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Abstract— The problem of H∞ filtering for a class of
discrete-time Markovian jump linear systems (MJLS) with
partly unknown transition probabilities is investigated in the
paper. The considered systems are more general, which cover
the MJLS with completely known and completely unknown
transition probabilities as two special cases. A mode-dependent
full-order filter is constructed and the bounded real lemma
(BRL) for the resulting filtering error system is derived via
LMI formulation. Then, an improved version of the BRL is
further given by introducing additional slack matrix variables
to eliminate the cross coupling between system matrices and
Lyapunov matrices among different operation modes. Finally,
the existence criterion of the desired filter is obtained such
that the corresponding filtering error system is stochastically
stable with a guaranteed H∞ performance index. A numerical
example is presented to illustrate the effectiveness and potential
of the developed theoretical results.

I. INTRODUCTION

As a class of stochastic hybrid systems, Markovian jump

systems have been extensively studied in past decades, see

for example, [1], [5], [9]. By stochastic hybrid feature,

we mean that the considered systems contain continuous

and discrete dynamics, which are described respectively by

classical differential (or difference) equations and Markov

stochastic process (or Markov chain). As a crucial factor, the

transition probabilities in the jumping process determine the

system behavior, and many issues on Markovian jump system

have been investigated assuming the complete knowledge of

the transition probabilities. A recent extension is to consider

the systems with uncertain transition probabilities, in which

the robust methodologies are adopted to cope with the norm-

bounded or polytopic types of uncertainties in the transition

probabilities matrix, see for example, [2], [8]. However,

in these references, the structure and “nominal” terms of

the uncertain transition probabilities are still assumed to be

known a priori.

The ideal assumptions on the transition probabilities fa-

cilitate the treatment of considered problems, but the ap-

plicability of the obtained results is inevitably limited. A

typical example could be found in Networked control sys-

tems (NCS). It is well-known that the time-varying delays

induced by communication channels can be modeled as

Markov chains, and accordingly the resulting closed-loop

system can be studied by means of jump linear systems

theory, see for example, [3], [12]. However, the variation
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of delays in all kinds of communication networks (especially

Internet) can be vague and random, all or part of the elements

in the expected transition probabilities matrix are probably

hard or expensive to obtain. Consequently, the resulting NCS

modeled by jump systems with completely known transition

probabilities is actually questionable. Therefore, either in

theory or in practice, it is necessary and significant to further

consider more general jump systems with partly unknown

transition probabilities.

On another research front line, state estimation is an

important research issue in control field and has found many

practical applications. Many useful results on estimation

and filtering for all kinds of dynamic systems have been

reported, and H∞ filtering has been recognized to be one

of the most popular approaches to deal with external noise

sources with unknown statistics [6], [9], [10], [11]. Con-

sidering Markovian jump systems with completely known

or completely unknown transition probabilities, the mode-

dependent and mode-independent filter design approaches

have been developed, respectively, see for example, [1], [2],

[4], [7]. However, it seems more practicable and challenging

to design filters, especially mode-dependent filters, for the

underlying systems with partly unknown transition probabil-

ities, which inspires us for this study.

In this paper, the H∞ filtering problem for a class of

discrete-time Markovian jump linear system (MJLS) with

partly unknown transition probabilities is investigated. The

considered systems are more general than the systems with

completely known or completely unknown transition prob-

abilities, which can be viewed as two special cases of

the ones tackled here. A mode-dependent full-order filter

is constructed and the bounded real lemma (BRL) for

the resulting filtering error system is derived in terms of

LMI. Also, an improved version of the BRL is given by

introducing additional slack matrix variables to eliminate

the cross coupling between system matrices and Lyapunov

matrices among different operation modes. Furthermore, the

existence condition of the desired filter is obtained such

that the corresponding filtering error system is stochastically

stable and has a guaranteed H∞ performance index. A

numerical example is presented to illustrate the effectiveness

and potential of the developed theoretical results.

