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Abstract— Symbolic Dynamic Filtering (SDF) has been re-
cently reported in literature as a pattern recognition tool
for early detection of anomalies (i.e., deviations from the
nominal behavior) in complex dynamical systems. This paper
presents a comparative evaluation of SDF relative to other
classes of pattern recognition tools, such as Bayesian Filters
and Artificial Neural Networks, from the perspectives of: (i)
Anomaly detection capability, (ii) Decision making for failure
mitigation and (iii) Computational efficiency. The evaluation is
based on analysis of time series data generated from a nonlinear
active electronic system.

Index Terms— Bayesian Filtering, Symbolic Dynamics, Neu-
ral Networks, Anomaly Detection

I. INTRODUCTION

A
NOMALY is defined as deviation from nominal behav-

ior of a dynamical system. For many human-engineered

complex systems, early detection of anomalies with low

false alarm rates mitigates the risk of forthcoming failures.

Recently, a pattern identification technique, called Symbolic

Dynamic Filtering (SDF ), has been reported [1], [2] for

early detection of anomaly patterns in dynamical systems,

possibly due to parametric or non-parametric changes. While

abrupt changes of large magnitude are not difficult to detect,

SDF specifically meets the challenge of detecting slowly

evolving anomalies at an early stage. The core concept

of SDF is built on identification of statistical patterns

from symbol sequences generated by coarse-graining of

time series data [1], [3]. These statistical patterns represent

behavior of the dynamical system, which may change with

the evolution of anomaly(ies). The information contained

in a set of time series data is compressed in the form of

a probability histogram that may evolve with the anomaly

progression.

The major objective of this paper is to evaluate SDF

with other pattern recognition methods such as Bayesian

Filtering (BF ), which is both model-based and dynamic

data-driven, and is capable of detecting parametric or non-

parametric changes in the model. The Kalman (Extended

Kalman) Filter is often adequate for linear (linearized) sys-

tems, but it may fail to capture the dynamics of a non-

linear system, specifically with non-additive uncertainties.
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07-1-0376 and by NASA under Grant No. NNX07AK49A.

Recent literature has reported Monte Carlo Markov Chain

(MCMC) techniques, such as Particle Filtering [4] and

Sigma Point techniques [5] that yield numerical solutions

to Bayesian state estimation problems and have been applied

for anomaly detection in nonlinear dynamical systems [6]. In

addition to BF, this paper investigates other classes of well-

known pattern recognition tools such as Artificial Neural

Networks (ANN), Principal Component Analysis (PCA), [7]

and Kernel Regression Analysis (KRA) [8] for pattern change

detection [7]. In the class of ANN , mutilayer perceptron

and radial basis function configurations have been widely

used for detection of anomalous patterns [7], These pattern

recognition tools have been evaluated for comparison with

SDF from the following perspectives.

• Performance evaluation in terms of quality of anomaly

detection (e.g., enhanced detection capability and re-

duced rate of false alarm)

• Decision making for mitigation of forthcoming failures

• Computational efficiency (e.g., execution time and

memory requirements)

II. REVIEW OF SYMBOLIC DYNAMIC FILTERING

The theory of symbolic dynamic filtering (SDF ) for time

series data analysis is built upon the underlying principles

of Nonlinear Dynamics, Symbolic Dynamics, Information

Theory, and Statistical Pattern Recognition. While the details

are reported in previous publications [1], [3], the essential

concepts are succinctly explained in this section for com-

pleteness of this paper.

Detection of anomaly patterns is formulated as a two-

time-scale problem, illustrated in Fig. 1. The fast time scale

is related to response time of the process dynamics. Over

the span of a given time series data sequence, dynamic

behavior of the system is assumed to remain invariant, The

slow time scale is related to the time span over which

parametric or non-parametric changes may occur and exhibit

non-stationary dynamics.

