as with its dual Ã(αk)′

and Ãd(αk)′

It is worth noting that theorems 1 and 2 encompass the

case where the delay is constant, i.e., for d = d̄. In this

case, the conditions presented here are similar to those

presented in [15], but in this last one, besides the constant

delay, the system is also time-invariant. Also, note that the

quadratic stability based conditions can be recovered from

the conditions of (13), (14) and (26) as indicated in the next

corollary.

Corollary 1 The time-varying system (6) subject to (2),

(4) and (8) is quadratically stable if there exist symmetric

matrices 0 < P ∈ R
n×n, 0 < Q ∈ R

n×n and a scalar

β = d̄ − d + 1, with d and d̄ known, such that one of the

following equivalent conditions is verified
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a)
[

Ã′

iPÃi + βQ − P Ã′

iPÃdi

⋆ Ã′

diPÃdi − Q

]

< 0

i = 1, . . . , N (27)

b)




−P PÃi PÃdi

⋆ βQ − P 0

⋆ ⋆ −Q



 < 0, i = 1, . . . , N (28)

c) There exist parameter dependent matrices F ∈ R
n×n,

G ∈ R
n×n and H ∈ R

n×n, such that




P + F ′ + F G′ − FÃi

⋆ βQ − P − Ã′G′ − GÃi

⋆ ⋆

H ′ − FÃdi

−Ã′

iH
′ − GÃdi

−(Q + HÃdi + Ã′

diH
′)



 < 0, i = 1, . . . , N (29)

In this case, functional (9)-(12) verifies (15) with P (αk) =
P , Q(αk) = Q and is called a Lyapunov-Krasovskii func-

tional, assuring the robust stability of (6).

Proof: The proof follows steps of the proof of Theo-

rem 1.

Observe that, having common variables F (αk) = F ,

G(αk) = G and H(αk) = H may be somewhat restrictive

in the robust stability analysis condition, but this seems to

be of fundamental importance for developing robust filters

and controllers as it can be verified in the case of delay-

free systems [18]. This fact is exploited in what follows to

achieve a convex design condition for the control law (5).

B. Robust Stabilization

Convex conditions are derived from Theorem 2 to design

robust state feedback gains K and Kd for (5) assuring the

robust stabilization of (1).

Theorem 3 If there exist symmetric matrices 0 < Pi ∈
R

n×n, 0 < Qi ∈ R
n×n, i = 1, . . . , N , and matrices

F ∈ R
n×n, W ∈ R

n×p and Wd ∈ R
n×p and a scalar

β = d̄− d + 1, with d and d̄ known, such that the following

LMIs are verified




Pj + F ′ + F −WB′

i − FA′

i

⋆ βQi − Pi

⋆ ⋆

−WdB
′

i − FA′

di

0

−Qℓ



 < 0,

i, j, ℓ = 1, . . . , N (30)

then the uncertain and time-varying discrete-time system with

state delay described by (1) is robustly stabilizable by the

control law (5) with

K = W ′(F ′)−1 and Kd = W ′

d(F
′)−1 (31)

Besides this, (9)-(12) with (24)-(25) is a Lyapunov-Krasovskii

functional for the resulting uncertain time-varying closed-

loop system (6).

Proof: The proof can be obtained by replacing Ãi

and Ãdi by (Ai + BiK)′ and (Adi + BiKd)
′, respectively,

choosing G = 0 and H = 0 and making the changing of

variables W = FK ′, Wd = FK ′

d in (26).

Note that in case where the delay value is not known,

i.e., when xk−d(k) is not available for feedback, then condi-

tion (30) can be used with Wd = 0. A quadratic stability con-

dition can be recovered from (30) by imposing Pi = P = P ′.

Thus, whenever the time-varying system (1) is quadratically

stabilizable, it is also robustly stabilizable. This implies that

the proposed conditions represent an improvement on the

available tools for dealing with time-varying delay systems.

Also note that, conditions b) and c) of Corollary 1 can be

used to obtain convex synthesis conditions. This is presented

in Corollary 2. Observe that condition a) cannot be directly

used, because of the triple product present in all blocks.

