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Abstract— In this paper, an algorithm for robust adaptive
control design for parametric-strict output feedback switched
systems is developed. Under extensions of typical adaptive con-
trol assumptions, the control scheme guarantees system stability
for bounded disturbances and parameters without requiring
a priori knowledge on such parameters or disturbances. The
problem reduces to an analysis of an exponentially stable and
input-to-state stable system driven by piecewise continuous
and impulsive inputs due to plant parameter switching and
variation. This system is a modification of the closed loop
error dynamics in standard adaptive control systems, through
a generalized leakage-type adaptive controller. The results are
illustrated via simulations and compared to other adaptive and
non-adaptive control methods.

Index Terms— switched systems, robust adaptive control,
hybrid systems.

I. INTRODUCTION

Switched and hybrid systems have been gaining con-

siderable interest in both research and industrial control

communities. This is motivated by the need for systematic

and formal methods to control such systems. These issues

arise in systems with discrete changes in energy exchange

elements due to intermittent interaction with other systems

or with an environment or due to the nature of their consti-

tutive relations. This is common in robotic and mechatronic

systems with contact and impact effects, fluidic systems with

valves or phase changes, and electrical circuits with switches.

Despite numerous publications on hybrid systems, there is

a lack of constructive methods for control of a nontrivial class

of switched systems with a priori stability and performance

guarantees due to the challenging nature of these systems. In

terms of stability and response of switched systems, several

results have been obtained in recent years, e.g. [5], [11].

In this context, sufficient conditions for stability such as

common Lyapunov functions and average dwell time [5]

are the most commonly studied results. A corresponding

control design requires switching controller gains such that

all subsystems are made stable and such that a common Lya-

punov function condition is satisfied, which for LTI systems

requires system matrices to commute or be symmetric. In

order to verify that such a condition is met, the system

is partitioned into known subsystems and a set of linear

matrix inequalities of the number of subsystems is solved,

if a solution is feasible. The other class of results requires

that all subsystems are stable (or with some known briefly
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visited unstable modes) and switching is slow enough on

average, average dwell time condition [5]. The corresponding

controller design requires gains to be adjusted to guarantee

the stability of each frozen configuration and knowledge

of worst case decay rate among subsystems and condition

number of Lyapunov matrices in order to compute the

maximum admissible switching speed. If plant switching

exceeds this switching speed then stability can no longer

be guaranteed.

On the other hand, an open problem in adaptive control

is to extend the robustness of adaptive control to linearly-

parameterized time varying systems. However, most of the

results [6], [3], [7], [8], [10] are restricted to smoothly

varying parameters with known bounds and typically require

additional restrictive conditions such as slowly varying un-

known parameters [10] or constant and known input vector

parameters [7], in order ensure state boundedness. In this

case, such a conclusion is of very little practical importance

if the error can not be reduced to an acceptable level

by increasing the adaptation or feedback gains or using a

better nominal estimate of the plant parameters. Furthermore,

performance with respect to rejection of disturbances as well

as the transient response remain primarily unknown.

The developed control methodology, which is a gen-

eralization of fixed-sigma modification, yields strong ro-

bustness to time varying and switching parameters with-

out requiring a priori known bounds on such parameters.

This paper presents this adaptive controller methodology for

time-varying switched systems, which was first introduced

by the authors in [1] without a specific controller design

for a particular class of systems, and develops a detailed

design procedure based on the backstepping approach [4]

for parametric-strict output feedback systems with time-

varying switching parameters. The remainder of the paper is

organized as follows. Section II presents the basic adaptive

controller methodology. In section III, the controller design

for parametric-strict output feedback switched systems is

discussed. Section IV gives an example simulation demon-

strating the key characteristics of the control system as

well as comparing it with other non-adaptive and adaptive

techniques. Conclusions are given in Section V.

