

Abstract—One of the fundamental issues in asynchronous

transfer mode (ATM) networks is the congestion problem of

information flow. Due to the complexity and variability of ATM,

it is difficult to accurately describe the characteristics of source

traffic. This paper presents a traffic controller to solving the

congestion problem by using Q-learning conjunction with

simulated annealing. In stead of relying on the mathematical

model for source traffic, the controller is designed to learn an

optimal policy by directly interacting with the unknown

environment. The simulated annealing is a powerful way to solve

hard combinatorial optimization problems, which is used to

adjust the balance between exploration and exploitation in

learning process. The proposed controller forces the queue size

in multiplexer buffer to the desired value by adjusting the source

transmission rate of the available bit rate (ABR) service.

Simulation results show that the proposed method can promote

the performance of the networks and avoid the occurrence of

congestion effectively.

I. INTRODUCTION

SYNCHRONOUS transfer mode (ATM) is a key

technology for broadband integrated services digital

networks. In order to satisfy various classes of multimedia

traffic with different quality of service (QoS) requirements,

efficient statistical multiplexing and cell switching, ATM

networks must support different service categories [1], namely

constant bit rate (CBR) and variable bit rate (VBR) service for

real-time applications, unspecified bit rate (UBR) and

available bit rate (ABR) service for nonreal-time applications.

However, if many sources send traffic at the same time, the

total traffic at the switch may exceed the output capacity

causing delays, buffer overflows and cell loss. The congestion

of information is the main reason that affects the QoS in ATM

networks. Of all the service categories above, ABR is the only

one that can be controlled by using the feedback mechanism.

ABR service allows applications to fully utilize the available

bandwidth in network by adjusting their instantaneous

transmission rates to the available capacity. A traffic control

Manuscript received September 20, 2007. This work is supported by the

National Natural Science Foundation of China under Grant 60274009 and

Specialized Research Fund for the Doctoral Program of Higher Education

under Grant20020145007.

Xin Li and Yuanwei Jing are with Faculty of Information Science and

Engineering, Northeastern University, Shenyang, Liaoning, 110004, P.R. of

China (e-mail: lixin820106@126.com).

Yucheng Zhou is with Department of Research Institute of Wood Industry,

Chinese Academy of Forestry, Beijing, 100091, P.R. of China (e-mail:

zhouyc@caf.ac.cn).

Georgi M. Dimirovski is with Faculty of Engineering, Computer Engg.

Dept, Dogus University of Istanbul, TR-347222 Istanbul, Rep. of Turkey

(e-mail: gdimirovski@dogus.edu.tr).

scheme is essential for the support of ABR traffic to utilize the

available network bandwidth without causing congestion.

The traffic control of ABR service is difficult owing to the

uncertainties and highly time-varying of different traffic

patterns. The traffic control mainly checks the availability of

bandwidth and the buffer space necessary to guarantee the

requested QoS. A major problem here is lack of information

related to the characteristics of source traffic. Devising a

mathematical model for source traffic is the fundamental issue.

However, it has been revealed that this is a very difficult task.

In order to overcome the above-mentioned difficulties,

some traffic control schemes with learning capability have

been employed in ATM networks [2-6]. Its basic advantage is

the ability to learn the source traffic characteristics from

sufficiently big and representative data samples. But it is

obvious that the accurate data, needed to train the parameters,

are hard to get for the disturbance and the error in instrument

measuring. In this circumstance, the reinforcement learning

with the ability of self-learning shows its particular superiority

in ABR traffic control [7,8].

In this paper, an ABR traffic controller is proposed to

solving the congestion problems in ATM networks. The

optimal policy of source transmission rate is obtained through

a form of model-free reinforcement learning, known as

Q-learning. Instead of relying on a known teacher providing a

correct output in response to an input, the controller is

designed to learn an optimal policy by directly interacting

with the environment [9]. Learning is accomplished

progressively by appropriately utilizing the past experience

which is obtained during real-time operation. But in the

learning process, the balance between exploration and

exploitation is one of the key problems of action selection.

The simulated annealing has been shown to be an effective

approximate algorithm to solve combinational optimization

problems. It is introduced into the control of balance between

exploration and exploitation [10].