Notation: The notation used in this paper is fairly stan-

dard. The superscript “T” stands for matrix transposition,

R
n denotes the n dimensional Euclidean space, the nota-

tion |·| refers to the Euclidean vector norm. l2[0,∞) is

the space of square summable infinite sequence and for

w = {w(k)} ∈ l2[0,∞), its norm is given by ‖w‖
2

=
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√

∑∞

k=0
|w(k)|2 . For notation (Ω,F ,P), Ω represents the

sample space, F is the σ-algebra of subsets of the sam-

ple space and P is the probability measure on F . E [·]
stands for the mathematical expectation and for sequence

e = {e(k)} ∈ l2 ((Ω,F ,P), [0,∞)) , its norm is given by

‖e‖E2
=

√

E
[

∑∞

k=0
|e(k)|2

]

. In addition, in symmetric

block matrices or long matrix expressions, we use * as an

ellipsis for the terms that are introduced by symmetry and

diag{· · · } stands for a block-diagonal matrix. Matrices, if

their dimensions are not explicitly stated, are assumed to

be compatible for algebraic operations. The notation P > 0
(≥ 0) means P is real symmetric positive (semi-positive)

definite. I and 0 represent respectively, identity matrix and

zero matrix.

II. PROBLEM FORMULATION AND PRELIMINARIES

Fix the probability space (Ω,F ,P) and consider the fol-

lowing class of discrete-time Markovian jump linear systems:

x(k + 1) = A(rk)x(k) + B(rk)w(k)

y(k) = C(rk)x(k) + D(rk)w(k)

z(k) = H(rk)x(k) + L(rk)w(k) (1)

where x(k) ∈ R
n is the state vector, w(k) ∈ R

l is the

disturbance input which belongs to l2[0,∞), y(k) ∈ R
m

is the measurement output and z(k) ∈ R
v is the objective

signal to be attenuated. {rk, k ≥ 0} is a discrete-time

homogeneous Markov chain, which takes values in a finite

set I , {1, ..., N} with a transition probabilities matrix

Λ = {πij} namely, for rk = i, rk+1 = j, one has

Pr(rk+1 = j|rk = i) = πij

where πij ≥ 0 ∀ i, j ∈ I, and
∑N

j=1
πij = 1. The set I

contains N modes of system (1) and for rk = i ∈ I, the

system matrices of the ith mode are denoted by Ai, Bi, Ci,

Di, Hi and Li, which are considered here to be real known

with appropriate dimensions.

In addition, the transition probabilities of the jumping

process {rk, k ≥ 0} in this paper are assumed to be partly

accessed, i.e., some elements in matrix Λ are unknown.

For instance, for system (1) with 5 operation modes, the

transition probabilities matrix may be as:












π11 ? π13 ? π15

? ? ? π24 π25

π31 π32 π33 ? ?
? ? π43 π44 ?
? π52 ? π54 ?













where ”?” represents the unaccessible elements. For notation

clarity, ∀i ∈ I, we denote that

Ii
K , {j : πij is known}, Ii

UK , {j : πij is unknown},
(2)

Also, we denote πi
K

,
∑

j∈Ii

k

πij throughout the paper.

Remark 1: The accessibility of the jumping process {rk,

k ≥ 0} in the existing literature is commonly assumed to

be completely accessible (Ii
UK

= ∅, Ii
K

= I) or completely

unaccessible (Ii
K

= ∅, Ii
UK

= I). Note that the transition

probabilities with polytopic or norm-bounded uncertainties

can still be viewed as accessible in the sense of this paper.

Therefore, our transition probabilities matrix considered in

the sequel is a more natural assumption to the Markovian

jump systems and hence covers the previous two cases.

Here, we are interested in designing a mode-dependent

full-order filter of the form:

xF (k + 1) = AF (rk)xF (k) + BF (rk)y(k)

zF (k) = CF (rk)xF (k) + DF (rk)y(k) (3)

where AF (rk), BF (rk), CF (rk) and DF (rk), ∀rk ∈ I are

filter gains to be determined. The filter with the above

structure is assumed to jump synchronously with the modes

in system (1), which is hereby mode-dependent.

