
  

  

Abstract—One of the fundamental issues in asynchronous 

transfer mode (ATM) networks is the congestion problem of 

information flow. Due to the complexity and variability of ATM, 

it is difficult to accurately describe the characteristics of source 

traffic. This paper presents a traffic controller to solving the 

congestion problem by using Q-learning conjunction with 

simulated annealing. In stead of relying on the mathematical 

model for source traffic, the controller is designed to learn an 

optimal policy by directly interacting with the unknown 

environment. The simulated annealing is a powerful way to solve 

hard combinatorial optimization problems, which is used to 

adjust the balance between exploration and exploitation in 

learning process. The proposed controller forces the queue size 

in multiplexer buffer to the desired value by adjusting the source 

transmission rate of the available bit rate (ABR) service. 

Simulation results show that the proposed method can promote 

the performance of the networks and avoid the occurrence of 

congestion effectively. 

I. INTRODUCTION 

SYNCHRONOUS transfer mode (ATM) is a key 

technology for broadband integrated services digital 

networks. In order to satisfy various classes of multimedia 

traffic with different quality of service (QoS) requirements, 

efficient statistical multiplexing and cell switching, ATM 

networks must support different service categories [1], namely 

constant bit rate (CBR) and variable bit rate (VBR) service for 

real-time applications, unspecified bit rate (UBR) and 

available bit rate (ABR) service for nonreal-time applications. 

However, if many sources send traffic at the same time, the 

total traffic at the switch may exceed the output capacity 

causing delays, buffer overflows and cell loss. The congestion 

of information is the main reason that affects the QoS in ATM 

networks. Of all the service categories above, ABR is the only 

one that can be controlled by using the feedback mechanism. 

ABR service allows applications to fully utilize the available 

bandwidth in network by adjusting their instantaneous 

transmission rates to the available capacity. A traffic control 
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scheme is essential for the support of ABR traffic to utilize the 

available network bandwidth without causing congestion.  

The traffic control of ABR service is difficult owing to the 

uncertainties and highly time-varying of different traffic 

patterns. The traffic control mainly checks the availability of 

bandwidth and the buffer space necessary to guarantee the 

requested QoS. A major problem here is lack of information 

related to the characteristics of source traffic. Devising a 

mathematical model for source traffic is the fundamental issue. 

However, it has been revealed that this is a very difficult task. 

In order to overcome the above-mentioned difficulties, 

some traffic control schemes with learning capability have 

been employed in ATM networks [2-6]. Its basic advantage is 

the ability to learn the source traffic characteristics from 

sufficiently big and representative data samples. But it is 

obvious that the accurate data, needed to train the parameters, 

are hard to get for the disturbance and the error in instrument 

measuring. In this circumstance, the reinforcement learning 

with the ability of self-learning shows its particular superiority 

in ABR traffic control [7,8]. 

In this paper, an ABR traffic controller is proposed to 

solving the congestion problems in ATM networks. The 

optimal policy of source transmission rate is obtained through 

a form of model-free reinforcement learning, known as 

Q-learning. Instead of relying on a known teacher providing a 

correct output in response to an input, the controller is 

designed to learn an optimal policy by directly interacting 

with the environment [9]. Learning is accomplished 

progressively by appropriately utilizing the past experience 

which is obtained during real-time operation. But in the 

learning process, the balance between exploration and 

exploitation is one of the key problems of action selection. 

The simulated annealing has been shown to be an effective 

approximate algorithm to solve combinational optimization 

problems. It is introduced into the control of balance between 

exploration and exploitation [10]. 

The proposed controller forces the queue size in bottleneck 

node to the desired value by adjusting the source transmission 

rate of ABR service. The results of simulation show that the 

proposed method can promote the performance of networks 

and avoid the occurrence of congestion effectively.  