The proposed controller forces the queue size in bottleneck

node to the desired value by adjusting the source transmission

rate of ABR service. The results of simulation show that the

proposed method can promote the performance of networks

and avoid the occurrence of congestion effectively.

II. THEORETICAL FRAMEWORK

A. Architecture of Traffic Controller Proposed

This section gives the detailed architecture of the proposed

Simulated Annealing Q-Learning Algorithm for ABR Traffic Control

of ATM Networks

Xin Li, Yucheng Zhou, Georgi M. Dimirovski, Senior Member, IEEE, and Yuanwei Jing

A

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

FrB05.6

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 4462

ABR traffic controller as shown in Fig.1.

Switch

Server
Mult iplexer's

 buffer

Learning

Agent

States

#
Feedback

 Signal
Traffic

Sources

Fig. 1. Architecture of the proposed traffic controller

In ABR traffic control, the traffic controller proposed is

called learning agent, and ATM networks make up the

environment with which the learning agent works. The inputs

of the proposed controller are state variables (S) composed of

queue length (q) and source transmission rate (u). The output

is the feedback signal (a) to the traffic sources, which means

the probability mass function of source rate. The controlled

sending rate tu at sample time t is defined by maxt tu a u= ⋅ ,

where maxu is the maximum sending rate of traffic sources.

Reinforcement signal r for a specified state is denoted as r=1

for reward, and r=0 for penalty.

The learning agent interacts repeatedly with the network

environment. During each interaction, the learning agent first

observes the states of environment. The learning agent then

decides to execute an action on which rate the traffic sources

should take. This results in a reward r that is received by the

agent and in a transition of the state of network environment

from the old state to the new state. The learning agent’s reward

and the new state of the network environment only depend on

the old state and on the action that was executed by the

learning agent. In the traffic controller proposed learning

agent has no prior knowledge of its environment model. The

goal of learning agent is to find an optimal policy for choosing

actions.

B. Reinforcement Signal

Q-learning is to learn what to do and how to map situations

to actions, so as to maximize a numerical reward signal, which

is also called reinforcement signal. So, it is vital to choose an

appropriate signal as the reinforcement signal in Q-learning.

In ATM networks, the reward r is evaluated by fuzzy logic

rules according to the states of network environment. The real

value of reward r, varied as a graded function of system

performance, can facilitate the learning speed [11].

The fuzzy reward evaluator (FRE) evaluates the reward for

environmental states. FRE relies on three parameters: the

current queue length (q), the current rate of queue length

change (q�), and the current rate of source transmission rate

change (u�) to generate a reward or a punishment for the

action in a state. If the system is enhanced toward positive

evolution, the action will be rewarded; otherwise punished.

The functional blocks of FRE are a fuzzifier, a defuzzifier, and

an inference engine containing a fuzzy rule base. The fuzzifier

performs the function of fuzzification that translates the value

of each input linguistic variable ()s , ,q q u� � into fuzzy linguistic

terms. These fuzzy linguistic terms are defined in a term set f(s)

and are characterized by a set of membership function �(s).

The defuzzier describes an output linguistic variable of

reward (penalty) yr by a term set f(yr), characterized by a set of

membership functions �(yr), and adopts a defuzzification

strategy to convert the linguistic terms of f(yr) into a nonfuzzy

value representing decision reward (penalty) r.

The term set should be determined at an approximate level

of granularity to describe the values of linguistic variables.

For queue length, the term set is defined as f(q)={Low(L),

Medium(M), High(H)}, which is used to describe the degree

of queue lengths. The term set for the rate of queue length

change is defined as f(q�)={Decrease(D), Increase(I)}, which

describes the rate of queue length change as “Decrease” or

“Increase”. The term set for the rate of source transmission

rate change is defined as f(u�)={Negative(N), Positive(P)},

which describes the rate of source transmission rate change as

“Negative” or “Positive”. On the other hand, in order to

provide a precise graded reward in various states, the term for

the reward is defined as f(yr)={Penalty More(PM), Penalty

Slightly(PS), No Reward(NR), Reward Slightly(RS), Reward

More(RM)}. The membership functions (MFs) for terms in

the term set are defined with a triangular MF or a trapezoidal

MF because their simple formulas and computational

efficiency are suitable for real-time operation. The MFs of the

term set are shown in Fig.2.