In general, a long time span in the fast time scale is several

order of magnitude smaller in the slow time scale. The

continuously varying process of system dynamics is often

modeled as a finite dimensional dynamical system in the

setting of an initial value problem as:

dx(t)

dt
= f(x(t), θ(ts); x(0) = x0, (1)
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Fig. 1. Pictorial view of the two time scales: (i) Slow time scale of anomaly
evolution and (ii) Fast time scale for data acquisition and signal conditioning

where t ∈ [0,∞) denotes the (fast-scale) time; x ∈ R
n is the

state vector in the phase space; and θ ∈ R
ℓ is the (possibly

anomalous) parameter vector varying in (slow-scale) time ts.

A convenient way of learning the dynamical behavior is to

rely on the additional information provided by (sensor-based

and/or model-based) time series data [9].

A. Symbolic Dynamics, Encoding, and State Machine

Fig. 2. Concept of Symbolic Dynamic Filtering

Let Ω ∈ R
n be a compact region, within which the

trajectory of the dynamical system, governed by Eq. (1),

is circumscribed as illustrated in Fig. 2. The region Ω is

partitioned into a finite number of (mutually exclusive and

exhaustive) cells, so as to obtain a coordinate grid. Let the

cell, visited by the trajectory at a time instant, be denoted as

a random variable taking a symbol value from the alphabet

Σ. An orbit of the dynamical system is described by the

time series data as {x0, x1, · · · , xk, · · · } with xi ∈ Ω, which

passes through or touches one of the cells of the partition.

Each initial state x0 ∈ Ω generates a sequence of symbols

defined by a mapping from the phase space into the symbol

space as:

x0 → s0s1s2 · · · sk · · · (2)

where each si, i = 0, 1, · · · takes a symbol from the alphabet

Σ.

The mapping in Eq. (2) is called Symbolic Dynamics as

it attributes a physically admissible sequence of symbols to

the system dynamics starting from an initial state. Figure 2

elucidates the concepts of partitioning a finite region of the

phase space and the mapping from the partitioned space into

the symbol alphabet. Figure 2 also shows conversion of the

symbol sequence into a finite-state machine.

B. Space Partitioning

Several partitioning techniques have been reported [10]

for symbol generation from the phase space, primarily based

Fig. 3. An Example of Space Partitioning

on Symbolic False Nearest Neighbors (SFNN ), which may

become computationally intensive if the dimension of the

phase space is large. The wavelet transform [11] largely

alleviates these shortcomings and has been shown to yield

comparable performance with several orders of magnitude

smaller execution time [3].

In wavelet based partitioning, the time series data are first

converted to the wavelet domain, where wavelet coefficients

are generated at different time shifts. The wavelet space is

then partitioned with alphabet size |Σ| into segments of

coefficients on the ordinate separated by horizontal lines.

In the illustrative example of Fig. 3, the partitioning has

been done to create |Σ| = 10 cells (i.e., intervals along the

ordinate in this case). The choice of |Σ| depends on specific

experiments, noise level and also the available computation

power. A large alphabet may be noise-sensitive while a small

alphabet could miss the details of signal dynamics.

Once the partitioning is done with alphabet size |Σ| at the

nominal condition (time epoch t0), it is kept constant for all

(slow time) epochs {t1, t2, ....tk....}.

C. State Machine Construction

A finite state machine is now constructed, where the

states of the machine are defined corresponding to the given

alphabet set Σ and window length D. D is chosen as the

length of consecutive symbol words to be considered [1].

Each state belongs to an equivalence class of symbol words

of length D or more, which is characterized by a word of

length D at the leading edge. Therefore, the number n of

such equivalence classes is less than or equal to the total

permutations of the alphabet symbols within words of length

D. That is, n ≤ |Σ|D; some of the states may be forbidden

with zero probability of occurrence.

Using the symbol sequence generated, the state ma-

chine is constructed on the principle of sliding block

codes [12]. The window of length D on the symbol sequence

. . . σi1 σi2 . . . σik
. . . is shifted to the right by one symbol,

such that it retains the last (D-1) symbols of the previous

state and appends it with the new symbol σiℓ
at the end. The

machine constructed in this fashion is called the D-Markov

machine [1].