II. METHODOLOGY

A. Parameterized Switched Systems

In this paper, we view a switching system as one param-

eterized by a time varying vector of parameters, which is

piecewise differentiable, see Equation (1). This is a reason-

able representation since it captures many physical systems
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that undergo switching dynamics, thus we will focus on such

systems described by:

ẋ = f(x, a, u, d)

y = h(x, a)

a(t) = ai(t), ti−1 ≤ t < ti, i = 1, 2, . . .

i(t)+ = g(i(t), x, t) (1)

Therefore, we embed the switching behavior in the piecewise

changes in a(t), which again may be triggered by state

or time driven events. ai(t) ∈ C1, i.e., at least one time

continuously differentiable. This means a(t) is piecewise

continuous, with a well defined bounded derivative every-

where except at points ti where ȧ = d a/dt consists of dirac-

delta functions. Also the points of discontinuity of a, which

are distinct and form an infinitely countable set, are separated

by a nonzero dwell time, i.e., there are no Zeno phenomena

[5]. This is a reasonable assumption since this is how most

physical systems behave.

B. Robust Adaptive Control

In this section, we discuss the basic methodology based

on observation of the general structure of the adaptive

control problem. In standard adaptive control for linearly-

parameterized systems we usually have control and adapta-

tion laws of the form:

u = g(xm, â, ˙̂a, yr, t)
˙̂a = fa(xm, â, yr, t) (2)

where u is the control signal, â is an estimate of plant

parameter vector a ∈ Sa, where Sa is an admissible set

of parameters, xm is measured state variables, and yr is a

desired reference trajectory to be followed. This yields the

following closed loop error dynamics :

ėc = fe(ec, ã, t) + d(t)

˙̃a = fa(ec, â, t) − ȧ (3)

where ec represents a generalized tracking error, includes

state estimation error in general output feedback problems,

ã = â − a is parameter estimation error, and d is the

disturbance.

In standard adaptive control we typically design the con-

trol and adaptation laws, Equation (2), such that ∀ a ∈ Sa

we have:

eT
c Pfe + ãT Γ−1fa ≤ −eT

c Cec (4)

where matrices P > 0 and C > 0 are chosen depending on

the particular algorithm, e.g. choice of reference model and

the diagonal matrix Γ > 0 is the adaptation gain matrix. This

is sufficient to stabilize the system with constant parameters

and no disturbances. However, since the error dynamics is not

ISS stable, stability is no longer guaranteed in the presence

of bounded inputs such as d and ȧ. In order to deal with

time varying and switching dynamics, a modification to the

adaptation law will be pursued.

Now consider the following modified adaptation law:

˙̂a = fa(ec, â, t) − L(â − a∗) (5)

with the diagonal matrix L > 0 and a∗(t) is an arbitrarily

chosen piecewise continuous bounded vector, which is an

additional estimate of the plant parameter vector. Then the

same system in Equation (3) with the modified adaptation

law becomes:

ėc = fe(ec, ã, t) + d(t)

˙̃a = fa(ec, â, t) − Lã + L(a∗ − a) − ȧ (6)

The modified adaptation law shown above is similar to

leakage adaptive laws [2], which have been used to improve

robustness with respect to unstructured uncertainties. The

leakage adaptation law, also known as fixed-sigma, uses

L = σ Γ, where σ > 0 is a scalar and the vector a∗(t)
above is usually not included or is a constant. In fact, the

key contribution from the generalization presented here is not

in the algebraic difference relative to leakage adaptive laws

[2] but rather in how the algorithm is utilized and proven

to achieve new properties for control of rapidly varying and

switching systems. In particular, this leakage-type adaptive

controller is shown to achieve internal exponential and ISS

stability, for the class of systems under consideration, without

need for persistence of excitation as required in [2], see

Theorem 1 in [1]. As a result, the effect of plant variation

and uncertainty is reduced to inputs acting on this ISS stable

closed loop system. This, in turn, provides a separation

between the robust stability and robust performance control

problems.

III. APPLICATION TO SWITCHED SYSTEMS IN

PARAMETRIC-STRICT OUTPUT FEEDBACK FORM

In this section we discuss the backstepping tuning func-

tions design procedure for parametric output feedback sys-

tems [4]. The literature contains a few results extending

the design procedure to systems with time varying pa-

rameters. However, the results are restricted to smoothly

varying parameters as with most adaptive control results.