1

1

1

q�

u�

q

ry

()L qµ ()M qµ ()H qµ ()D qµ � ()I qµ �

()P uµ �()N uµ �
PMµ RMµRSµNRµPSµ

(a) (b)

(c) (d)

0PM 0RM0RS0NR0PS

Fig. 2. MFs of the term set (a) f(q), (b) f(q�), (c) f(u�), and (d) f(yr)

The fuzzy rule base is a reward knowledge base,

characterized by a set of linguistic statements in the form of

“if-then” rules that describe the fuzzy logic relationship

between the input variables and the reward (penalty) yr.

According to fuzzy set theory, the fuzzy rule base forms a

fuzzy set with dimensions 3×2×2=12. Table I shows a total of

twelve inference rules in the fuzzy rule base under various

system states. For example, rule 1 can be linguistically started

as “if the queue length is low, the queue length change rate is

decreased, and the transmission change rate is negative, then

give more penalty.”

4463

TABLE I

 RULE TABLE OF FRE

Rule q q� u� yr Rule q q� u� yr

1 L D N PM 7 M I N RS

2 L D P PS 8 M I P RM

3 L I N NR 9 H D N PS

4 L I P NR 10 H D P PM

5 M D N RS 11 H I N PS

6 M D P PM 12 H I P PM

The proposed FRE adopts the max-min inference method

for the inference engine because it is designed for real-time

operation. An example of the max-min inference method is

elaborated in the following. Rules 1, 6, 10, and 12 have the

same reward yr that is “PM”. We assume that the current

system states are q0, 0q� , and 0u� . Applying the min operator,

we can obtain the membership value of reward yr=PM of rule

1, denoted by &1, as

() () () ()1 L 0 D 0 N 0 PM 0min , , PMrq q u yω µ µ µ µ= ª º ⋅ =¬ ¼� � (1)

where PM0 is the center of the MF �PM(yr). The membership

values of rules 6, 10, and 12, denoted by &6, &10, and &12,

respectively, can be derived in the same manner. Subsequently,

applying the max operator yields the overall membership

value of reward yr=PM, denoted by &PM, as follows:

()PM 1 6 10 12max , , , .ω ω ω ω ω= (2)

The overall membership values of rewards PS, NR, RS, and

RM, denoted by &PS, &NR, &RS, and &RM, respectively, can be

calculated in the same way.

The FRE utilizes the Tsukamoto’s defuzzification method

for the defuzzifier because of its computational simplicity.

The reinforcement signal r is calculated as (3).

()
()

0 PM 0 PS 0 NR 0 RS 0 RM

PM PS NR RS RM

PM PS NR RS RM
r

ω ω ω ω ω

ω ω ω ω ω

⋅ + ⋅ + ⋅ + ⋅ + ⋅
=

+ + + +
(3)

C. The Q-Learning Algorithm

Q-learning learns utility values (Q-values) of state and

action pairs. The objective of Q-learning is to estimate

Q-values for an optimal policy. During the learning process,

learning agent uses its experience to improve its estimate by

blending new information into its prior experience.

In general form, Q-learning algorithm is defined by a tuple

<S, A, r, p>, where S is the set of discrete state space of ATM

networks; A is the discrete action space, which is the feedback

signal to traffic sources; r:S×A:R is the payoff function of

the agent; p:S×A:û(s) is the transition probability map,

where () [0,1]s∆ ∈ is the set of probability distributions over

state space S.

The basic idea of Q-learning is to find an optimal policy by

learning the values of a so-called Q function. Q(s,a) is defined

as the expected discounted cumulative payoff that is received

by executing action a in state s and following an optimal

policy thereafter. Let � be the policy of learning agent, the Q

function can be defined as

() () () ()* *, , , , .
s S

Q s a r s a p s s a v sβ π
′∈

′ ′= + ¦ (4)

where [0,1)β ∈ is the discount factor, r(s,a) is the reward for

taking action a at state s, and p(s´|s,a) is the probability of

transiting to the next state s´ after taking action a in state s.