Augmenting the model of (1) to include the states of the

filter, we obtain the following dynamics:

x̃(k + 1) = Ã(rk)x̃(k) + B̃(rk)w(k)

e(k) = C̃(rk)x̃(k) + D̃(rk)w(k) (4)

where,

x̃(k) =

[

x(k)
xF (k)

]

, e(k) = z(k) − zF (k),

Ã(rk) =

[

A(rk) 0
BF (rk)C(rk) AF (rk)

]

,

B̃(rk) =

[

B(rk)
BF (rk)D(rk)

]

,

C̃(rk) =
[

H(rk) − DF (rk)C(rk) −CF (rk)
]

,

D̃(rk) = L(rk) − DF (rk)D(rk).

Obviously, the resulting system (4) is also a Markovian

jump linear system with partly unknown transition probabil-

ities (2). Now, to present the main objective of this paper

more precisely, we also introduce the following definitions

for the filtering error system (4), which are essential for the

later development.

Definition 1: System (4) is said to be stochastically stable

if for w(k) ≡ 0 and every initial condition x̃0 ∈ R
n and

r0 ∈ I, the following holds:

E
{

∑∞

k=0
‖x̃(k)‖2 |x̃0, r0

}

< ∞
Definition 2: Given a scalar γ > 0, system (4) is said

to be stochastically stable and has an H∞ noise attenuation

performance index γ if it is stochastically stable and under

zero initial condition, ‖e‖E2
< γ ‖w‖

2
holds for all nonzero

w(k) ∈ l2[0,∞).
Thus, the objective of this paper is to design a mode-

dependent full-order filter with the form (3) such that the

filtering error system (4) is stochastically stable and has a

guaranteed H∞ noise attenuation performance.

III. MAIN RESULTS

A. H∞ Filtering Analysis:

Let us first discuss H∞ filtering analysis for the filtering

error system (4) under given filter gains in (3). The following

2273



lemma presents a bounded H∞ performance criterion (i.e.,

the so-called bounded real lemma (BRL)) for system (4) with

the partly unknown transition probabilities (2).

Lemma 1: Consider system (4) with partly unknown tran-

sition probabilities (2) and let γ > 0 be a given constant. If

there exist matrix Pi > 0, ∀i ∈ I such that









−Pi
K

0 Pi
K
Ãi Pi

K
B̃i

∗ −πi
K
I πi

K
C̃i πi

K
D̃i

∗ ∗ −πi
K
Pi 0

∗ ∗ ∗ −πi
K
γ2I









< 0,∀j ∈ Ii
K

(5)








−Pj 0 PjÃi PjB̃i

∗ −I C̃i D̃i

∗ ∗ −Pi 0
∗ ∗ ∗ −γ2I









< 0,∀j ∈ Ii
UK

(6)

where Pi
K

,
∑

j∈Ii

K

πijPj , then the filtering error system

(4) is stochastically stable with an H∞ performance index

γ.

Proof: Construct a stochastic Lyapunov function as

V (x̃k, k) = x̃T
k Pix̃k,∀rk = i ∈ I (7)

where Pi satisfy (5) and (6). Then, for rk = i, rk+1 = j,

one has

E [∆V (x̃k, k)]

, E [V (x̃k+1, k + 1|x̃k, rk) − V (x̃k, k)]

= x̃T
k+1

∑

j∈I
πijPj x̃k+1

−x̃T
k

[

∑

j∈Ii

K

πij +
∑

j∈Ii

UK

πij

]

Pix̃k

= x̃T
k+1

[

∑

j∈Ii

K

πijPj +
∑

j∈Ii

UK

πijPj

]

x̃k+1

−x̃T
k

[

∑

j∈Ii

K

πijPi +
∑

j∈Ii

UK

πijPi

]

x̃k

= x̃T
k+1

[

Pi
K +

∑

j∈Ii

UK

πijPj

]

x̃k+1

−x̃T
k

[

πi
KPi +

∑

j∈Ii

UK

πijPi

]

x̃k

= x̃T
k+1Pi

Kx̃k+1 − πi
Kx̃T

k Pix̃k

+
∑

j∈Ii

UK

πij

[

x̃T
k+1Pj x̃k+1 − x̃T

k Pix̃k

]