The states of the machine are marked with the corre-

sponding symbolic word permutation and the edges joining

the states indicate the occurrence of a symbol σiℓ
. The

occurrence of a symbol at a state may keep the machine in

the same state or move it to a new state. On a given symbol

sequence ....σi1σi2 ...σil
.... generated from the time series

data collected at a slow time epoch, a window of length

D is moved by keeping a count of occurrences of word
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sequences σi1 · · ·σiD
σiD+1

and σi1 · · ·σiD
which are respec-

tively denoted by N(σi1 · · ·σiD
σiD+1

) and N(σi1 · · ·σiD
).

For N(σi1 · · ·σiD
) 6= 0, the transitions probabilities are then

obtained by these frequency counts as follows:

πjk ≡ P (qk|qj) =
P (qk, qj)

P (qj)
=

P (σi1 · · ·σiD
σ)

P (σi1 · · ·σiD
)

⇒ πjk ≈
N(σi1 · · ·σiD

σ)

N(σi1 · · ·σiD
)

(3)

where the corresponding states are denoted by qj ≡
σi1σi2 · · ·σiD

and qk ≡ σi2 · · ·σiD
σ.

D. Anomaly Evolution and Pattern Identification

Behavioral pattern changes may take place in dynamical

systems due to accumulation of faults and progression of

anomalies. The pattern changes are quantified as deviations

from the nominal pattern and are characterized by a scalar-

valued function, called Anomaly Measure µ. The anomaly

measures at slow time epochs {t1, t2, . . .} are obtained as:

µk ≡ d
(

pk, p0
)

where the d(•, •) is an appropriately defined distance func-

tion.

III. CONSTRUCTION OF ANOMALY DETECTION

ALGORITHMS

This section explains how anomaly detection algorithms

are constructed for different pattern recognition tools.

A. Symbolic Dynamic Filtering for Anomaly Detection

The following steps, summarize the procedure of SDF

for anomaly detection.

• Time series data acquisition on the fast scale from

sensors and/or analytical measurements. Data sets are

collected at different slow time epochs t0, t1, t2, ...tk....

• Generation of wavelet transform coefficients [11],

obtained with an appropriate choice of the wavelet basis

and scales [3].

• Partitioning [3] of the wavelet space at the nominal

condition at time epoch t0. Each segment of the parti-

tioning is assigned a symbol from the alphabet Σ.

• Construction of a finite state automaton at time

epoch t0 (nominal condition) from alphabet size |Σ|
and window length D. The structure of the finite state

machine is fixed for subsequent slow time epochs

{t1, t2, ....tk....}.

• Calculation of the state probability vectors

p
0,p1,p2, ...pk... The probability distribution p

0

of damage patterns is recursively computed as an

approximation of the natural invariant density of

the dynamical system at the slow time epoch t0.

Subsequently p
1,p2, ...pk... at slow time epochs,

t1, t2, ...tk... are computed from the respective

symbolic sequences using the finite state machine

constructed at time epoch t0.

• Computation of scalar anomaly measures

µ1, µ2, ..., µk, ... based on evolution of these probability

vectors and by defining an appropriate scalar distance

function µk = d(pk,p0) with respect to the nominal

condition [1].

B. Bayesian Filtering for Anomaly Detection

Bayesian filtering tracks the states more effectively if the

system is closer to the nominal condition. The tracking error

would be greater when the system is in an anomalous condi-

tion. To this effect, the innovation sequences are computed,

and their histograms are obtained, where the innovation ǫ is

defined as the difference between the true output y and the

predictor output ŷ−.

At the nominal condition, the histogram of the innovation

sequence resembles an impulse, or approximately Gaussian

sequence with very small variance. As the anomaly pro-

gresses, the model becomes less accurate and the estimation

errors become higher. Thus, the histogram of the innovation

sequence shows an increase in the variance and the distribu-

tion diverges from a Gaussian. This increase is characterized

as a measure of the anomaly. To this effect, the probability

density of the innovation sequences p
k(ǫ) are generated

at slow time epochs tk and the anomaly measure µk at

any epoch k is given by an appropriate distance function

d(pk(ǫ),p0(ǫ)).