If the values of the Q functions are known, the optimal

policy �
*
, which is always taking an action so as to maximize

Q
*
(s,a) under any state s, can be found. It is given by

() ()* *

A
arg max , .

a
s Q s aπ

∈
= (5)

The problem is then reduced to finding the function Q
*
(s,a).

Q-learning provides us with a simple updating procedure, in

which the learning agent starts with arbitrary initial values of

Q(s,a) for all Ss ∈ , Aa ∈ , and updates the Q-values as

following

() () () ()1 1, 1 , max , .t t t t t t t t t
a

Q s a Q s a r Q s aα α β+ +
ª º= − + +
¬ ¼

 (6)

The parameter 0�.<1 is called the learning rate and may be

decreased over time. The convergence rate is determined by

the value of .. If . is small, the convergence rate will be slow

but it will easily tend to stabilize. On the other hand, if . is

large, the convergence rate will be fast but it will not easily

tend to stabilize. The learning rate . should satisfy the

following conditions:

1.
0t
α∞

= = ∞¦ , which is required to guarantee that the steps

are large enough to eventually overcome any initial

conditions.

2. 2

0t
α∞

= < ∞¦ , which is required to guarantee that the steps

are small enough to assure convergence.

It is proven in [12] that the values Q(s,a) estimated using

Q-learning converge to the optimal value Q
*
(s,a) with

probability 1. The values of Q(s,a) are stored in a lookup table,

all state-action pairs continue to be visited.

III. CONTROLLER BASED ON SA-Q-LEARNING ALGORITHM

A. The Exploration and Exploitation in Q-Learning

Q-learning algorithm is one of the most rapidly developing

reinforcement learning methods in recent years. In Q-learning,

a learning agent usually faces a trade-off between exploration

and exploitation when choosing an action [13].

Exploitation occurs if the action selection strategy is based

purely on current values of the state-action pairs, i.e., when the

selection is greedy. This may lead to locally optimal policies,

possibly differing from a globally optimal one. In contrast,

exploration is the strategy based on the assumption that the

agent selects a non-optimal action in the current situation and

obtains more knowledge about the problem. This knowledge

allows it to neglect the locally optimal policies, and to reach

the globally optimal one instead. On the other hand, excessive

exploration will drastically decrease the performance of a

learning algorithm, and in some cases might be even harmful

with respect to the learning results themselves. So, finding the

proper balance between exploration and exploitation in

Q-learning is one of the key problems in action selection.

A simple strategy proposed to deal with this problem is the

0-greedy (with 0�0<1), with larger 0 corresponding to larger

4464

probability of exploration. However, excessive exploration

with constant 0 value becomes unnecessary after a period of an

initial interaction between the learning agent and the

environment. Furthermore, it will make the performance of

Q-learning algorithm decrease.

Therefore, simulated annealing is introduced in Q-learning

algorithm (called SA-Q-learning) to balance exploration and

exploitation. Simulating the annealing process of solids, the

SA algorithm is one kind of the computational processes

resembling nature and has been shown to be an effective

approximate algorithm avoiding becoming trapped in a local

solution. The SA-Q-learning improves the simple 0-greedy

approach by appropriately reducing 0 during the learning

process. It explores with the probability approaching to 1.0 in

the entire environment at beginning. The probability is

decreased with learning. At last, the probability approaches to

0, i.e., it will take 0-greedy strategy to select action. This will

not only improve the ability of the learning agent to acquire

new knowledge, but will also allow the algorithm to avoid

performance decrease due to the constant value of 0.

B. The SA-Q-learning algorithm

As the accuracy of the agent’s knowledge about the

environment increases, the proportion of exploration should

decrease. Toward this effect, the SA algorithm is introduced

into the action-selection strategy of Q-learning. The resulting

algorithm, called SA-Q-learning, is presented below.

Let P be a policy space, the change of any element in a

n-tuple (a1,a2,…,an) corresponding to the transition from one

solution to another in policy space P. The value function of a

policy is used to evaluate the policy [14].

Let Pp ∈ be a policy, the value function V(p) of the policy

p is the sum of all the Q-values obtained for this policy.