= x̃T
k

[

AT
i Pi

KAi − πi
KPi

]

x̃k

+
∑

j∈Ii

UK

πij x̃
T
k

[

AT
i PjAi − Pi

]

x̃k (8)

On the other hand, if (5) and (6) hold, we know from some

basic matrix manipulations that

[

−Pi
K

Pi
K
Ãi

∗ −πi
K
Pi

]

< 0, j ∈ Ii
K,

[

−Pj PjÃi

∗ −Pi

]

< 0, j ∈ Ii
UK,

Furthermore, by Schur complement, we have

ÃT
i Pi

KÃi − πi
KPi < 0, j ∈ Ii

K, (9)

ÃT
i PjÃi − Pi < 0, j ∈ Ii

UK (10)

Therefore, if (9) and (10) hold, we know from (8) that

E [∆V ]

≤ −λmin

[

−
(

AT
i Pi

KAi − πi
KPi

)]

x̃T
k x̃k

−λmin

[

−
(

AT
i PjAi − Pi

)]

x̃T
k x̃k

≤ − (β1 + β2) x̃T
k x̃k = − (β1 + β2) ||x̃k||2 (11)

where β1 = inf
{

λmin

[

−
(

AT
i Pi

K
Ai − πi

K
Pi

)]

, i ∈ I
}

and

β2 = inf
{

λmin

[

−
(

AT
i PjAi − Pi

)]

, i ∈ I
}

. From (11),

setting β = β1 + β2, we obtain that for any T ≥ 1,

E

{

∑T

k=0
||x̃k||2

}

≤ 1

β
{E [V (x̃0, 0)] − E [V (x̃T+1, T + 1)]}

≤ 1

β
E [V (x̃0, 0)] ,

which implies that

E

{

∑T

k=0
||x̃k||2

}

≤ 1

β
E [V (x̃0, 0)] < ∞.

Thus, the system is stochastically stable from Definition 1.

Now, to establish the H∞ performance for the system,

consider the following performance index:

J , E
{

∑∞

k=0

[

eT (k)e(k) − γ2wT (k)w(k)
]

}

under zero initial condition, V (x̃(k), rk) |k=0= 0, and we

have

J ≤ E
{

∑∞

k=0

[

eT (k)e(k) − γ2wT (k)w(k) + ∆V
]

}

=
∑∞

k=0
ζT (k)Φiζ(k)

where ζ(k) ,
[

x̃T (k) wT (k)
]T

and

Φi ,









[ÃT
i P̄iÃi − Pi

+C̃T
i C̃i]

ÃT
i P̄iB̃i + C̃T

i D̃i

∗ [−γ2I + B̃T
i P̄iB̃i

+D̃T
i D̃i]









P̄i ,
∑

j∈Ii

K

πijPj +
∑

j∈Ii

UK

πijPj

= Pi
K +

∑

j∈Ii

UK

πijPj

Note that Φi < 0 is equivalent to:
[

ÃT
i P̄iÃi − Pi ÃT

i P̄iB̃i

∗ −γ2I + B̃T
i P̄iB̃i

]

−
[

C̃T
i

D̃T
i

]

(−I−1)
[

C̃i D̃i

]

< 0.

By Schur complement, one has




−I C̃i D̃i

∗ ÃT
i P̄iÃi − Pi ÃT

i P̄iB̃i

∗ ∗ −γ2I + B̃T
i P̄iB̃i



 < 0.
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Likewise, the above inequality is equivalent to:





−I C̃i D̃i

∗ −Pi 0
∗ ∗ −γ2I





−





0

ÃT
i P̄i

B̃T
i P̄i



 (−P̄−1
i )

[

0 P̄iÃi P̄iB̃i

]

< 0.