Again only boundedness is concluded without clear track-

ing performance claims except when parameters become

constant, at least asymptotically. In [7] the input vector

parameters, vector b(t) in Equation (7) below, is constant and

known whereas other parameters are smooth time varying

parameters of known bounds. A more recent result by the

same authors in [8] applies to linear systems in parametric-

strict output form and allows all parameters to be time

varying without known bounds but are required to be smooth.

Another recent result for linear-time-varying systems with

smooth parameters [10] requires a priori information about

rapidly varying parameters whereas completely unknown

parameters are required to be slowly time varying. Again

such results are yet to address switching systems where

parameter smoothness is lost and time variation is a persistent

intrinsic part of the system’s behavior.
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Consider systems in the parametric-strict output feedback

form:

ẋ = Ax + φ(y) + Φ(y)ap + bβ(y)u + d̄

y = cT x (7)

A =







0
... I(n−1)×(n−1)

0 . . . 0







c =

[

1
0(n−1)×1

]

, b =











0(r−1)×1

bm

...

bo











Φ =







ϕ1,1(y) . . . ϕq,1(y)
...

...

ϕ1,n(y) . . . ϕq,n(y)






, φ =







ϕ0,1(y)
...

ϕ0,n(y)







Where vectors ap and b are unknown system parameters.

The vector d̄ = [0, d2, . . . , dn]T is the disturbance. Note the

disturbance in the first state equation d1 = 0 since it is

enforced that if one exists that it will be augmented in the

time varying vector of parameters ap. This is needed since

the effect of such a disturbance will appear in the closed

loop dynamics as state dependent terms rather than just a

disturbance due to the nature of the backstepping design

procedure.

Assumption 3.1: The output y is measured.

Assumption 3.2: The sign of bm(t) 6= 0 ∀t is known and

constant.

Assumption 3.3: The relative degree r = n−m ≥ 1 of the

system given by Equation (7) is a well defined and known

constant.

Assumption 3.4: The zero dynamics of the system given

by Equation (7) is uniformly exponentially stable.

Assumption 3.5: Parameter vectors ap(t) and b(t) are

piecewise differentiable bounded functions with finite dis-

continuities in finite time.

Assumption 3.6: ϕi,j(y) ∀i = 0 . . . q and ∀j = 1 . . . n and

β(y) are known smooth functions and β(y) 6= 0 ∀y.

Assumption 3.7: The reference trajectory yr and its first r

derivatives y
(1)
r , . . . , y

(r)
r , are known, bounded and, piecewise

continuous.

Assumption 3.8: d̄ ∈ R
n is uniformly bounded and piece-

wise continuous.

A. Observer Design

In this section, an observer for estimation of unmeasured

states are developed. We choose a filter gain vector k such

that the matrix Ao = A− kcT is Hurwitz, which is possible

due to observability of the pair (A, cT ) by construction.

Therefore, we have the following filter equations [4]:

ξ̇ = Aoξ + ky + φ(y)

Ξ̇ = AoΞ + Φ(y)

λ̇ = Aoλ + enβ(y)u

vj = Aj
oλ, j = 0, . . . ,m

ΩT = [vm, . . . , v1, v0,Ξ] (8)

where ei is the ith unit vector. Now we need to define the

error variable of the state estimator ε, which is given by:

ε = x −

(

ξ +

∫ t

0

Ω̇T (τ)θ(τ)dτ

)

Where θ = [b, ap]
T . Note that the definition of ε given

above differs from that in standard backstepping designs [4]

in order to allow time varying parameters. From this we

have the following estimation error equation, which is an

exponentially stable linear system with eigenvalues dictated

by choice of filter gain vector k:

ε̇ = A0ε + d̄

B. Control Design

Based on the backstepping tuning functions design pro-

cedure [4], we define the following terms to construct our

closed loop system :

z1 = y − yr

zi = vm ,i − αi−1 − ρ̂ y(i−1)
r , i = 2, . . . , r

ω = [vm,2, vm−1,2, . . . , v0,2, Φ(1) + Ξ(2)]
T

ω̄ = [0, vm−1,2, . . . , v0,2,Φ(1) + Ξ(2)]
T

ωo = ϕ0,1 + ξ2

τ1 = (w − ρ̂(ᾱ1 + ẏr)e1) z1 − Γ−1
o Lo(θ̂ − θ∗)