II. THEORETICAL FRAMEWORK 

A. Architecture of Traffic Controller Proposed 

This section gives the detailed architecture of the proposed 
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ABR traffic controller as shown in Fig.1. 
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Fig. 1.  Architecture of the proposed traffic controller 

In ABR traffic control, the traffic controller proposed is 

called learning agent, and ATM networks make up the 

environment with which the learning agent works. The inputs 

of the proposed controller are state variables (S) composed of 

queue length (q) and source transmission rate (u). The output 

is the feedback signal (a) to the traffic sources, which means 

the probability mass function of source rate. The controlled 

sending rate tu  at sample time t is defined by maxt tu a u= ⋅ , 

where maxu  is the maximum sending rate of traffic sources. 

Reinforcement signal r for a specified state is denoted as r=1 

for reward, and r=0 for penalty. 

The learning agent interacts repeatedly with the network 

environment. During each interaction, the learning agent first 

observes the states of environment. The learning agent then 

decides to execute an action on which rate the traffic sources 

should take. This results in a reward r that is received by the 

agent and in a transition of the state of network environment 

from the old state to the new state. The learning agent’s reward 

and the new state of the network environment only depend on 

the old state and on the action that was executed by the 

learning agent. In the traffic controller proposed learning 

agent has no prior knowledge of its environment model. The 

goal of learning agent is to find an optimal policy for choosing 

actions. 

B. Reinforcement Signal 

Q-learning is to learn what to do and how to map situations 

to actions, so as to maximize a numerical reward signal, which 

is also called reinforcement signal. So, it is vital to choose an 

appropriate signal as the reinforcement signal in Q-learning. 

In ATM networks, the reward r is evaluated by fuzzy logic 

rules according to the states of network environment. The real 

value of reward r, varied as a graded function of system 

performance, can facilitate the learning speed [11]. 

The fuzzy reward evaluator (FRE) evaluates the reward for 

environmental states. FRE relies on three parameters: the 

current queue length (q), the current rate of queue length 

change ( q� ), and the current rate of source transmission rate 

change ( u� ) to generate a reward or a punishment for the 

action in a state. If the system is enhanced toward positive 

evolution, the action will be rewarded; otherwise punished. 

The functional blocks of FRE are a fuzzifier, a defuzzifier, and 

an inference engine containing a fuzzy rule base. The fuzzifier 

performs the function of fuzzification that translates the value 

of each input linguistic variable ( )s , ,q q u� � into fuzzy linguistic 

terms. These fuzzy linguistic terms are defined in a term set f(s) 

and are characterized by a set of membership function �(s). 

The defuzzier describes an output linguistic variable of 

reward (penalty) yr by a term set f(yr), characterized by a set of 

membership functions �(yr), and adopts a defuzzification 

strategy to convert the linguistic terms of f(yr) into a nonfuzzy 

value representing decision reward (penalty) r. 

The term set should be determined at an approximate level 

of granularity to describe the values of linguistic variables. 

For queue length, the term set is defined as f(q)={Low(L), 

Medium(M), High(H)}, which is used to describe the degree 

of queue lengths. The term set for the rate of queue length 

change is defined as f( q� )={Decrease(D), Increase(I)}, which 

describes the rate of queue length change as “Decrease” or 

“Increase”. The term set for the rate of source transmission 

rate change is defined as f( u� )={Negative(N), Positive(P)}, 

which describes the rate of source transmission rate change as 

“Negative” or “Positive”. On the other hand, in order to 

provide a precise graded reward in various states, the term for 

the reward is defined as f(yr)={Penalty More(PM), Penalty 

Slightly(PS), No Reward(NR), Reward Slightly(RS), Reward 

More(RM)}. The membership functions (MFs) for terms in 

the term set are defined with a triangular MF or a trapezoidal 

MF because their simple formulas and computational 

efficiency are suitable for real-time operation. The MFs of the 

term set are shown in Fig.2. 
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Fig. 2.  MFs of the term set (a) f(q), (b) f( q� ), (c) f( u� ), and (d) f(yr) 

The fuzzy rule base is a reward knowledge base, 

characterized by a set of linguistic statements in the form of 

“if-then” rules that describe the fuzzy logic relationship 

between the input variables and the reward (penalty) yr. 