By Schur complement again, we have

Ξi ,









−P̄i 0 P̄iÃi P̄iB̃i

∗ −I C̃i D̃i

∗ ∗ −Pi 0
∗ ∗ ∗ −γ2I









< 0. (12)

Note that (12) can be rewritten as

Ξi =











−∑

j∈Ii

K

πijPj 0

∗ −
(

∑

j∈Ii

K

πij

)

I

∗ ∗
∗ ∗

∑

j∈Ii

K

πijPjÃi

∑

j∈Ii

K

πijPjB̃i
∑

j∈Ii

K

πijC̃i

∑

j∈Ii

K

πijD̃i

−∑

j∈Ii

K

πijPi 0

∗ −
(

∑

j∈Ii

K

πij

)

γ2I













+
∑

j∈Ii

UK

πij









−Pj 0 PjÃi PjB̃i

∗ −I C̃i D̃i

∗ ∗ −Pi 0
∗ ∗ ∗ −γ2I









=









−Pi
K

0 Pi
K
Ãi Pi

K
B̃i

∗ −πi
K
I πi

K
C̃i πiD̃i

∗ ∗ −πi
K
Pi 0

∗ ∗ ∗ −πi
K
γ2I









+
∑

j∈Ii

UK

πij









−Pj 0 PjÃi PjB̃i

∗ −I C̃i D̃i

∗ ∗ −Pi 0
∗ ∗ ∗ −γ2I









Therefore, inequalities (5) and (6) guarantee Ξi < 0, i.e.,

J < 0 which means that ‖e‖E2
< γ ‖w‖

2
, this completes

the proof. �

Remark 2: Note that it is hard to use Lemma 1 to design

the desired filter due to the cross coupling of matrix product

terms among different system operation modes, as shown in

(5) and (6). To overcome this difficulty, the technique using

slack matrix developed in [11] can be adopted here to obtain

the following improved BRL for system (4).

Lemma 2: Consider system (4) with partly unknown tran-

sition probabilities (2) and let γ > 0 be a given constant. If

there exist matrix Pi > 0, and Ri, ∀i ∈ I such that









Υj − Ri − RT
i 0 RiÃi RiB̃i

∗ −I C̃i D̃i

∗ ∗ −Pi 0
∗ ∗ ∗ −γ2I









< 0 (13)

where
{

Υj , 1

πi

K

Pi
K
, ∀j ∈ Ii

K

Υj , Pj , ∀j ∈ Ii
UK

(14)

and Pi
K

is denoted in Lemma 1, then the filtering error

system (4) is stochastically stable with an H∞ performance

index γ.

Proof: First of all, by Lemma 1, we conclude that system

(4) is stochastically stable with an H∞ performance index

γ if the inequalities (5) and (6) hold. Notice that (5) can be

rewritten as:









− 1

πi

K

Pi
K

0 1

πi

K

Pi
K
Ai

1

πi

K

Pi
K
Bi

∗ −I Ci Di

∗ ∗ −Pi 0
∗ ∗ ∗ −γ2I









< 0. (15)

From the other side, for an arbitrary matrix Ri,∀i ∈ I , we

have the following facts:

(
1

πi
K

Pi
K − Ri)

T

(

1

πi
K

Pi
K

)−1

(
1

πi
K

Pi
K − Ri) ≥ 0,

(Pj − Ri)
T P−1

j (Pj − Ri) ≥ 0,

then by using (14), one has

Υj − Ri − RT
i ≥ −RT

i Υ
−1
j Ri.

Furthermore, from (13), we can obtain that









−RT
i Υ

−1
j Ri 0 RiÃi RiB̃i

∗ −I C̃i D̃i

∗ ∗ −Pi 0
∗ ∗ ∗ −γ2I









< 0

Performing now a congruence transformation using

diag{R−1
i Υj , I, I, I} yields (15) and (6) for j ∈ Ii

K
and

j ∈ Ii
UK

, respectively (note that Ri is invertible if it satisfies

(13)). This completes the proof. �

Remark 3: Note that in Lemmas 1 and 2, the stochastic

stability for the underlying system is actually guaranteed by

the two aspects, i.e., efficiently utilizing the partly known

transition probabilities (see (9)) together with the require-

ments that Vj(x̃k+1, k+1)−Vi(x̃k, k) < 0, ∀j ∈ Ii
UK

on the

latent Lyapunov function Vi(x̃k, k) = x̃T
k Pix̃k,∀i ∈ I (see

(10), where if j 6= i, the time k will be the mode switching

times).