C. Neural Networks for Anomaly Detection

The training data set for both types of neural net-

works, namely, Radial Basis Function Neural Networks,

(RBFNN) and Multi Layer Perceptron Neural Networks,

(MLPNN), are prepared in the same manner. The neural

networks are trained based on the NARX model from the

input-output data sets at the nominal condition. After an

error goal is achieved, the neural network is allowed to

track the output signal of the system under both nominal

and anomalous conditions. The neural network generates an

output signal estimate ŷ. The innovation ǫk , (yk − ŷk)

serves as a measure for the tracking performance and a pdf is

created for the innovation sequence. If at nominal condition

the pdf is p
0 and the pdf at slow time epoch tk is p

k, then

the anomaly measure is given by the distance d(pk,p0).

D. Statistical methods for Anomaly Detection

1) Principal Component Analysis (PCA): PCA serves

as a feature selector in the pattern analysis via dimension

reduction from n to m. The n×n covariance matrix, obtained

from the time series data, generates the orthonormal eigen-

vectors vk and the corresponding non-negative real eigen-

values λk. The eigenvalues are arranged in the increasing

order of magnitude. The m largest eigenvalues and associated

eigenvectors are selected such that
∑m

i=1 λi > η
∑n

i=1 λi ,

where η is a real positive number close to 1 (e.g., η = 0.95).

The principal feature matrix F is defined as:

F =
[ √

λ1
∑

m

i=1
λ1

v1 . . .
√

λd
∑

m

i=1
λd

vd
]

(4)

The feature matrix F 0 represents the status of the system

derived from the time series data at the nominal condition
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t0. Similarly, feature matrix F k is obtained from time series

data at slow time epoch tk. Then, the anomaly measure at

tk is obtained as the distance d(F k, F 0).

2) Kernel Regression Analysis (KRA): In KRA At the

nominal condition, the kernel estimator is f̂0(x). For differ-

ent anomalous conditions, the regression parameters,(µ, θα),
are kept fixed; and the kernel estimator f̂k(x) is evaluated

from the data set under the (possibly anomalous) condition

at the slow time epoch tk . Then, the anomaly measure at

the kth epoch is obtained as the distance d(f̂k, f̂0).
The distance function for all methods is chosen as the

standard Euclidean norm.

IV. EXPERIMENTS AND RESULTS

This section presents results of anomaly detection ex-

perimentation on an active electronic circuit apparatus that

implements a second order non-autonomous, forced Duffing

equation [13]. The governing equation of the system with a

cubic nonlinearity is given below:

d2y

dt2
+ β(ts)

dy

dt
+ y(t) + y3(t) = A cos(ωt) (5)

The dissipation parameter β(ts), realized as a resistance

in the circuit, varies in the slow time ts and is treated

as a constant in the fast time t at which the dynamical

system is excited. The goal is to detect, at an early stage,

changes in β(ts) that is associated with the anomaly. The

effects of growth in β(ts) are presented as the response of

a stimulus with amplitude A = 22 and frequency ω = 5.

The stationary behavior of the system response for this input

stimulus is obtained for several values of β in the range

of 0.10 to 0.40. The four plates, 4(a) to 4(d), in the first

row of Fig. 4 exhibit four phase plots in for the values

of the parameter at 0.10, 0.30, 0.32, and 0.34, respectively.

Each plot relates the phase variable of electrical charge that

is proportional to the voltage across one of the capacitors

in the electronic circuit, with its time derivative (i.e., the

instantaneous current). While a small difference between the

phase plots for β = 0.10 and β = 0.30 is noticeable, there is

no clearly visible difference between the plots for β = 0.30
and β = 0.32 in plates 4(b) and 4(c). However, the phase

plots for β = 0.32 and β = 0.34 in the plates, 4(c) and 4(d),

display a very large difference, indicating period doubling

possibly due to onset of bifurcation.