According to fuzzy set theory, the fuzzy rule base forms a 

fuzzy set with dimensions 3×2×2=12. Table I shows a total of 

twelve inference rules in the fuzzy rule base under various 

system states. For example, rule 1 can be linguistically started 

as “if the queue length is low, the queue length change rate is 

decreased, and the transmission change rate is negative, then 

give more penalty.”  
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TABLE I 

 RULE TABLE OF FRE 

Rule q q�  u�  yr Rule q q�  u�  yr 

1 L D N PM 7 M I N RS 

2 L D P PS 8 M I P RM 

3 L I N NR 9 H D N PS 

4 L I P NR 10 H D P PM 

5 M D N RS 11 H I N PS 

6 M D P PM 12 H I P PM 

The proposed FRE adopts the max-min inference method 

for the inference engine because it is designed for real-time 

operation. An example of the max-min inference method is 

elaborated in the following. Rules 1, 6, 10, and 12 have the 

same reward yr that is “PM”. We assume that the current 

system states are q0, 0q� , and 0u� . Applying the min operator, 

we can obtain the membership value of reward yr=PM of rule 

1, denoted by &1, as 

( ) ( ) ( ) ( )1 L 0 D 0 N 0 PM 0min , , PMrq q u yω µ µ µ µ= ª º ⋅ =¬ ¼� �       (1) 

where PM0 is the center of the MF �PM(yr). The membership 

values of rules 6, 10, and 12, denoted by &6, &10, and &12, 

respectively, can be derived in the same manner. Subsequently, 

applying the max operator yields the overall membership 

value of reward yr=PM, denoted by &PM, as follows: 

( )PM 1 6 10 12max , , ,  .ω ω ω ω ω=                       (2) 

The overall membership values of rewards PS, NR, RS, and 

RM, denoted by &PS, &NR, &RS, and &RM, respectively, can be 

calculated in the same way. 

The FRE utilizes the Tsukamoto’s defuzzification method 

for the defuzzifier because of its computational simplicity. 

The reinforcement signal r is calculated as (3). 

( )
( )

0 PM 0 PS 0 NR 0 RS 0 RM

PM PS NR RS RM

PM PS NR RS RM
r

ω ω ω ω ω

ω ω ω ω ω

⋅ + ⋅ + ⋅ + ⋅ + ⋅
=

+ + + +
(3) 

C. The Q-Learning Algorithm 

Q-learning learns utility values (Q-values) of state and 

action pairs. The objective of Q-learning is to estimate 

Q-values for an optimal policy. During the learning process, 

learning agent uses its experience to improve its estimate by 

blending new information into its prior experience. 

In general form, Q-learning algorithm is defined by a tuple 

<S, A, r, p>, where S is the set of discrete state space of ATM 

networks; A is the discrete action space, which is the feedback 

signal to traffic sources; r:S×A:R is the payoff function of 

the agent; p:S×A:û(s) is the transition probability map, 

where ( ) [0,1]s∆ ∈  is the set of probability distributions over 

state space S. 

The basic idea of Q-learning is to find an optimal policy by 

learning the values of a so-called Q function. Q(s,a) is defined 

as the expected discounted cumulative payoff that is received 

by executing action a in state s and following an optimal 

policy thereafter. Let � be the policy of learning agent, the Q 

function can be defined as 

( ) ( ) ( ) ( )* *, , , ,  .
s S

Q s a r s a p s s a v sβ π
′∈

′ ′= + ¦        (4) 

where [0,1)β ∈  is the discount factor, r(s,a) is the reward for 

taking action a at state s, and p(s´|s,a) is the probability of 

transiting to the next state s´ after taking action a in state s. 

If the values of the Q functions are known, the optimal 

policy �
*
, which is always taking an action so as to maximize 

Q
*
(s,a) under any state s, can be found. It is given by 

( ) ( )* *

A
arg max ,  .

a
s Q s aπ

∈
=                      (5) 

The problem is then reduced to finding the function Q
*
(s,a). 

