
  

  

Abstract—In this paper, an active queue management (AQM) 
algorithm is investigated based on adaptive fuzzy sliding mode 
control for the problem of congestion control in TCP complex 
systems with unknown nonlinear disturbance. A sliding surface 
is constructed based on Lyapunov-Krasovskii method for the 
particular network model, and a sufficient condition is proposed 
for robust asymptotic stability of the system in terms of linear 
matrix inequality (LMI). The corresponding reaching law is 
designed, which can drive the state trajectory of system onto the 
sliding surface within limited time. The simulation results show 
that it can track queue length very quickly under various net- 
work conditions, and avoid the congestion of dynamic networks. 

I. INTRODUCTION 
ITH  the explosive growth and popularity of the Internet 
in the past years, communication networks have 

become an essential part of many application in science and 
engineering. In the current Internet, TCP congestion control 
mechanisms, while necessary and powerful, are not sufficient 
to provide good services in all circumstances, especially with 
the rapid growth in size and the strong requirement for QoS 
guarantee. So the design of congestion control mechanism is 
very important. 

Active Queue Management (AQM) scheme, a router based 
congestion control method, has been proposed to improve 
network utilization. The random early detection (RED) algo- 
rithm [1], the earliest well-known AQM scheme, eliminates 
the flow synchronization problem and attenuates the traffic 
load by monitoring the average queue length. Unfortunately, 
RED causes oscillation and instability due to the parameter 
variations. Therefore, some modified RED schemes, such as 
FRED [2], ARED [3] and SRED [4], have been proposed in 
the literature. However, in those studies, both high network 
utilization and low packet loss can not be guaranteed by only 
setting control parameters.  

Recently, control theory has been widely applied to the 
analysis and design of TCP networks and congestion control 
schemes for them. A nonlinear TCP dynamic equation based 
on fluid-flow model is proposed in [5], which can describe 
the dynamic behavior of TCP very well. To be more, several 
congestion control schemes based on the TCP model have 
been proposed to improve the performance of communication 
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networks. For example, a proportional-integral (PI) controller 
is developed for a linearized system and implemented using 
difference equation in [6]. Compared with RED, PI controller 
is more stable. However, PI controller is sluggish with taking 
too long time to settle down to the desired queue length, 
because PI controller improves the steady-state error at the 
expense of an increase in rise time. In order to overcome the 
drawbacks of PI controller, [7] developed a proportional- 
integral-differential (PID) controller scheme for TCP conge- 
stion control. In [8], an adaptive proportional-integral (API) 
controller is developed to eliminate the steady-state error and 
the sensitivity to variation of the system parameters caused by 
the inaccuracy. The further investigation shows that the 
above methods ignore the delay term in some case, which will 
bring serious consequence. Because the TCP/AQM systems 
exist time varying round-trip times (RTT) and uncertainties 
with respect to the number of active TCP sessions through the 
congestion AQM router, they require more robustness for the 
designed schemes. [9-12] introduce sliding mode control 
(SMC) for AQM schemes. SMC is a robust technique well 
known for its ability to withstand external disturbance and 
model uncertainties, but they ignore the effect of the time 
delay in [9, 10]. In [11, 12], the time delay of the control input 
signal is considered. They analyze the stability only using a 
state time-delay model without considering the impact of 
uncertain in [13]. 

In this paper, a robust adaptive fuzzy sliding mode 
controller (AFSMC) is designed for the TCP model with 
unknown nonlinear disturbance, considering state time delay 
and uncertainties. Adaptive algorithm has online learning 
ability to deal with the nonlinear systems, and adjust the 
control rule parameters. As we know that SMC has attractive 
features such as fast response and good transient response. 
Therefore, we adopt the adaptive fuzzy sliding mode control 
method to find appropriate fuzzy rules in fuzzy control 
implementation and online adaptive rule has the effect of 
improving the stability property. The problem of designing 
both a linear sliding surface and reaching motion controller is 
investigated. A sliding surface is constructed based on 
Lyapunov-Krasovskill method for the particular network 
model, and the corresponding reaching law is derived, which 
can drive the state trajectory of system onto the sliding 
surface within limited time.  

