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Abstract— This paper generalizes the conventional Propor-
tional Adaptive Observer (PAO) to the case of Proportional
Integral Adaptive Observer (PIAO). A systematic design pro-
cedure is provided for estimating the states and parameters of a
dynamic system using PIAO. The proof of convergence is given
and simulation results demonstrate the validity of theoretical
development.

I. INTRODUCTION

Adaptive observers were first introduced by Carroll and

Lindorff in [1], and later on modified by Kudva and Narendra

in [2]. For a more detailed analysis and design of adaptive

systems see [3], [4], [5]. In many applications where the pa-

rameters are unknown and states are not accessible, adaptive

observer appears to be a valuable method in estimation of

both parameters and states of the system. Literature reports

several useful applications in which adaptive observers have

successfully been employed [6] - [11]. In almost all of these

applications the conventional structure of adaptive observer

(PAO) is used.

A new type of observer, known as proportional Integral

Observer (PIO) has been extensively used over the past sev-

eral years for various purposes. The PIO has been originally

introduced in connection to LTR problem, in which time and

frequency recoveries have been realized independently [12].

In [13], PIO is used for fault detection and it was further

analyzed in [9]. In a recent paper [14] the authors provide a

new formulation for PIO design by using the integral gain to

stabilize the noise free error dynamics while the proportional

gain is used to decouple the disturbance. In spite of various

designs available for PIO, its generalization to adaptive case

has not sufficiently been explored. Although an ad hoc design

of PI Adaptive Observer (PIAO) has been reported in [15]

and [16], there is no systematic design approach available for

it. The difficulty encountered in previous publications was

due to the fact that a direct generalization of PAO design to

PIAO was not possible and, consequently, the observer gains

were adjusted until satisfactory convergence results were

achieved. This paper attempts to make use of conventional

Proportional Adaptive Observer (PAO) and extend it to

Proportional Integral Adaptive Observer (PIAO). This step

is not trivial and extra care is necessary to accomplish the

design procedure. Therefore the main result of this paper is to

provide a systematic design procedure for PIAO to make this
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generalization possible and prove stability and convergence

of parameters.

In Section II, we provide a modified treatment of conven-

tional adaptive observer, which facilitates the derivation of

proportional integral adaptive observer in Section III. The

theoretical development of PIAO is concluded by the proof

of stability in Section IV. Simulations are carried out in

Section V. Two numerical examples using PAO and PIAO are

provided and convergence of estimated state and parameters

are compared. The superior performance of PIAO is evident

from simulation results. Finally, concluding remarks are

given in section VI.

II. ADAPTIVE OBSERVERS

Consider the linear time invariant system described by:

y(s) =
b1s

n−1 + b2s
n−2 + · · · + bn−1s + bn

sn + a1sn−1 + · · · + an−2s2 + an−1s + an

u(s)

with unknown parameters ai and bi, ∀ i = {1, 2, · · · , n}.

The state space representation of this system in observable

canonical form is written as:

ẋ =















−a1 1 0 0 0
−a2 0 1 0 0

...
. . .

−an−1 0 0 0 1
−an 0 0 0 0















x +















b1

b2

...

bn−1

bn















u (1)

y = hT x

hT =
(

1 0 0 · · · 0
)

,

where x is an nth order state vector, and u, y are input

and output signals respectively.

The objective is to estimate all unknown parameters and

the states of the system using available input and output

signals. According to definition of the adaptive observers in

[2], the adaptive observer realization of the above system is

given by:
˙̂x = Kx̂ + [k − â(t)]x1 + b̂u (2)

ŷ(t) = hT x̂ = x̂1

where â and b̂ are the estimated parameter vectors, and K

is a stable matrix written in compact form as:

K =















−k1 1 0 0 0
−k2 0 1 0 0

...
. . .

−kn−1 0 0 0 1
−kn 0 0 0 0















.
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An alternative characterization of the above development

was introduced in [18], which makes the derivation of

the proportional adaptive observer transparent. We briefly

discuss it here and provide a generalization of this approach

for the design of PIAO in section III.

Applying ŷ = x̂1 to the PAO described above will result

in the following representation:






























˙̂x1 = k1(y − ŷ) + x̂2 − â1y + b̂1u
˙̂x2 = k2(y − ŷ) + x̂3 − â2y + b̂2u
...
˙̂xn−1 = kn−1(y − ŷ) + x̂n − ân−1y + b̂n−1u
˙̂xn = kn(y − ŷ) − âny + b̂nu

(3)

Using the auxiliary filters:

ρ =











−sn−1

−sn−2

...

−1











y(s)

sn−1 + k1sn−2 + k2sn−3 + . . . + kn−1

and

γ =











sn−1

sn−2

...