Q-learning provides us with a simple updating procedure, in 

which the learning agent starts with arbitrary initial values of 

Q(s,a) for all Ss ∈ , Aa ∈ , and updates the Q-values as 

following 

( ) ( ) ( ) ( )1 1, 1 , max ,  .t t t t t t t t t
a

Q s a Q s a r Q s aα α β+ +
ª º= − + +
¬ ¼

  (6) 

The parameter 0�.<1 is called the learning rate and may be 

decreased over time. The convergence rate is determined by 

the value of .. If . is small, the convergence rate will be slow 

but it will easily tend to stabilize. On the other hand, if . is 

large, the convergence rate will be fast but it will not easily 

tend to stabilize. The learning rate . should satisfy the 

following conditions: 

1. 
0t
α∞

= = ∞¦ , which is required to guarantee that the steps 

are large enough to eventually overcome any initial 

conditions. 

2. 2

0t
α∞

= < ∞¦ , which is required to guarantee that the steps 

are small enough to assure convergence. 

It is proven in [12] that the values Q(s,a) estimated using 

Q-learning converge to the optimal value Q
*
(s,a) with 

probability 1. The values of Q(s,a) are stored in a lookup table, 

all state-action pairs continue to be visited. 

III. CONTROLLER BASED ON SA-Q-LEARNING ALGORITHM 

A. The Exploration and Exploitation in Q-Learning 

Q-learning algorithm is one of the most rapidly developing 

reinforcement learning methods in recent years. In Q-learning, 

a learning agent usually faces a trade-off between exploration 

and exploitation when choosing an action [13]. 

Exploitation occurs if the action selection strategy is based 

purely on current values of the state-action pairs, i.e., when the 

selection is greedy. This may lead to locally optimal policies, 

possibly differing from a globally optimal one. In contrast, 

exploration is the strategy based on the assumption that the 

agent selects a non-optimal action in the current situation and 

obtains more knowledge about the problem. This knowledge 

allows it to neglect the locally optimal policies, and to reach 

the globally optimal one instead. On the other hand, excessive 

exploration will drastically decrease the performance of a 

learning algorithm, and in some cases might be even harmful 

with respect to the learning results themselves. So, finding the 

proper balance between exploration and exploitation in 

Q-learning is one of the key problems in action selection. 

A simple strategy proposed to deal with this problem is the 

0-greedy (with 0�0<1), with larger 0 corresponding to larger 
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probability of exploration. However, excessive exploration 

with constant 0 value becomes unnecessary after a period of an 

initial interaction between the learning agent and the 

environment. Furthermore, it will make the performance of 

Q-learning algorithm decrease. 

Therefore, simulated annealing is introduced in Q-learning 

algorithm (called SA-Q-learning) to balance exploration and 

exploitation. Simulating the annealing process of solids, the 

SA algorithm is one kind of the computational processes 

resembling nature and has been shown to be an effective 

approximate algorithm avoiding becoming trapped in a local 

solution. The SA-Q-learning improves the simple 0-greedy 

approach by appropriately reducing 0 during the learning 

process. It explores with the probability approaching to 1.0 in 

the entire environment at beginning. The probability is 

decreased with learning. At last, the probability approaches to 

0, i.e., it will take 0-greedy strategy to select action. This will 

not only improve the ability of the learning agent to acquire 

new knowledge, but will also allow the algorithm to avoid 

performance decrease due to the constant value of 0. 

B. The SA-Q-learning algorithm 

As the accuracy of the agent’s knowledge about the 

environment increases, the proportion of exploration should 

decrease. Toward this effect, the SA algorithm is introduced 

into the action-selection strategy of Q-learning. The resulting 

algorithm, called SA-Q-learning, is presented below. 

Let P be a policy space, the change of any element in a 

n-tuple (a1,a2,…,an) corresponding to the transition from one 

solution to another in policy space P. The value function of a 

policy is used to evaluate the policy [14]. 

Let Pp ∈  be a policy, the value function V(p) of the policy 

p is the sum of all the Q-values obtained for this policy. 