The four plates, 4(e) to 4(h), in the second row of

Fig. 4 exhibit four histograms that are the pattern vectors

generated by SDF for β equal to 0.10, 0.30, 0.32, and

0.34, respectively. It is seen that, in the plate 4(h), a sudden

change in the pattern vector occurs as only the first two

states are visited frequently. This is indicative of a transition

to significantly different dynamical behavior.

The four plates, 4(i) to 4(l), in the third row of Fig. 4

exhibit four probability density functions that are the pattern

vectors generated by RBFNN for β equal to 0.10, 0.30,

0.32, and 0.34, respectively. It is also seen in the plate 4(l)

that a sudden change in the shape of probability distribution

occurs, indicating a transition to a significantly different

dynamical behavior.

The plates, 4(m) to 4(p) in the fourth row of Fig. 4 exhibit

four probability density functions that are the pattern vectors

generated by PF for β equal to 0.10, 0.30, 0.32, and 0.34,

respectively. It is observed the variance of the (non-Gaussian)

probability distribution increases with β. This is indicative of

increasing state estimation error due to modeling error. The

remarkable trait in Plate 4(p) is that the distribution abruptly

changes from a unimodal to a bimodal structure, indicating

a transition to a significantly different dynamical behavior.

Plots of the normalized anomaly measure µ versus the

dissipation parameter β are exhibited in Fig. 5(a) for SDF ,

PCA, RBFNN and MLPNN , and in Fig. 5(b) for SDF ,

PF , UKF and KRA. The profiles in each of these two fig-

ures exhibit the growth of µ as β grows from 0.1 (considered

as the nominal condition) to the completely faulty condition

of 0.4. All profiles show gradual increase in µ with β.

Figure 5(a) compares SDF for detection of anomaly pat-

terns to MLPNN and RBFNN neural networks as well

as Principal Component Analysis (PCA) and Bayesian Filter-

based methods (PF and UKF). The Multilayer Perceptron

Neural Network (MLPNN ) consists of three hidden layers

with 50 neurons in each one of them and an output layer with

one neuron (as the number of output is one). On the other

hand, the Radial Basis Function Neural Network (RBFNN )

uses only one hidden layer and one output layer (with one

neuron) as described earlier. Optimal training was obtained

using 100 neurons in the hidden layer. For training of the

network, two thousand data points are chosen from the input-

output time-series data set of the nominal system, i.e., with

β = 0.1 at steady state.

Fig. 5(b) compares the performance of SDF with

Bayesian filter-based methods (i.e., particle filter (PF) and

unscented filter (UKF)). These filters are calibrated to the

nominal condition of β = 0.1, and the filter is designed to

track both states (e.g., y(t) and ẏ(t)), where 50 particles are

used for the particle filter, as a tradeoff between tracking

performance in the nominal conditions and CPU execution

time and memory requirements. For unscented filtering, the

parameter κ is set equal to 3, which is reported to be optimal

for Gaussian priors [5]. For both PF and UKF, the variance

of the zero-mean Gaussian process noise is set to 0.01 and

the variance for zero-mean Gaussian measurement noise is

0.05. The Monte Carlo Markov Chain (MCMC) analysis

has been carried out on 10, 000 data points, sampled at a

rate of Ts = 0.01sec.

Figures 5(a) and Fig. 5(b) exhibit a family of normalized

profiles of anomaly measure µ versus the dissipation parame-

ter β, where each profile show gradual increase in µ until the

bifurcation at β ≈ 0.33. Changes in the value of µ, its slope

(i.e., ∂µ
∂β

), and its curvature (i.e., ∂2µ
∂β2 ) provide early warnings

for a forthcoming major change in the system dynamics.