Corollary 2 The uncertain and time-varying discrete-time

system with state delay described by (1) is quadratically

stabilizable by the control law (5) if there exist symmetric

matrices 0 < P ∈ R
n×n, 0 < Q ∈ R

n×n, a scalar

β = d̄− d + 1, with d and d̄ known, such that the following

conditions are verified for i = 1, . . . , N :

a) There exist matrices Z ∈ R
n×p and Zd ∈ R

n×p, such

that




−P PÃ′

i + ZB′

i PÃ′

di + ZdB
′

i

⋆ βQ − P 0

⋆ ⋆ −Q



 < 0 (32)

and, in this case,

K = Z ′P−1 and Kd = Z ′

dP
−1 (33)

b) There exist matrices F ∈ R
n×n, W ∈ R

n×p and Wd ∈
R

n×p, such that




P + F ′ + F −WB′

i − FA′

i −WdB
′

i − FA′

di

⋆ βQ − P 0

⋆ ⋆ −Q



 < 0

(34)

and, in this case, K and Kd are determined as in (31).

Besides this, in both cases, (9)-(12) with P (αk) = P ,

Q(αk) = Q is a Lyapunov-Krasovskii functional for the

resulting uncertain time-varying closed-loop system (6).

An important issue of the presented proposal is that

the results can be used to deal with decentralized control

by imposing block-diagonal structure to some matrices.

In case of Theorem 3 and Corollary 2.b), this can be

done by imposing F = FD = block-diag{F 1, . . . , Fκ},

W = WD = block-diag{W 1, . . . ,Wκ}, Wd = WdD =
block-diag{W 1

d , . . . ,Wκ
d } where κ denote the number

of subsystems defined. This structure results in block-

diagonal state feedback gains KD = W ′

D(F ′

D)−1 and

KdD = W ′

dD(F ′

D)−1 and in matrices P (αk), Q(αk) with-

out any restrictions in their structures, which yields in

less conservative design conditions. On the other hand,

for the conditions presented in Corollary 2.a), a decen-

tralized control can be achieved only by imposing a di-

agonal structure to the matrices P , Z and Zd. In this

case, one gets P = PD = block-diag{P 1, . . . , Pκ},
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Z = ZD = block-diag{Z1, . . . , Zκ}, Zd = ZdD =
block-diag{Z1

d , . . . , Zκ
d }, achieving the decentralized gains

K = ZDP−1
D and KdD = ZdDP−1

D . Therefore, it is expect

that results obtained from condition a) of Corollary 2 are

less conservative than those obtained from its condition b).

The results in this paper can be seen as an extension of the

conditions proposed in [3] for discrete time-varying delay-

free systems. However, the conditions proposed here can deal

with uncertainty in all system matrices and constant gains

are used, simplifying the controller implementation w.r.t. [3].

Thus, practical situations like actuator fails can be taken into

account by the conditions of theorems 2 and 3 which makes

this proposal very interesting for practical applications. Also,

it is expected that new filtering and controlling conditions

with some performance index can be developed from the

conditions presented here, thanks to the common variable F

preserved in the convex formulation given in Theorem 3.

Finally, note that the conditions presented in this paper

can be straightforward extended to case of multiple delays,

by considering new terms like V2(αk, k) and V3(αk, k),
equations (11) and (12), with new matrices Q(αk)̺, ̺ =
2, . . . , ̺, where ̺ is the number of delays presented in the

system.

C. Numerical complexity

The numerical complexity of the conditions presented

in this paper can be determined by the number of scalar

variables, K, and the number of rows, R, involved in

the optimization problems. In case of using LMI Control

Toolbox [7], the numerical complexity is O(K3R) and

using the solver SeDuMi [22] the numerical complexity is

O(K2R2.5 +R3.5). Note that, nowadays efficient algorithms

can solve the conditions here, in polynomial time. The

number of scalar variables and the number of LMI rows of

the feasibility tests proposed in this paper are presented in

Table I.