( ) ( )( ) ( )1 2

1

, , , ,
n

p

n k k

k

V p V a a a Q s a
=

= =¦"           (7) 

If the policy p1=(a1,…,ai-1,ai,ai+1,…,an) transits to the 

policy p2=(a1,…,ai-1,bi,ai+1,…,an), then the difference between 

their values is 

( ) ( ) ( ) ( )2 1
, ,  .

i i i i
V p V p Q s b Q s a− = −               (8) 

The policy p1 is considered superior to p2 if V(p1)>V(p2). 

The value of a policy is compared to the energy of the 

microcosmic state in solid annealing, and it will be used to 

decide the probability of the action-selecting, in combination 

with other parameters, such as the temperature. 

The detailed of SA-Q-learning algorithm is shown as the 

following flowchart (Fig. 3). 

1) Generation of initial solution 

Generation of the initial solution should ensure the 

generation of a feasible solution, which can be satisfied by 

using random number generators distributed evenly from 0 to 

1. The following formula makes identical probabilities of the 

feedback signal (a) falling at any value within the upper limit 

and the lower limit: 

( ) ( )0 max min minrandom 0,1a a a a= − ⋅ +            (9) 

Initial temperature T0 should be set great enough and all 

Q(s,a) values are initiated arbitrarily. 
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Fig.3.  The illustration of the process of SA-Q-learning algorithm 

2) Neighborhood solution 

Find another solution, namely a´ by modifying the present 

solution a. 

The simulated annealing algorithm must generate a new 

solution in the neighborhood of the present solution. The 

generating function is described as (10) 

a a a′ = + ∆                                (10) 

( ) max maxrandom 0,1 2a a a∆ = ⋅ ∆ − ∆           (11) 

3) Acceptance criterion 

Execute the Metropolis algorithm under temperature T. 

If ( , ) ( , )Q s a Q s a′ ≥ , then the trial solution is better than the 

present one and is thus accepted. If ( , ) ( , )Q s a Q s a′ < , then the 

new solution a´ is accepted with the probability given by 

( ) ( )( )( )Pr exp , ,  .Q s a Q s a T′= −             (12) 

provided that Pr is greater than a random number uniformly 

distributed over the interval 0 to 1. 

The value of Q(s,a) is updated by 

( ) ( ) ( ) ( ), 1 , max ,  .
a

Q s a Q s a r Q s aα α β
′

ª º′ ′← − + +
¬ ¼

   (13) 

4) Cooling schedule 

The cooling schedule defines the procedure to reduce the 

temperature as an equilibrium state is reached. 

Although the temperature-dropping criterion can be in 

general arbitrary, we use the geometric scaling factor criterion 

to reduce temperature according to the following 

1  .k kT Tλ+ = ⋅                                  (14) 

The cooling rate � decides the decreasing velocity of the 

temperature. When � is a constant, it is obviously that the 

different require about the decreasing velocity of the 

temperature between the high and low temperature region is 

ignored. In this paper, the cooling rate is adjusted as 

0  .λ λ η= +                                  (15) 

In (15), �0 is the initial value of the decreasing velocity of 
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the temperature, and it is set to 0.9. � is a regulating gene, 

whose value will be increased a little when the temperature Tk 

is decreased. � must be always less than 1. It can be seen that 

when Tk is low, the slower it decreased, the better the system 

will get stabilization; when Tk is high, the faster it decreased, 

the smaller the amount of calculation will be. 

5) Stopping criterion 

The iterative procedure is ended when the stopping 

criterion is met. 

The stopping criterions include the following: 

(1) When the cooling temperature is smaller than the final 

temperature, stop the algorithm. 

(2) When the desired number of episodes reaches the preset 

number, stop the algorithm. 

Although 0>0 in Q-learning based on the 0-greedy strategy 

are often better than those of 0=0, a great number of 

explorations in case of fixed probability becomes unnecessary 

and may even be harmful to the system performance as the 

learning process proceeds. With the introduction of the 

simulated annealing, SA-Q-learning algorithm eliminates the 

disadvantage of the probability 0 remaining constant, and the 

exploration will gradually be reduced in par with the dropping 

temperature. 

IV. SIMULATION RESULTS 

In this section, computer simulations are carried out to 

confirm the validity of the proposed algorithm in ABR traffic 

control under a variety of networking conditions and loads. 