The remainders of this paper are organized as follows. 
Section II gives TCP dynamics flow control model. Section 
III presents the adaptive fuzzy sliding mode controller for 
AQM systems. In Section IV, we compare the performance of 
the AFSMC and traditional SMC, where we demonstrate the 
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superiority performance of the AFSMC. Finally, we sum- 
marize our paper in Section V. 

II. THE TCP NETWORK DYNAMICAL MODEL 
In [5], a nonlinear dynamic model of a TCP connection 

through a congested AQM router is developed based on 
fluid-flow theory and stochastic differential equation analysis. 
The simplified version that ignores the TCP timeout 
mechanism is as follows. 

1 ( ) ( ( ))( ) ( ( ))
( ) 2 ( )
( )( ) ( ) ( )
( )

W t W t R tW t p t R t
R t R t

N tq t W t C t
R t

−⎧ = − −⎪⎪
⎨
⎪ = −
⎪⎩

       (1) 

where c is the capacity of link, ( )W t is the size of TCP 
congestion window, ( )q t is the length of queue in 
buffer, ( )P t is the probability of packet mark/drop 

( )0 ( ) 1p t≤ ≤ , N  is the number of active TCP link, R  is the 
delay of transfer (RTT), including delay of queuing and 
transmission, which satisfied ( ) ( ) ( )/pR t T q t C t= + . 

To linearize (1), we first assume 0( )R t R= , ( )N t N=  and 
( )C t C=  is normal value of ( )R t , ( )N t and ( )C t  , the 

equilibrium point ( )0 0, ,dW q p  is then defined by 0W =  and 
0q = . So that 

2
0 0

0 0
0 0

0 2

0 , p

W W p
R C q

q W R T
N C

⎧ = ⇒ =
⎪
⎨

= ⇒ = = +⎪⎩

               (2) 

It is obviously known from (2) that the equilibrium point is 
unique corresponding to the Internet networks parameters. 
Let 0( ) ( )W t W t Wδ = − , ( ) ( ) dq t q t qδ = − , 0( ) ( )p t p t pδ = − . 
A linearized model is given in [6]. 

( ) ( ) ( )( )

( ) ( )( ) ( )

( ) ( )

02
0

2
0

02 2
0

0 0

1             
2

1( )

NW t W t W t R
R C

R C
q t q t R p t

R C N
Nq t W t q t
R R

δ δ δ

δ δ δ

δ δ δ

⎧ = − + − −⎪
⎪
⎪⎪ − − −⎨
⎪
⎪

= −⎪
⎪⎩

   (3) 

Let ( ) ( ) ( )( ) ( )T T
1 2x t W t q t x xδ δ= =  , ( ) ( )u t p tδ= ,

( )( )0 01p u t p− ≤ ≤ − , 0Rτ = , the plant (3) can be described 

as 
( ) ( ) ( ) ( )dx t Ax t A x t Bu tτ= + − +            (4) 

where 

2 2
0 0

0 0

1

1

N
R C R C

A
N
R R

⎡ ⎤− −⎢ ⎥
⎢ ⎥=
⎢ ⎥

−⎢ ⎥
⎣ ⎦

, 2 2
0 0

1

0 0
d

N
R C R CA

⎡ ⎤−⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

T2
T0

2 0 0
2
R C

B B
N

⎡ ⎤
⎡ ⎤= − =⎢ ⎥ ⎣ ⎦

⎣ ⎦
. 

Note that the plant model (1) is only an approximate model 
and it ignores the timeout and slow start mechanism. 
Equation (3) is further made linearization. So we consider a 
TCP model with uncertain, time-delay and nonlinear. 