Condition K R

Theorem 2 n[n(3 + N) + N ] Nn(3N2 + 2)
Corollary 1.a) n(n + 1) 2n(N + 1)
Corollary 1.b) n(n + 1) 3Nn
Corollary 1.c) n(4n + 1) n(3N + 2)

Theorem 3 n[N(n + 1) + n + 2p] 3N3n
Corollary 2.a) n(n + 2p + 1) 3Nn
Corollary 2.b) n(2n + 2p + 1) 3Nn

TABLE I

NUMBER OF SCALAR VARIABLES (K) AND LMI ROWS (R) FOR EACH

PROPOSED CONDITION

IV. NUMERICAL EXAMPLES

Example 1 Consider the uncertain DTVDS described by (6)

where where Ã(αk) = Ãn + (2αk − 1)ρL′J and Ãd(αk) =
0.25(1 − 0.2αk)Ãn with

Ãn =









0.8 −0.25 0 1
1 0 0 0
0 0 0.2 0.03
0 0 1 0









(35)

L = [0, 0, 1, 0]′, J = [0.8, − 0.5, 0, 1], αk ∈ [0, 1],
0 ≤ |ρ| ≤ δ. This defines a polytopic system with 2 vertices,

both depending on ρ and given by αk = 0 (vertex 1) and

αk = 1 (vertex 2). Considering d = 1, the objective here

is to determine stability regions in δ × d̄ plane. Figure 1

shows the regions of stability below each curve provide by

Theorem 2 (solide line) and Corollary 1 (dashed line). It

is worth of mentioning that all conditions in Corollary 1

achieve the same maximum values of δ. Note that conditions

of Theorem 2 clearly improve the result obtained by QS

approach, enlarging the stability region.
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10

Theorem 2

Corollary 1

δ

d̄

Fig. 1. Stability regions.

Example 2 Consider a randomly generated discrete time-

varying system with time-varying delay given by

xk+1 = A(αk)xk + Ad(αk)xk−dk

+ B(αk)uk + Bd(αk)uk−dk
(36)

where the time-varying system matrices are described by a

polytope with two vertices given by Υ1 = [A|Ad|B|Bd]1 and

Υ2 = [A|Ad|B|Bd]2 as follows

Υ1 =

[

0.132 0.317 0.314 0.475 0 0.72
0.377 0.091 0.878 0.558 1 0.54

]

Υ2 =

[

0.719 0.274 0.169 0.363 0 0.10
0.030 0.672 0.887 0.431 2 0.39

]

Note that the additional term Bd(α)uk−d(k) can be taken

into account by the conditions presented here replacing Bi

by Bdi in the entries (1, 3) and (3, 1) of the LMIs (30),

(32) and (34). In this case, the control law is given by

uk = Kxk and uk−dk
= Kdxk−dk

. For d = 1 and

d̄ = 5 only Theorem 3 yields a solution to the stabilization

problem, with K =
[

−0.4236 −0.4918
]

and Kd =
[

−1.1691 −1.0353
]

, thus demonstrating that conditions

of this theorem can lead to less conservative results. Simula-

tions for this case are shown in figures 2 and 3. In the top of

Figure 2 it is shown the state behaviors of the time varying

closed-loop system and in its bottom the control signals. This

simulation has been performed with α1(k) = 0.5(1 + sin k)
(α2(k) = 1 − α1(k)) as seen in the top of the Figure 3,

with initial conditions x(k) = [1 − 1]′, k = −5, . . . , 0.
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The time-varying delay d(k) has been randomly generated

as indicated in the bottom of Figure 3.
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x1(k), x2(k)

u(k)

k

Fig. 2. The behaviors of the states x1(k), ×, and x2(k), ·, (top) and the
control signals, uk = Kxk , dashed line, and uk−dk

= Kdxk−dk
, solid

line (bottom).
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Fig. 3. α1(k) (top) and time-varying delay, d(k) (bottom).

V. CONCLUSIONS

It has been presented some new convex conditions for

dealing with robust stability analysis and robust stabilization

of discrete time-varying systems with time-varying delays.

The novelty of the conditions is due to i) the use of time-

varying parameter dependent Lyapunov-Krasovskii function-

als allowing to treat time-varying discrete-time systems with

time-varying delay; ii) the use of extra matrices allowing

less conservative evaluations of stability domains; and iii)

the convex design conditions for robust state feedback gains.

It has been shown that additional structure restriction on the

state feedback gains can easily incorporated without restric-

tions on the Lyapunov-Krasovskii matrices which allows,

for example, to deal with actuator failures. Some numerical

examples, including a time-simulation, are given to illustrate

the efficacy of the proposed conditions.
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