() ()() ()1 2

1

, , , ,
n

p

n k k

k

V p V a a a Q s a
=

= =¦" (7)

If the policy p1=(a1,…,ai-1,ai,ai+1,…,an) transits to the

policy p2=(a1,…,ai-1,bi,ai+1,…,an), then the difference between

their values is

() () () ()2 1
, , .

i i i i
V p V p Q s b Q s a− = − (8)

The policy p1 is considered superior to p2 if V(p1)>V(p2).

The value of a policy is compared to the energy of the

microcosmic state in solid annealing, and it will be used to

decide the probability of the action-selecting, in combination

with other parameters, such as the temperature.

The detailed of SA-Q-learning algorithm is shown as the

following flowchart (Fig. 3).

1) Generation of initial solution

Generation of the initial solution should ensure the

generation of a feasible solution, which can be satisfied by

using random number generators distributed evenly from 0 to

1. The following formula makes identical probabilities of the

feedback signal (a) falling at any value within the upper limit

and the lower limit:

() ()0 max min minrandom 0,1a a a a= − ⋅ + (9)

Initial temperature T0 should be set great enough and all

Q(s,a) values are initiated arbitrarily.

Initial solution

Neighborhood

solution

Acceptance

criterion

satisfied

Generation mechanism

of neighborhood solution

Stoping criterion

Temperture

 updating scheme

satisfied

end

REPLACE

YES

NO

YES

NO

Fig.3. The illustration of the process of SA-Q-learning algorithm

2) Neighborhood solution

Find another solution, namely a´ by modifying the present

solution a.

The simulated annealing algorithm must generate a new

solution in the neighborhood of the present solution. The

generating function is described as (10)

a a a′ = + ∆ (10)

() max maxrandom 0,1 2a a a∆ = ⋅ ∆ − ∆ (11)

3) Acceptance criterion

Execute the Metropolis algorithm under temperature T.

If (,) (,)Q s a Q s a′ ≥ , then the trial solution is better than the

present one and is thus accepted. If (,) (,)Q s a Q s a′ < , then the

new solution a´ is accepted with the probability given by

() ()()()Pr exp , , .Q s a Q s a T′= − (12)

provided that Pr is greater than a random number uniformly

distributed over the interval 0 to 1.

The value of Q(s,a) is updated by

() () () (), 1 , max , .
a

Q s a Q s a r Q s aα α β
′

ª º′ ′← − + +
¬ ¼

 (13)

4) Cooling schedule

The cooling schedule defines the procedure to reduce the

temperature as an equilibrium state is reached.

Although the temperature-dropping criterion can be in

general arbitrary, we use the geometric scaling factor criterion

to reduce temperature according to the following

1 .k kT Tλ+ = ⋅ (14)

The cooling rate � decides the decreasing velocity of the

temperature. When � is a constant, it is obviously that the

different require about the decreasing velocity of the

temperature between the high and low temperature region is

ignored. In this paper, the cooling rate is adjusted as

0 .λ λ η= + (15)

In (15), �0 is the initial value of the decreasing velocity of

4465

the temperature, and it is set to 0.9. � is a regulating gene,

whose value will be increased a little when the temperature Tk

is decreased. � must be always less than 1. It can be seen that

when Tk is low, the slower it decreased, the better the system

will get stabilization; when Tk is high, the faster it decreased,

the smaller the amount of calculation will be.

5) Stopping criterion

The iterative procedure is ended when the stopping

criterion is met.

The stopping criterions include the following:

(1) When the cooling temperature is smaller than the final

temperature, stop the algorithm.

(2) When the desired number of episodes reaches the preset

number, stop the algorithm.

Although 0>0 in Q-learning based on the 0-greedy strategy

are often better than those of 0=0, a great number of

explorations in case of fixed probability becomes unnecessary

and may even be harmful to the system performance as the

learning process proceeds. With the introduction of the

simulated annealing, SA-Q-learning algorithm eliminates the

disadvantage of the probability 0 remaining constant, and the

exploration will gradually be reduced in par with the dropping

temperature.