τi = τi−1 −
∂αi−1

∂y
ω zi , i = 2, . . . , r

α1 = ρ̂ᾱ1, ᾱ1 = −(c1 + d1)z1 − ωo − ω̄T θ̂

α2 = −b̂m z1 −

[

c2 + d2

(

∂α1

∂y

)2
]

z2 +
∂α1

∂θ̂
Γτ2

+

(

ẏr +
∂α1

∂ρ̂

)

˙̂ρ + β2

αi = −zi−1 −

[

ci + di

(

∂αi−1

∂y

)2
]

zi +
∂αi−1

∂θ̂
Γτi

+

(

y(i−1)
r +

∂αi−1

∂ρ̂

)

˙̂ρ + βi

−
i−1
∑

j=2

∂αj−1

∂θ̂
Γ

∂αi−1

∂y
ω zj , i = 3, . . . , r

βi =
∂αi−1

∂y

(

ωo + ωT θ̂
)

+ ki vm, 1

+
m+i−1
∑

j=1

∂αi−1

∂λj
(−kjλ1 + λj+1)

+
i−1
∑

j=1

[

∂αi−1

∂a∗(j−1)
a ∗(j) +

∂αi−1

∂y
(j−1)
r

y(j)
r

]

+
∂αi−1

∂Ξ
(AoΞ + Φ) +

∂αi−1

∂ξ
(Aoξ + ky + φ)

Where constants ci, di > 0 and diagonal matrices Γo, Lo > 0
and a∗ = [θ∗, ρ∗] is an estimate of plant parameters θ and

ρ to be used in the update laws, to be presented next.The

following set of control and update laws are used, which
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are modifications of those used in the standard backstepping

tuning functions design procedure [4]:

u =

{

1
β(y) [αr + ρ̂y

(r)
r − vm,r+1] if r > 1

1
β(y) [α1 + ρ̂ẏr − vm,2] if r = 1

˙̂
θ =

{

Γo τr if r > 1

Γo ω̄z1 − Lo(θ̂ − θ∗) if r = 1

˙̂ρ = −γρ sign(bm)[ᾱ1 + ẏr]z1 − Lρ(ρ̂ − ρ∗) (9)

Where the diagonal matrix Γo > 0 and scalar γρ > 0
are adaptation gains and adaptation filter gains are diagonal

matrix Lo > 0 and scalar Lρ > 0. Denote the vector

â = [θ̂T , ρ̂], which is an estimate of the total parameter vector

a = [θT , ρ]T with the chosen parameter estimate vector

a∗ = [θ∗T , ρ∗]T ∈ Cr−1, i.e., r − 1 times continuously

differentiable. Theorem 1 below states the main result of

this section for the backsepping based design procedure for

systems in parametric-strict output feedback form.

Theorem 1: If the system given by Equation (7) satisfies

the assumptions (3.1-3.8) then the adaptive feedback control

given by Equations (9) and filter Equations (8) yields:

(i) Uniformly internally exponentially stable and ISS system

with state xc = [ec, ã]T .

(ii) states xc = [ec, ã]T , x, and filter states Λ, ξ are bounded

with tracking error satisfying:

‖y − yr‖ ≤ c1‖xc(to)‖e
−α(t−to) + c2

∫ t

to

eα(τ−t)‖v(τ)‖ dτ .

where c1, c2 are constants, α = λ(diag(P−1C, L)), and v =
[P 1/2d, Γ−1/2(L(a∗ − a) − ȧ)]T .

The proof is given in the Appendix.