( ) ( )( ) ( )( ) ( )
( ) ( ) ( )( )( )           , ,

d dx t A A t x A A t x t

B u t G x x t t

τ

τ σ

= + Δ + + Δ − +

+ −
    (5) 

where ( ) ( )( ), ,G x x t tσ denote nonlinear functions, ( )tσ is a 

time-varying disturbance parameter. Some matrices can be 
decomposed into the following 

11 12

21 22

A A
A

A A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, ( ) 11 12

21 22

A A
A t

A A
Δ Δ⎡ ⎤

Δ = ⎢ ⎥Δ Δ⎣ ⎦
, 

11 12

21 22

d d
d

d d

A A
A

A A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 11 12

21 22

d d
d

d d

A A
A

A A
Δ Δ⎡ ⎤

Δ = ⎢ ⎥Δ Δ⎣ ⎦
. 

We introduce the following assumptions imposed on 
system (5).  

Assumption 1: The uncertain 21 22 21, , dA A AΔ Δ Δ and 

22dAΔ satisfy the following form 

[ ] [ ]21 22 1 1 1 2( )A A D F t E EΔ Δ =  , 

[ ] [ ]21 22 2 2 3 4( ) ( ) ( )d dA t A t D F t E EΔ Δ =  , 

where ( ) 1iF t ≤ , and 1 2 1 2 3, , , ,D D E E E  and 4E are some 
known matrices with appropriate dimensions. In addition, 

1 1A γΔ ≤ ,  2dA γΔ ≤ , where positive scalars 1γ  and 2γ  are 
not required to be known.  

Assumption 2: ( ) ( )( ), ,G x x t tτ σ−  satisfies the 

following decomposition 

( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( )1 2

   , ,

, ,

G x x t t

G x G x t G x t x t t

τ σ

τ τ σ

−

= + − + Δ −
 (6) 

where ( )1G x and ( )( )2G x t τ−  are unknown continuous 

functions, ( ) ( ) ( )( ), ,G x t x t tτ σΔ −  is an uncertain function 

which is also unknown, but bounded  

( ) ( ) ( )( ) ( ) ( )0 1 2, ,G x t x t t x t x tτ σ α α α τΔ − ≤ + + −  (7) 

where 0 1,α α  and 2α are unknown positive scalars. 
Then (5) is written as follows. 

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )( )( )

1 11 11 1 11 11 1

12 12 2 12 12 2

 , ,

d d

a d

x t A A x t A A t x t

A A x t A A x t

B u t G x x t t

τ

τ

τ σ

= + Δ + + Δ − +

+ Δ + + Δ − +

+ −

   (8) 
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( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

2 21 21 1 21 21 1

22 22 2 22 22 2            
d d

d d

x t A A x t A A t x t

A A x t A A x t

τ

τ

= + Δ + + Δ − +

+ Δ + + Δ −
  (9) 

The network system model exists strong uncertainties, 
nonlinearity and is subject to additive noise. Taking the 
nonlinearity and uncertainties into consideration, the sliding 
mode controller of AQM would be an ideal methodology.  

III. DESIGN OF SLIDING MODE CONTROLLER 

A. Designing Sliding Mode Surface 
Without loss of generality, we suppose that the sliding 

surface is  

( ) [ ] ( )
( )

1
1 2

2

ˆ 0
x t

S Kx t K I Kx x
x t

⎡ ⎤
= = − = − + =⎢ ⎥

⎣ ⎦
     (10) 

Substituting (10) into (7) gives the sliding motion 

( )

( )( ) ( ) ( )
2 21 21 22 22 2

21 21 22 22 2     d d d d

x A A K A A x

A A t K A A t x t τ

⎡ ⎤= + Δ + + Δ +⎣ ⎦
⎡ ⎤+ Δ + + Δ −⎣ ⎦

 (11) 

where 1 2K̂ R ×∈ , 1K K −= . 
Lemma 1: For any appropriate dimensions matrix  F  

satisfying ( ) ( )TF t F t I≤ , we have 
T T T 1 T T2x DFEy x DD x y E Eyε ε −≤ +  

for any vector Px R∈  , qy R∈  and constant 0ε >  , D and E  
are constant matrices with appropriate dimensions. 

Lemma 2: For any appropriate dimensions vectors  
Px R∈ , qy R∈  and constant 0ε > , we have  

T T 1 T2x y x x y yε ε −≤ +  . 