1











u(s)

sn−1 + k1sn−2 + k2sn−3 + . . . + kn−1

as shown in Fig. 1, the adaptive observer (3) can be

described by a single expression as follows:

˙̂y = kp(y − ŷ) + kcy + Ψ + ρT â + γT b̂ (4)

with
˙̂a = −Γρ(y − ŷ) (5)

˙̂
b = −Λγ(y − ŷ) (6)

where Ψ is an (n − 1)th order filter described by:

Ψ(s) =
−λ1s

n−2 − λ2s
n−1 − . . . − λn−1

sn−1 + k1sn−2 + k2sn−3 + . . . + kn−1

y(s)

Fig. 1. The Auxiliary Filter Structure

III. PI ADAPTIVE OBSERVERS

The adaptive observer discussed above is a strong tool

in estimation of unknown parameters and state vectors.

However for this type of observers (PAO) the convergence

rate of the parameters is slow and very sensitive to the gain

adjustment. By inclusion of an integral term to PAO, we

introduce a new observer structure called PIAO and derive

its mathematical representation. The extra freedom in integral

gain enables to improve the convergence rate.

Considering the state space representation of (1), we define

the following PI adaptive observer:







































˙̂x1 = k1(y − ŷ) + x̂2 − â1y + b̂1u + l1
∫

(y − ŷ)
˙̂x2 = k2(y − ŷ) + x̂3 − â2y + b̂2u + l2

∫

(y − ŷ)
...
˙̂xn−1 = kn−1(y − ŷ) + x̂n − ân−1y + b̂n−1u

+ln−1

∫

(y − ŷ)
˙̂xn = kn(y − ŷ) − âny + b̂nu + ln

∫

(y − ŷ)
(7)

The denominator of the overall transfer function can be

expressed as:

D(s) = sn+1 + d1s
n + d2s

n−1 + · · · + dns + dn+1

where di = ki + li−1 with l0 = 0 and kn+1 = 0. Since

ki’s are known, we select li’s such that the polynomial D(s)

has at least one real root. Consequently, we construct the

following nth order auxiliary filters:

ρ =











sn

sn−1

...

s











−1

P (s)
· y(s) (8)

γ =











sn

sn−1

...

s











1

P (s)
· u(s), (9)

with

P (s) = sn + p1s
n−1 + p2s

n−2 + . . . + pn−1s + pn

where coefficients pi, ∀ i = {1, 2, · · · , n} are derived by

extracting the real root using Euclidean Division Algorithm.

Applying the auxiliary filters ρ and γ to PIAO described

by (7) will lead to following compact PIAO representation:

˙̂y = kp(y − ŷ) + kcy + Ψ + ρT â + γT b̂ (10)

with
˙̂a = −Γρ(y − ŷ) (11)

˙̂
b = −Λγ(y − ŷ) (12)

where Ψ is a nth order augmented filter described by:
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Ψ(s) =
Q(s)

P (s)
· y(s) (13)

where

Q(s) = −λ1s
n−1 − λ2s

n−2 − . . . − λn.

which has the structure of an observable canonical form as

shown in Fig. 2.

The schematic diagram of such a PIAO is shown in Fig.

3. In this system the input and output signals represented by

u(t) and y(t) pass through auxiliary filters described by (8),

(9). The generated signals along with error signal enter the

Identification block represented by (11) and (12), and after

integration, the estimated parameter vectors are constructed.

Subsequently, the resulting signals â and b̂ are multiplied by

ρ and γ respectively which along with filtered output signal

Ψ described by (13) defines the PI adaptive observer (10).

The estimated output signal which represents the first state

of the system will be generated in the last step.

IV. PROOF OF STABILITY

The objective in PI adaptive observer estimation is to

devise a scheme to adjust the parameters â and b̂ such that:

lim
t→∞

â(t) → a, lim
t→∞

b̂(t) → b

lim
t→∞

x̂(t) → x

defining the estimation errors:

ey = y − ŷ, ea = a − â, eb = b − b̂

We obtain the following error dynamics:

ėy = −key + eΨ + ρT ea + γT eb (14)

ėa = −Γρey

ėb = −Λγey

ėΨ = KeΨ

since ρ, γ, Ψ are bounded and smooth, using the Lyapunov

function:

V =
1

2
(ey

2 + eΨ
2 +

1

Γ
ea

2 +
1

Λ
eb

2) (15)

Fig. 2. The Augmented Filter Structure

Fig. 3. The Proportional Integral Adaptive Observer Diagram

One can easily show that its time derivative

V̇ = −key
2 + eyeΨ + KeΨ

2

is negative semi-definite, which guarantees the existence and

boundedness of solution in (14). Using the standard argument

in adaptive control, the persistently exciting condition:

lim
T→∞

∫ t+T

t

ρ(τ)T ρ(τ) + γ(τ)T γ(τ)dτ =

∫

∞

−∞

∣

∣ρ(ν)2
∣

∣ Sydν +

∫

∞

−∞

∣

∣γ(ν)2
∣

∣ Sudν ≥ kpI > 0

is stratified, where Su and Sy are the spectral measures of

the input u and the output y, respectively, and kp is a positive

scalar. Therefore ρ and γ are persistently exciting, and the

error dynamic described by (14) is exponentially stable.