IV. EXAMPLE SIMULATION

Consider the following unstable 2nd order plant of relative

degree 1 with a 2-mode periodic switching:

ẋ1 = a1 x3
1 + x2 + (1 + x2

1) b1 u + d

ẋ2 = a2 x1 + (1 + x2
1) b2 u

y = x1

Where u, d, and y are control signal, disturbance, and

measured output, respectively. Whereas, the plant parameters

are given by:

a1 = 3 + 30 square(2πω t) , a2 = −2 − 20 square(2πω t)

b2 = 20 + 10 square(2πω t), b1 = 5 + square(2πω t)

Where square denotes a square wave with unity amplitude

and ω is the plant switching frequency in Hz. The control

design is based on the backstepping design procedure of

Section III. Let us choose the nominal gains C = 100
(feedback gain), adaptation filter gain L = I , where I is

the identity matrix, then we have from Theorem 1 that the

decay rate α = 1 rad/sec. This should yield a settling time

of at most 4 seconds for the closed loop system. Also the

nominal value of the adaptation gain Γ = 100I will be used.

Whereas, a∗ is chosen to be a constant vector aave taking

the average values of the parameters a1, a2, b1, b2, i.e., when

square functions are set to zero.
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nominal switching frequency

higher switching frequency

Fig. 1. Tracking error for different plant switching frequencies for modified
adaptive controller.

Figure 1 shows the response of the modified adaptive

controller for the output of the plant tracking a sinusoidal

reference of amplitude 2 and frequency 0.3 rad/sec; the

disturbance is set to zero for this case. The response follows

the predicted theoretical behavior with the system responding

to the corresponding impulse change in ȧ and step change

in a(t) due to switching in plant parameter vector a(t)
with the error settling after exponentially decaying transients

according to the system decay rate α. Whereas, by increasing

the plant switching frequency, the same trend follows with

no concern of instability with high frequency attenuation

observed.

Figure 2 shows the effect of different choices of the

additional parameter estimate a∗ for the nominal case of

Figure 1. The figure shows that the average tracking error

is larger when a larger size of the input a∗ − a due to larger

uncertainty and performance is improved with switching to

a better choice for a∗.
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−0.25
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k
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g
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o
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a
*
switching

a
*
=100 a

ave
a

*
=10 a

ave

Fig. 2. Effect of parameter estimate a
∗ on tracking error for modified

adaptive controller.

Figure 3 displays the response of the nominal case of

Figure 1 for switching frequency ω = 0.1 Hz with the

addition of a sinusoidal disturbance d = 50 sin(π t), which

introduces a clear sinusoidal content to the tracking error.

Whereas, increasing feedback gain, significantly reduces the

tracking error due to both plant switching (jumps and other
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Fig. 3. Effect of feedback gain on tracking error for modified adaptive
controller.

steady errors) as well as the disturbance-induced error.

Let us compare the system’s response with the developed

adaptive controller to other control techniques. We consider

the same system with switching frequency ω = 1 Hz

case. The system is required to follow a constant reference

of amplitude 2. First consider a non-adaptive backstepping

controller, where the parameter estimate â, in the developed

control scheme of is replaced with a fixed value â = aave.

Figure 4 shows that the non-adaptive controller yields an

unstable closed loop despite using the same assumed value of

plant parameter vector, which has been used by the modified

adaptive controller with a∗ = aave.
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0
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15
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25
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time, seconds

tr
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Fig. 4. Tracking error for non-adaptive backstepping controller with â =

aave.

Whereas, using a standard equivalent adaptive controller,

by setting L = 0 in the modified adaptive controller of

Equation (5) some of the parameter estimates â grew un-

bounded due to lack of ISS stability. This is a known issue

with standard adaptive control in the presence of parameter

variations or even disturbances, which is usually referred to

as parameter drift [?], [2]. Next, we consider a parameter

projection modification to the standard adaptive controller

of Equation (2). The projection modification [2] used here
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5

10

15

20

25

30

time, seconds

tr
a
c
k
in

g
 e

rr
o
r

Fig. 5. Tracking error for projection adaptive controller with small
parameter bound M = 1.

is given by:

˙̂a =

{

fa if ‖â‖ ≤ M or âT fa ≤ 0

fa − â âT

‖â‖2

(

‖â‖2−M2

M2

)

fa otherwise

Which uses an assumed bound on parameters ‖a‖ ≤ M .