Theorem 1:  Consider system (11). If there exists a 
symmetric and positive definite matrix P  , some matrix W  
and some positive ε  , the following LMI is satisfied 

( ) ( )T T T T
21 22 1 2 3 4

1 2

3 4

2 2
0 0 0

00 0 0
0 0 0
0 0 0

A X A W E X E W E X E W W X
E X E W Y
E X E W Y

W Y
X Y

ψ⎡ ⎤+ + + +
⎢ ⎥

+⎢ ⎥
⎢ ⎥ <+⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

 (12) 

then the designed sliding surface will render the sliding 
motion asymptotic stability. Where 

( )T T T T
1 1 2 2 21 21 22 22d d d dY D D D D A A A Aψ = − + + +  

1Y ε −= − , 1X KP−= , 1P W− = . 
Proof: For system (11), we choose the following 

Lyapunov-Krasovskii function 

( ) ( ) ( ) ( )
( )

T
T T
2 2 2 3 4 3 4

T

2       

t

t
V x x Px x v E K E E K E

I K K x v dv

τ
ε

−
⎡= + + +⎣

⎤+ + ⎥⎦

∫
 (13) 

The time derivative of this function along the trajectory of 
the system in (13) is given by  

( ) ( )
( ) ( ) ( )

( )

( ) ( )
( ) ( ) (

) ( )

( )

TT T
2 2 2 3 4 3 4

TT T
2 2 3 4 3 4

T

2

T
2 21 22 2 21 22 2

21 22 2 21

22 2

TT
2 3 4 3

2  

       

        

   = 2

   

       

       

d d d

d

V x Px x E K E E K E I

K K x x t E K E E K E

I K K x t

x P A K A x A K A x

A K A x t A K

A x t

x E K E E K

ε

ε τ

τ

τ

τ

ε

⎡= + + + + +⎢⎣
⎡⎤ − − + + +⎥ ⎢⎦ ⎣

⎤+ −⎥⎦
⎡ + + Δ + Δ +⎣

+ − + Δ +

Δ − +⎤⎦

+ ( )
( ) ( ) ( )

( )

T

4 2

TT
2 3 4 3 4

T

2

 

        

         

E I K K x

x t E K E E K E

I K K x t

ε τ

τ

⎡ ⎤+ + + −⎥⎢ ⎦⎣
⎡− + + +⎢⎣

⎤+ −⎥⎦

(14) 

By Lemma 1 and Lemma 2, we can get the following 
inequality 

( )
( )( )( )

( ) ( )

T
2 21 22 2

T
2 1 1 1 2 2

T1 T T T
1 2 1 1 2 1 2 1 2 1 2 2

   2

2

x P A K A x

x P D F t E K E x

x PD D Px x E K E E K E xε ε−

Δ + Δ

= +

≤ + + +

(15) 

( ) ( )
( )( ) ( )

( ) ( ) ( ) ( )

T
2 21 22 2

T
2 2 2 3 4 2

1 T T
2 2 2 2 2

TT
2 2 3 4 3 4 2

   2

2

  

d dx P A K A x t

x PD F t E K E x t

x PD D Px

x t E K E E K E x t

τ

τ

ε

ε τ τ

−

Δ + Δ −

= + −

≤ +

− + + −

      (16) 

( )
( ) ( )

T
2 21 2

T1 T T T
3 2 21 21 2 3 2 2

   2 d

d d

x PA Kx t

x PA A Px x t K Kx t

τ

ε ε τ τ−

−

≤ + − −
    (17) 

( )
( ) ( )

T
2 22 2

T1 T T
4 2 22 22 2 4 2 2

   2

.
d

d d

x PA x t

x PA A Px x t x t

τ

ε ε τ τ−

−

≤ + − −
         (18) 

where 1 2 3, ,ε ε ε and 4ε  are positive scalars. For simplicity, 
we choose 1 2 3 4, , ,ε ε ε ε ε=  , then by substituting (15)-(18) 
into (14), we get 

( )
( ) ( )

( ) ( )