IV. SIMULATION RESULTS

In this section, computer simulations are carried out to

confirm the validity of the proposed algorithm in ABR traffic

control under a variety of networking conditions and loads.

In simulation, VBR voice sources are considered. In ATM

networks, VBR service has higher priority than ABR service.

In the presence of VBR traffic, ABR capacity becomes a

varying quantity. Link bandwidth is first allocated to the VBR

service and the remaining bandwidth is given to the ABR

service. In simulation, we assume that all ABR sources are

greedy and always have data to send.

To simulate the performance of the system, we choose the

similar simulation scenarios proposed by Kolarov [15]. It has

two switches with finite buffer size of 1680cells each, two

groups of ABR sources with each group consisting of five

persistent sources and one group of VBR source consisting of

four VBR sources as shown in Fig. 4. The desired queue size

is set to 50cells. All links have a capacity of 365cells/ms

(155Mb/s). Obviously, the link between the two switches is

the bottleneck link. The source parameters are chosen as

follows: PCR=365cells/ms, ICR=MCR=4cells/ms. Sources in

group A start transmission at time t=0, while sources in group

B start at time t=5s.

Sw1 Sw2

S2 D2

D1

L1

S1

S3

A Group

B Group

C Group

Fig.4. Single bottleneck link simulation model

In order to compare the proposed method with the previous

methods, simulations for the same model are carried out by the

proposed SA-Q-learning algorithm, 0.1-greedy Q-learning

algorithm (0=0.1 in 0-greedy Q-learning algorithm), and the

general Q-learning algorithm. The first successful trial occurs

after 35 trials, 83 trials, and 114 trials respectively. It is noted

that the training speed increases significantly.

Firstly, we consider the simulation scenario that no VBR

traffic flow existing in the networks. Fig.5 shows the rate for

each source, when the sources in group A start transmission,

the rates converge to stable value 73cells/ms (365/5). When

group B sources start transmission, all source rates stabilize

around a new equilibrium of 36.5 cells/ms (365/10). From

Fig.6, the queue length converges to 50cells which is the

buffer set point after about 200ms and there is no overshoot.

When group B sources start, the queue is stable after about

100ms with very small overshoot (about 2cells). So it is easy

to get the conclusion that the controller can respond to the

changes of the network load on time and make the rate of

sources and queue stabilize rapidly.

0 2 4 6 8 10
0

50

100

150

200

250

300

350

Time(s)

S
o

u
rc

e
 R

a
te

(c
e
ll

s/
m

s)

The Rate of Sources A

The Rate of Sources A and B

Fig.5. The ABR source rate

0 2 4 6 8 10
0

10

20

30

40

50

60

Time(s)

Q
u

e
u

e
 L

e
v

e
l(

c
e
ll

s)

Sources B Start

Fig.6. The queue level of buffer

Secondly, we study the performance of proposed controller

when the available bandwidth for ABR service continuously

changes with time. We add four video MPEG sources at

switch1 with a peak rate of 35cells/ms and average rate of

21cells/ms. The MPEG sources have service priority over

ABR sources and start transmission over the entire simulation

period. The ABR sources are persistent. From Fig.7 after t=0

4466

and t =5s, the rate of ABR sources stabilize around 60cells/ms

and 30cells/ms respectively, with little oscillations. This

simulation indicates that the controller can reduce sensitivity

to the variety of ABR bandwidth.

0 2 4 6 8 10
0

50

100

150

200

250

300

350

Time(s)

S
o

u
rc

e
 R

a
te

(c
e
ll

s/
m

s)

The Rate of Sources A

The Rate of Sources A and B

Fig.7. The ABR source rate with VBR existing

0 2 4 6 8 10
0

20

40

60

80

100

Time(s)

Q
u

e
u

e
 L

e
v

e
l(

c
e
ll

s)

0.1-greedy Q-learning algorithm

SA-Q-learning algorithm

Fig.8. The queue level of buffer with VBR existing

In Fig.8, the performance of queue level in the buffer is

considered. For comparison, the proposed SA-Q-learning

algorithm and 0.1-greedy Q-learning algorithm is used in the

ABR traffic controller and simulated under same condition.