This assumption is critical to projection algorithms. Figure

5 shows the tracking error growing unbounded when a

projection algorithm was implemented with a tight bound

M = 1 due large switching in plant parameters. This is in

contrast to the developed adaptive controller, which does not

require such information to achieve stability.

0 0.5 1 1.5 2 2.5 3 3.5 4
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−0.4
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1
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a
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k
in

g
 e

rr
o
r

projection Γ=10000
a* Γ=10000

Fig. 6. Tracking error comparison for modified adaptive controller and a
projection adaptive controller.

Nevertheless, it was possible to obtain a choice for the

projection bound, M = 10, where the system remained

stable. Figure 6 compares the tracking error for this projec-

tion adaptive controller and the developed adaptive controller

with a∗ = aave for the same adaptation gain. The developed

adaptive controller achieved smaller tracking error. More

importantly, the projection controller does not display the

systematic dependence on the adaptation gain Γ, Figure

7, unlike the proposed adaptive controller where a clear

reduction in tracking error is observed with increasing Γ,

in accordance with the scaling relationship in Theorem 1.
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Fig. 7. Effect of adaptation gain Γ on tracking error for projection adaptive
controller.
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Fig. 8. Effect of adaptation gain Γ on tracking error for modified adaptive
controller.

V. CONCLUSIONS

An algorithm for robust adaptive control design for

switched systems in parametric-strict output feedback form

is presented. Under typical adaptive control assumptions,

the control scheme guarantees system stability for piecewise

differentiable bounded parameters and piecewise continuous

bounded disturbances without requiring a priori knowledge

on such parameters. A leakage-type adaptive control mod-

ification is shown to achieve internal exponential and ISS

stability, without need for persistence of excitation. The

effect of plant variation and switching is reduced to piecewise

continuous and impulsive inputs acting on this ISS stable

closed loop system. The results are illustrated through exam-

ple simulations demonstrating superior robustness of stability

and performance relative to non-adaptive and other adaptive

methods.

APPENDIX

Proof of Theorem 1

Proof:

The result of part (i) follows by direct application of

Theorem 1 in [1]. The overall system follows the form

discussed in Section II with ec = [zT , εT ]T and ã as

states. Also denote by overall adaptation and filters gains

Γ−1 = diag(Γ−1
o , γ−1

ρ |bm|) and L = diag(Lo, Lρ). Using

the Lyapunov function:

V (ec, ã) = zT z + 2
r

∑

i=1

εT Po

di
ε + θ̃T Γ−1

o θ̃ + |bm(t)|
ρ̃2

γ

+d̂T Γ−1
d d̂

= eT
c P ec + ãT Γ−1ã

where, P = diag(I, 2
∑r

i=1
Po

di

), C = diag(Co,D),
Co = diag(c1, . . . , cr), and the matrix D =
diag(do, 3/4do, do, . . . , do), where do =

∑r
i=1

1
di

and

Po is such that AT
0 Po + PoA0 < 0 for the Hurwitz matrix

A0.

For part (ii) the boundedness of xc follows from part (i).

The boundedness of other signals x, Λ and ξ is proven next,

which differs slightly from that usually done in [4] due to the

modified definition of ε. From boundedness of ec = [z, ε]T

and reference yr, this proves boundedness of y since z1 =
y − yr, which shows boundedness of ξ and Ξ by stability

of the filter dynamics and smoothness of φ and Φ. By the

boundedness of y and uniform exponential stability of the

zero dynamics, then u is bounded, see [4] for more analogous

details. Therefore, vi are also bounded by filter construction

and thus Λ and Λ̇ are bounded. By boundedness of y, u
then from Equation (7), we have that ẋ − Ax is bounded.

Therefore, expanding Equation (9) we get:

ẋ − Ax + kcT ε − ε̇ − Ω̇T θ = −A

(

ξ +

∫ t

0

Ω̇T (τ)θ(τ)dτ

)

From above the right hand side of this equation is bounded

since ẋ−Ax, ε, ε̇, Ω̇, and θ are all bounded. Therefore, by

boundedness of ε and the right hand side of the equation

above as well as the definition of ε, then x is also bounded.
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