-1
2 21 22 1 1

-1
1 2 1 2 2 2

-1 -1
         21 21 22 22

3 4 3 4 2

2 2

2

    

 

  

T T

T T

T T
d d d d

T T

T

V x P A K A PD D P

E K E E K E PD D P

PA A P PA A P

E K E E K E I K K x

x x

ε

ε ε

ε ε

ε ε ε

ϕ

⎡≤ + + +⎣

+ + + +

+ +

⎤+ + + + ⎥⎦
=

  (19) 

We find that if 0ϕ < , we can obtain 0V <  by applying the 
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Schur complement. and using the Lyapunov-Krasovskii 
function, we can conclude that system (11) is asymptotically 
stability. Then we make a toolbox to solve K  in the matlab, 
and the sliding surface is designed. So we complete the proof 
of Theorem 1.  

B. Designing adaptive fuzzy sliding mode control law  
In this study, we will design a control input ( )u t  to main- 

tain the system states on the sliding surface ( )S t for all 0t > . 
considering the unknown nonlinear disturbance, an adaptive 
fuzzy control law is designed such that the reaching condition 
is satisfied.  

First, a fuzzy system is collection of fuzzy IF-THEN rules 
of the form 

jR : IF 1x  is 1
jA and and nx is j

nA       THEN y  is jB  . 
By using the strategy of singleton fuzzification, product 

inference and center-average defuzzification, the output of 
the fuzzy system is 

( )

( )

1 1

1 1

( )
j

i

j
i

nm
j

iA
j i

nm

iA
j i

y x
y x

x

μ

μ

= =

= =

⎛ ⎞
⎜ ⎟
⎝ ⎠=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∏

∑ ∏
                    (20) 

where ( )j
i

iA
xμ  is the membership function of linguistic 

variable ix , and jy  is the point in R at which j
Bμ  achieves its 

maximum value (assume that ( ) 1i
i

B
yμ = ). 

By introducing the concept of the fuzzy basis function 
vector ( )xξ , (20) can be written as 

T( ) ( )y x xθ ξ=                               (21) 

where [ ]T
1,..., mθ θ θ= , ( ) ( ) ( ) T

1 2,...x x xξ ξ ξ= ⎡ ⎤⎣ ⎦ , and ( )j xξ  

is defined as 

( )

( )
1

1 1

( )
j

i

j
i

n

iA
i

j nm

iA
j i

x
x

x

μ
ξ

μ

=

= =

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

∏

∑ ∏
 

In this paper, we will take two universal fuzzy systems 
( )1 1,G x θ and ( )( )2 2,G x t τ θ−  to approximate the uncertain 

terms, where 1θ  and 2θ  contain tunable parameters. 
Then, by using the above fuzzy rule, we construct the 

following fuzzy systems 

( ) ( )T
1 1 1 1,G x xθ θ ξ=  

and 

( )( ) ( )( )T
2 2 2 2,G x t x tτ θ θ ξ τ− = −   

where ( )1 xξ and ( )2 tξ τ− are fuzzy basis functions. 

According to the universal approximation theorem there 
exist optimal approximation parameters 1θ ∗ and 2θ ∗ [14], such 

that ( )T *
1 1xξ θ and ( )( )T *

2 2x tξ τ θ− can approximate ( )( )1G x t  

and ( )( )2G x t τ− to any desired degree. The parameters 1θ ∗  

and 2θ ∗  are defined as follows 

( ) ( )
1 1

1 1 1 1arg min sup ,
G xx

G x G x
θ

θ θ∗

∈Ω ∈Ω

⎛ ⎞= −⎜ ⎟
⎝ ⎠

             (22) 

( )( ) ( )
2 2

2 2 2 2
( )

arg min sup ,
G xx t

G x t G x
θ τ

θ τ θ∗

∈Ω − ∈Ω

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

    (23) 

where 1 2,G GΩ Ω and xΩ denote the sets of suitable bounds on 

1 2,θ θ and x , respectively. We assume that 1 2,θ θ  and x  
never reach the boundaries of 1 2,G GΩ Ω  and xΩ  . And the 
minimum approximation error satisfies the following 
assumption. 