Such an illustration is sufficient to draw at least approximate

conclusions that the proposed controller has a better

performance in ABR traffic control.

V. CONCLUSION

This paper presents an ABR traffic controller based on

Q-learning algorithm conjunction with simulated annealing.

Because of the interaction with the environment, the

Q-learning algorithm has good performance in the traffic

control of ATM networks. The simulated annealing is

introduced to deal with the relation between exploration and

exploitation in searching for an optimal action. It is seen that

the proposed controller indeed performs an efficiently traffic

control, and is capable of learning the system behavior. The

simulation results show that the proposed controller is

superior to the general Q-learning and the random learning

0-greedy Q-learning with respect to the performance of ATM

networks.

REFERENCES

[1] ATM Forum Technical Committee TMWG. ATM Forum Traffic

Management Specification Version 4.0, af-tm-0056.000, 1996.

[2] S. Chan, M. Zukerman, E. W. M. Wong, K. T. Ko, E. Yeung and B.

Wydrowski, “A congestion control framework for available bit rate

service in ATM networks,” International Journal of Communication

Systems, vol. 15, no. 4, pp. 341-357, 2002.

[3] T. Jayasree, and Jagannathan, “Predictive congestion control of ATM

networks: Multiple sources/single buffer scenario,” Automatica, vol.

38, no. 5, pp. 815-820, 2002.

[4] S. J. Lee, and C. L. Hou, “Neural-fuzzy system for congestion control in

ATM networks,” IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics, vol. 30, no. 1, pp. 2-9, 2000.

[5] E. Gnerin, I. W. Habib, S. Palazzo, and C. Douligeris, “Intelligent

techniques in high speed networks,” IEEE Journal on Selected Areas

in Communications, vol. 10, no. 2, pp. 145-155, 2000.

[6] T. Ren, G. M. Dimirovski, and Y. W. Jing, “ABR Traffic Control over

ATM Network Using Fuzzy Immune-PID Controller,” in Proceedings

of the 2006 American Control Conference, Minneapolis, Minnesota,

USA, June 14-16, 2006, pp. 4876-4881.

[7] A. Chatovich, S.Okug, and G. Dundar, “Hierarchical neuro-fuzzy call

admission controller for ATM networks,” Computer Communications,

vol. 24, pp. 1031-1044, 2001.

[8] M. C. Hsiao, S. W. Tan, K. S. Hwang, and C. S. Wu, “A reinforcement

learning approach to congestion control of high-speed multimedia

networks,” Cybernetics and Systems, vol. 36, no. 2, pp. 181-202, 2005.

[9] R. S. Sutton and A. G. Barto, Reinforcement Learning an Introduction.

Cambridge, MA.: MIT Press, 1998.

[10] M. Z. Guo, Y. Liu, and J. Malec, “A new Q-learning algorithm based on

the metropolis criterion,” IEEE Transactions on System, Man, and

Cybernetics-Part B: Cybernetics, vol. 34, no. 5, pp. 2140-2143, Oct.

2004.

[11] K. S. Hwang, S. W. Tan, M. C. Hsiao, and C. S. Wu, “Cooperative

multiagent congestion control for high-speed networks,” IEEE

Transactions on System, Man, and Cybernetics-Part B: Cybernetics,

vol. 35, no. 2, pp. 255-268, Apr. 2005.

[12] C. J. C. H. Watkins, and P. Dayan, “Q-learning,” Machine Learning,

vol. 8, no. 3, pp. 279-292, May 1992.

[13] A. F. Atiya, A. G. Parlos, and L. Ingber, “A reinforcement learning

method based on adaptive simulated annealing,” in Proc. of the 46th

International Midwest Symposium on Circuits and Systems, 2003,

pp.121-124.

[14] M. G. Ji, Z. H. Jin, and H. W. Tang, “An improved simulated annealing

for solving the linear constrained optimization problems,” Applied

Mathematics and Computation, vol. 183, no.1, pp. 251-259, 2006.

[15] A. Kolarov, and G. Ramamurthy, “A control-theoretic approach to the

design of an explicit rate controller for ABR service,” IEEE/ACM

Trans. on Networking, vol. 7, pp. 741-753, Oct. 1999.

4467