B. H∞ Filter Design:

The following Theorem presents sufficient conditions for

the existence of an admissible mode-dependent H∞ filter

with the form (3).

Theorem 3: Consider system (1) with partly unknown

transition probabilities (2) and let γ > 0 be a given constant.

If there exist matrices P1i > 0, and P3i > 0,∀i ∈ I, and

matrices P3i, Xi, Yi, Zi, Afi, Bfi, Cfi, Dfi, ∀i ∈ I, such

2275



that
















Υ1j − Xi − XT
i Υ2j − Yi − ZT

i 0
∗ Υ3j − Yi − Y T

i 0
∗ ∗ −I

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

XiAi + BfiCi Afi XiBi + BfiDi

ZiAi + BfiCi Afi ZiBi + BfiDi

Hi − DfiCi −Cfi Li − DfiDi

−P1i −P2i 0
∗ −P3i 0
∗ ∗ −γ2I

















< 0

(16)

where










Υ1j , 1

πi

K

P1i
K

, 1

πi

K

∑

j∈Ii

K

πijP1j

Υ2j , 1

πi

K

P2i
K

= 1

πi

K

∑

j∈Ii

K

πijP2j

Υ3j , 1

πi

K

P3i
K

= 1

πi

K

∑

j∈Ii

K

πijP3j

, ∀ j ∈ Ii
K

(17)






Υ1j , P1j

Υ2j , P2j

Υ3j , P3j

, ∀ j ∈ Ii
UK

(18)

Then, there exists a mode-dependent full-order filter such

that the resulting filtering error system (4) is stochastically

stable with an H∞ performance under the Markovian Chain

with partly unknown transition probabilities (2). Moreover,

if the LMIs (16) have a feasible solution, the gains of an

admissible filter in the form (3) are given by

AFi = Y −1
i Afi, BFi = Y −1

i Bfi,

CFi = Cfi, DFi = Dfi, i ∈ I. (19)

Proof: Consider filtering error system (4) and assume the

matrices Pi, Ri in Lemma 2 to have the following forms:

Pi ,

[

P1i P2i

∗ P3i

]

, Ri ,

[

Xi Yi

Zi Yi

]

then we have

Pi
K ,

∑

j∈Ii

K

πijPj =
∑

j∈Ii

K

πij

[

P1j P2j

∗ P3j

]

,

[

P1i
K

P2i
K

∗ P3i
K

]

Further define matrix variables

Afi = YiAFi, Bfi = YiBFi, Cfi = CFi, Dfi = DFi

Υj ,

[

Υ1j Υ2j

∗ Υ3j

]

where Υ1j , Υ2j and Υ3j are denoted in (17) and (18)

for j ∈ Ii
K

and j ∈ Ii
UK

, respectively, one can readily

obtain (16) replacing Ãi, B̃i, C̃i, D̃i,Υj , Pi and Ri into

(13), namely, if (16) hold, the filtering error system (4)

will be stochastically stable with an H∞ performance un-

der the Markovian Chain with partly unknown transition

probabilities (2). Meanwhile, if a solution of (16) exists,

the parameters of admissible filter are given by (19). This

completes the proof. �

Remark 4: By setting δ = γ2 and minimizing δ subject

to (16), we can obtain the optimal H∞ noise attenuation

performance index γ (γ =
√

δ) and the corresponding

filter gains as well. Also, it can be deduced from (16) that,

given different degree of unknown elements in the transition

probabilities matrix, the optimal γ achieved for system (4)

and the corresponding filter gains solved for system (2)

should be different, which we will illustrate via a numerical

example in next section.