Assumption3: The approximation error between ( )( )1G x t  

( )( )2G x t τ− and ( )T *
1 1xξ θ , ( )( )T *

2 2x tξ τ θ−  satisfied the 

following inequality 

( ) ( ) ( )( ) ( )( )
( )

1 1 1 2 2 2

0 1 2

   T TG x x G x t x t

m m x m x t

θ ξ τ θ ξ τ

τ

∗ ∗− + − − −

≤ + + −
    (24) 

where 0 1,m m and 2m are unknown scalars. These two 

parameters *
1θ  and *

2θ  will be learned by using the adaptive 
algorithms. 

Theorem 2: For system (5), the following control law is 
chosen 

1 2 3u u u u= + +                           (25) 

where 

( ) ( ) ( )( )( )1 T T
1 1 1 2 2

ˆu KB x x tθ ξ θ ξ τ
−

= − + −          (26) 

( ) ( )( ) ( )
1

2 0 1 2
ˆ sgnu KB x x t Sϑ ϑ ϑ τ

−
= − + + −     (27) 

( ) 1

3
ˆu KB Sβ

−
= −                            (28) 

Then, the sliding surface is reachable in a finite time.  
In (26)-(28), β  is a positive scalar, 1 2 0 1, , ,θ θ ϑ ϑ  and 2ϑ  

are adaptive parameters, whose adaptive laws are as follows. 

( )1 1 1r S xθ ξ=                                   (29) 

( )( )2 2 2r S x tθ ξ τ= −                        (30) 

0 3r Sϑ =                                         (31) 

1 4r S xϑ =                                     (32) 
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( )2 5r S x tϑ τ= −                          (33) 

where 1 2 3 4, , ,r r r r  and 5r are positive scalars. 
In the above controller, 1u  contains two fuzzy logic 

systems used to approximate the unknown nonlinear 
functions, 2u  is an adaptive controller used to compension 
for the time-varying uncertainties, and 3u  is used to further 

guarantee the sliding mode function ( )S t  asymptotically 
converge to zero. 

Proof:  For system (5), defining the following Lyapunov 
function 

T T 2 2 22
1 1 2 2 0 1 2

1 2 3 4 5

1 1 1 1 1 1
2

V S
r r r r r

θ θ θ θ ϑ ϑ ϑ
⎡ ⎤

= + + + + +⎢ ⎥
⎣ ⎦

  (34) 

where 1 1 1 2 2 2, ,θ θ θ θ θ θ∗ ∗= − = −  0 0 0ϑ ϑ ϑ∗= − , 1 1 1ϑ ϑ ϑ∗= − , 

2 2 2ϑ ϑ ϑ∗= − . 
The time derivative along the state trajectory of system (5) 

is 

T T T
1 1 2 2 0 0

1 2 3

T T
1 1 2 2

4 5

1 1 1

1 1      

V SS
r r r

r r

θ θ θ θ ϑ ϑ

ϑ ϑ ϑ ϑ

= + + + + +

+
        (35) 

As we known 

( )( ) ( )( ) ( )
( ) ( ) ( )( )

ˆ ˆ

ˆ ˆ    

     ( , ,

d d

SS KxKx

KxK A A t x A A t x t

B u t G x x t t

τ

τ σ

=

⎡= + Δ + + Δ − +⎣
⎤+ − ⎦

  (36) 

Let 

( ) ( )
( )( ) ( ) ( )( )

1 1

2 2

ˆ

ˆ
d

G x KAx G x

G x t KA x t G x tτ τ τ

⎧ = +⎪
⎨

− = − + −⎪⎩
      (37) 

In the following, we use two fuzzy logic systems 
( ) ( )T

1 1 1 1,G x xθ θ ξ=  and ( )( ) ( )( )T
2 2 2 2,G x t x tτ θ θ ξ τ− = −  

to approximate ( )( )1G x t and ( )( )2G x t τ− . By Assumption 2 

and 3, substituting (25)-(33) and (37) into (36), then the 
following inequality is obtained 