In simulation, VBR voice sources are considered. In ATM 

networks, VBR service has higher priority than ABR service. 

In the presence of VBR traffic, ABR capacity becomes a 

varying quantity. Link bandwidth is first allocated to the VBR 

service and the remaining bandwidth is given to the ABR 

service. In simulation, we assume that all ABR sources are 

greedy and always have data to send. 

To simulate the performance of the system, we choose the 

similar simulation scenarios proposed by Kolarov [15]. It has 

two switches with finite buffer size of 1680cells each, two 

groups of ABR sources with each group consisting of five 

persistent sources and one group of VBR source consisting of 

four VBR sources as shown in Fig. 4. The desired queue size 

is set to 50cells. All links have a capacity of 365cells/ms 

(155Mb/s). Obviously, the link between the two switches is 

the bottleneck link. The source parameters are chosen as 

follows: PCR=365cells/ms, ICR=MCR=4cells/ms. Sources in 

group A start transmission at time t=0, while sources in group 

B start at time t=5s. 

Sw1 Sw2

S2 D2

D1

L1

S1

S3

A Group

B Group

C Group

 
Fig.4.  Single bottleneck link simulation model 

In order to compare the proposed method with the previous 

methods, simulations for the same model are carried out by the 

proposed SA-Q-learning algorithm, 0.1-greedy Q-learning 

algorithm (0=0.1 in 0-greedy Q-learning algorithm), and the 

general Q-learning algorithm. The first successful trial occurs 

after 35 trials, 83 trials, and 114 trials respectively. It is noted 

that the training speed increases significantly. 

Firstly, we consider the simulation scenario that no VBR 

traffic flow existing in the networks. Fig.5 shows the rate for 

each source, when the sources in group A start transmission, 

the rates converge to stable value 73cells/ms (365/5). When 

group B sources start transmission, all source rates stabilize 

around a new equilibrium of 36.5 cells/ms (365/10). From 

Fig.6, the queue length converges to 50cells which is the 

buffer set point after about 200ms and there is no overshoot. 

When group B sources start, the queue is stable after about 

100ms with very small overshoot (about 2cells). So it is easy 

to get the conclusion that the controller can respond to the 

changes of the network load on time and make the rate of 

sources and queue stabilize rapidly. 
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Fig.5.  The ABR source rate 
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Fig.6.  The queue level of buffer 

Secondly, we study the performance of proposed controller 

when the available bandwidth for ABR service continuously 

changes with time. We add four video MPEG sources at 

switch1 with a peak rate of 35cells/ms and average rate of 

21cells/ms. The MPEG sources have service priority over 

ABR sources and start transmission over the entire simulation 

period. The ABR sources are persistent. From Fig.7 after t=0 
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and t =5s, the rate of ABR sources stabilize around 60cells/ms 

and 30cells/ms respectively, with little oscillations. This 

simulation indicates that the controller can reduce sensitivity 

to the variety of ABR bandwidth.  
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Fig.7.  The ABR source rate with VBR existing 
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Fig.8.  The queue level of buffer with VBR existing 

In Fig.8, the performance of queue level in the buffer is 

considered. For comparison, the proposed SA-Q-learning 

algorithm and 0.1-greedy Q-learning algorithm is used in the 

ABR traffic controller and simulated under same condition. 

Such an illustration is sufficient to draw at least approximate 

conclusions that the proposed controller has a better 

performance in ABR traffic control. 

V. CONCLUSION 

This paper presents an ABR traffic controller based on 

Q-learning algorithm conjunction with simulated annealing. 

Because of the interaction with the environment, the 

Q-learning algorithm has good performance in the traffic 

control of ATM networks. The simulated annealing is 

introduced to deal with the relation between exploration and 

exploitation in searching for an optimal action. It is seen that 

the proposed controller indeed performs an efficiently traffic 

control, and is capable of learning the system behavior. The 

simulation results show that the proposed controller is 

superior to the general Q-learning and the random learning 

0-greedy Q-learning with respect to the performance of ATM 

networks. 
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