One can equivalently show this, using Kalman-Yakubovich

Lemma.

V. SIMULATION RESULTS

In this section the simulation results for two plants with

unknown parameters are demonstrated. The state response

and the convergence behaviors of the parameters using PI

adaptive observer are compared to the corresponding results

of P adaptive observers.

A. Parameter Estimation For Second Order system

Simulations for the following second order plant are

carried out for P and PI adaptive observers, separately.

ẋ =

(

−5 1
−10 0

)

x +

(

1
2

)

u (16)

y =
(

1 0
)

x.

The PI adaptive observer for the above system is con-

structed as:

˙̂y = 2(y − ŷ) + 4y + Ψ + ρ1â1 + ρ2â2 + γ1b̂1 + γ2b̂2

˙̂a = −Γρ(y − ŷ)
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Fig. 4. Estimated â1 using adaptive and PI adaptive observers
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Fig. 5. Estimated â2 using adaptive and PI adaptive observers

˙̂
b = −Λγ(y − ŷ)

where Γ and Λ are estimation gains given by:

Γ =

(

750
1650

)

, Λ =

(

50
75

)

with ρ and γ filters:

ρ =

(

−s2

−s

)

1

s2 + 4s + 4
y(s),

γ =

(

s2

s

)

1

s2 + 4s + 4
u(s),

and the augmented filter:

Ψ(s) =
−12s − 16

s2 + 4s + 4
y(s).

However for the P adaptive observer the corresponding

filters of ρ and γ will be converted to first order low pass

filters with a pole at -2 and the augmented filter given

by Ψ(s) = −4

s+2
y(s). The results of estimated parameters

are illustrated in Fig. 4, Fig. 5, Fig. 6 and Fig. 7. As it

is evident from these figures, the estimation results for PI

adaptive observer outperform the P adaptive observer. The

state estimation error for PI adaptive observer also shown in

Fig. 8.
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Fig. 6. Estimated b̂1 using adaptive and PI adaptive observers
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Fig. 7. Estimated b̂2 using adaptive and PI adaptive observers

B. Parameter Estimation For Forth Order System

We applied the PI Adaptive Observer to following forth

order plant:

ẋ =









−3 1 0 0
−8 0 1 0
−5 0 0 1
−1 0 0 0









x +









4
1
3
6









u

y =
(

1 0 0 0
)

x

Using the derived equations for PI adaptive observer in

Section III, we have:

0  2 4 6 8 10
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

seconds

Estimation Error

Fig. 8. The State Estimation Error
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˙̂y = 2(y − ŷ) + 8y + Ψ + ρT â + γT b̂

˙̂a = −Γρ(y − ŷ)

˙̂
b = −Λγ(y − ŷ)

where the estimation gains Γ, and Λ are selected as:

Γ =









100
400
600
500









, Λ =









200
75
400
700









and the auxiliary filters ρ and γ are constructed as:

ρ =









−s4

−s3

−s2

−s









1

s4 + 8s3 + 24s2 + 32s + 16
y(s)

γ =









s4

s3

s2

s









1

s4 + 8s3 + 24s2 + 32s + 16
u(s)

while augmented filter Ψ is specified:

Ψ(s) =
−40s3 − 160s2 − 240s − 128

s4 + 8s3 + 24s2 + 32s + 16
y(s). (17)

Fig. 9 and Fig. 10, illustrate estimated parameter vectors

â and b̂ respectively. Fig. 11 and Fig. 12 show the estimated

state of the system and its corresponding estimation error.

VI. CONCLUSIONS

In this paper the proportional integral adaptive observer

is introduced for estimation of unknown parameters and

states of a system. The design procedure is outlined and the

proof of stability is provided. The simulations are carried

out for second order and forth order systems. The results

demonstrate the fast convergence of proposed PI adaptive

observer. Although the aim of this paper was to provide

a systematic design for PIAO, it is important to point

out that PIAO can also be useful in connection to robust

fault detection whereby the fault detection and parameter

estimation can be treated separately. Finally the design of

PIAO for SISO system reported in this paper can easily be

generalized to MIMO case, which will be reported in a future

publication.
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