( ) ( ) ( )

( ) ( ) ( ) ( )( )
0 0 1 1 2 2

T T 2
1 1 1 2 2 2

ˆ ( )

ˆ

SS Kx x x t

x x t Kx S

ϑ ϑ ϑ ϑ ϑ ϑ τ

θ θ ξ θ θ ξ τ β

∗ ∗ ∗

∗ ∗

⎡ ⎤≤ − + − + − −⎣ ⎦
⎡ ⎤+ − + − − −⎢ ⎥⎣ ⎦

(38) 

Then we can get the following inequality by substituting 
(29)-(33) and (38) into (35), we can get 

2V Sβ≤ −                                 (39) 

From (39), it is easy to see that the reaching condition is 
satisfied. 

IV. SIMULATION RESULTS 
In this section, we validate the effectives and performance 

of the scheme of this paper by simulation. The choosing of the 
parameters is based on [15]. 50N = , 300C =  
packets/s, 0 0.533sR = , 100dq =  packets. Thus, the 
parameters are achieved. 

0.6 0.01
94 2

A
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 

0.6 0.01
0 0dA

−⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, 

10
0

B ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
. 

For simulation, we chose the following uncertain 
parameter as follows. 

21 21 0.1sindA A tΔ = Δ = , 22 22 0.02cosdA A tΔ = Δ = , 2β = , 

( ) 2
1

1
2

G x x= , ( )( ) ( ) 2
2G x t x tτ τ− = − , 0.1sinG tΔ = . 

Using LMI toolbox in the matlab, we can get K  , thus 
sliding surface is obtained as follows 

( ) 1 23S x x x= +  

From the above section, we can also get the reaching law, 
choosing adaptive parameters as 1 5r =  , 2 1r = , 3 8r =  , 

4 3r =  , 5 10r =  . 
The membership functions are chosen as 

( ) ( )( )2
1( ) exp / 6 / / 24i ix xμ π π⎡ ⎤= − +⎣ ⎦  

( ) ( ) ( )( )2
2 exp /12 / / 24i ix xμ π π⎡ ⎤= − +⎣ ⎦  

( ) ( )( )2
3 exp / / 24i ix xμ π⎡ ⎤= −⎣ ⎦  

( ) ( ) ( )( )2
4 exp /12 / / 24i ix xμ π π⎡ ⎤= − −⎣ ⎦  

( ) ( ) ( )( )2
5 exp / 6 / / 24i ix xμ π π⎡ ⎤= − −⎣ ⎦  

The performance and effectiveness of the proposed 
AFSMC are verified in a series of numerical simulation via 
matlab/simlink for the network. 

In Fig.1 we choose the network parameters as above. We 
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Fig.1. Queue length responses with fixed parameters 
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can see that AFSMC obtain fast and stability responses. 
However, SMC has big chattering and slow responses. 

In order to test the robust performance of AFSMC, we vary 
N from 50 to 130, C from 300 to 250. The simulation results 
are given in Fig.2 and Fig.3. SMC have strong instability by 
the improper parameters. However, AFSMC maintains the 
instantaneous queue length closed to the desired queue. 
Therefore, we can conclude that AFSMC scheme performs 
well characteristic under varied network parameters, and it is 
very adapt to the network congestion control. 
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Fig.2. Queue length responses with varied network parameters and 

disturbance 
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Fig.3. Queue length responses with varied network parameters disturbance 

and bursting flows 

V. CONCLUSION 
In this paper, we have proposed an adaptive fuzzy sliding 

mode controller for AQM systems with time varying, 
uncertainties and unknown nonlinear disturbance. The sliding 
surface and the corresponding reaching law are designed. 
Different from the existing literature, a Lyapunov-Krasovskii 
function is constructed for the practice TCP network, and the 
sliding motion is asymptotic stability. The designed adaptive 
fuzzy sliding mode control reaching law can drive the state 
trajectory of the system onto the sliding surface in limited 
time. The simulation results verify the validity of our main 

results, and the presented method can obtain faster transients 
and avoid network congestion. 
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