IV. NUMERICAL EXAMPLE

Consider the MJLS (1) with four operation modes and the

following data:

A1 =

[

0 −0.41
0.81 0.81

]

, A2 =

[

0 −0.27
0.81 1.13

]

,

A3 =

[

0 −0.81
0.81 0.97

]

, A4 =

[

0 −0.19
0.81 0.89

]

,

B1 = B2 = B3 = B4 =

[

0.5 0
0 0

]

,

C1 = C2 = C3 = C4 =
[

1 0
]

,

D1 = D2 = D3 = D4 =
[

0 1
]

,

H1 = H2 = H3 = H4 = D1,

L1 = L2 = L3 = L4 =
[

0 0
]

.

The four cases for the transition probabilities matrix will be

considered in this example as shown in Table I. Our purpose

here is to design a mode-dependent full-order H∞ filter in

the form of (3) such that the resulting filtering error system is

stochastically stable and has a guaranteed H∞ performance.

By solving (16), the optimal H∞ performance indices are

obtained for the four different transition probabilities cases.

The corresponding computation results are listed in Table II.

From Table II, it is easily seen that the more transi-

tion probabilities knowledge the system has, the smaller

performance index the system can achieve. Therefore, by

means of our ideas and approaches, a tradeoff can be easily

built in practice between the complexity to obtain transition

probabilities and the system performance benefits.

The desired filter corresponding to the optimal H∞ per-

formance index can be also solved using (16), for brevity,

the gains are omitted here. Applying the obtained filters

and giving two possible time sequences of the mode jumps,

we obtain the error response of the resulting filtering error

systems in Figures 1-2 for given initial condition x = [−1.2
0.6 0 0]T and noise signal

w(k) =

[

0.7 exp(−0.1k) sin(0.001πk)
0.5 exp(−0.1k) sin(0.01πk)

]

It is clearly observed from the simulation curves that for the

above energy bounded disturbance w(k), the filtering error

system is stable against different partly unknown transition

probabilities, which implies that our designed filter is feasible

and effective.
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TABLE I

DIFFERENT TRANSITION PROBABILITIES MATRICES

Completely known Partly unknown (case I)

1 2 3 4

1 0.3 0.2 0.1 0.4

2 0.3 0.2 0.3 0.2

3 0.1 0.1 0.5 0.3

4 0.2 0.2 0.1 0.5

1 2 3 4

1 0.3 0.2 0.1 0.4

2 ? ? 0.3 0.2

3 0.1 0.1 0.5 0.3

4 0.2 ? ? ?

Partly unknown (case II) Completely unknown

1 2 3 4

1 0.3 0.2 0.1 0.4

2 ? ? 0.3 0.2

3 ? 0.1 ? 0.3

4 0.2 ? ? ?

1 2 3 4

1 ? ? ? ?

2 ? ? ? ?

3 ? ? ? ?

4 ? ? ? ?

TABLE II

MINIMUM γ∗ FOR DIFFERENT TRANSITION PROBABILITIES CASES.

Transition Completely Partly Partly Completely

probabilities known unknown unknown unknown

(Case I) (Case II)

γ∗ 1.8556 3.8215 4.2793 4.4624

V. CONCLUSIONS

The H∞ filtering problem for the discrete-time MJLS

with partly unknown transition probabilities is investigated

in this paper. The systems under consideration are more

general than the MJLS with completely known or completely

unknown transition probabilities as two special cases. The

LMI-based BRL for the underlying filtering error system

is derived and its improved version is further given by

means of additional slack matrix variables to eliminate the

cross coupling between the Lyapunov positive matrices and

system matrices. Despite the partly unknown elements in

the transition probabilities matrix, the mode-dependent full-

order filter is designed and the existence conditions of the

desired filter are obtained such that the resulting filtering

error system is stochastically stable and has a guaranteed H∞

performance index. A numerical example is given to illustrate

the effectiveness and potential of the developed theoretical

results.
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