From this perspective, the performance of SDF is superior

to that of Bayesian filtering, both types of Neural networks,

and other statistical methods (i.e., PCA and KRA). It

is also noted that the profile of SDF is smoother than

3055



−2 −1 0 1 2
−8

−4

0

4

8

State Variable y(t)

S
ta

te
 V

a
ri

a
b

le
 d

y
(t

)/
d

t

(a) Phase plot for β = 0.10

−2 −1 0 1 2
−8

−4

0

4

8

State Variable y(t)

S
ta

te
 V

a
ri

a
b

le
 d

y
(t

)/
d

t
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(c) Phase plot for β = 0.32
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(d) Phase plot for β = 0.34
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(e) SDF Histogram for β = 0.10
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(f) SDF Histogram for β = 0.30
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(g) SDF Histogram for β = 0.32
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(h) SDF Histogram for β = 0.34
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(i) RBFNN Density for β = 0.10
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(j) RBFNN Density for β = 0.30
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(k) RBFNN Density for β = 0.32
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(l) RBFNN Density for β = 0.34
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(m) PF Density for β = 0.10

−2 −1 0 1 2
0

2

4

6

8

Innovation

P
ro

b
a

b
il

it
y

 D
e

n
s

it
y

(n) PF Density for β = 0.30
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(p) PF Density for β = 0.34

Fig. 4. Evolution of anomaly patterns for changes in system dynamics

those of PF and UKF. The smoothness of SDF reduces

false alarms particularly for small changes in β from the

nominal condition. Similarly, SDF outperforms RBFNN ,

MLPNN , PCA, and KRA.

Table I provides a comparison of execution time and

memory requirement of the afore-mentioned seven methods

for computation of the anomaly measure µ. In each case,

the CPU time for a single operation cycle at a time epoch,

listed in Table I, is obtained from the average of execution

time for operation cycles at 16 consecutive slow time epochs

on a 3.40 GHz Pentium 4 processor in the Matlab 7.0.1

environment. As seen in Table I, the execution time varies

from a fraction of millisecond for KRA to hundreds of

seconds for PF. Execution time for Neural Network-based

methods and SDF are comparable although RBFNN is faster

than MLPNN and SDF. However, Bayesian filters UKF and

PF are one and two orders of magnitude slower than SDF,

respectively. The requirement of (random access) memory

TABLE I

COMPARISON OF EXECUTION TIME

Anomaly detection Execution Memory
method time requirement

KRA 2.23× 10
−3 sec 2.95 MB

PCA 4.30× 10
−2 sec 2.88 MB

RBFNN 8.09× 10
−1 sec 4.05 MB

MLPNN 4.60× 10
0 sec 4.15 MB

SDF 4.65× 10
0 sec 2.94 MB

UKF 5.10× 10
1 sec 4.19 MB

PF 2.74× 10
2 sec 4.69 MB

in each case is more or less similar (less than 5MB),

which is insignificant for a commercially available laptop

computer. However, for RBFNN and MLPNN, the training

phase requires 45MB to 60 MB of memory, which is also

reasonable.
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Fig. 5. Evaluation of Gradually Evolving Anomaly Patterns

V. SUMMARY, CONCLUSION AND FUTURE WORK

Symbolic Dynamic Filtering (SDF ) is compared with

three classes of pattern recognition techniques. The compar-

ative evaluation is based on a non-linear dynamical system,

represented by the forced Duffing equation, with a slowly

varying dissipation parameter. The time series data are con-

verted to symbol sequences, which are then represented as a

finite-state automaton, called the D-Markov machine [1]. The

evolution of a state probability vector yields a measure of the

anomaly to be measured. In Bayesian methods, a nonlinear

state estimator is designed for the nominal condition of the

system. Two such nonlinear estimators, studied in this paper,

are Unscented Kalman Filter (UKF ) [5] and the Particle

Filter (PF ) [4]. This nonlinear estimator is then applied to

the system as the anomaly evolves, and probability density

of the resulting innovation sequence is the pattern vector.

A similar procedure is applied for neural networks and also

for statistical methods of principal component analysis [14]

and kernel regression analysis [8], which are first trained

on the nominal condition, and then are analyzed on the

anomalous system. The distance between the state error

probability density functions serves as a measure of the

evolving anomaly.

The conclusions, derived from the work reported in this

paper, are delineated as follows:

1) Symbolic Dynamic Filtering provides the best results

in terms of early detection capability, speed of ex-

ecution, smoothness of anomaly detection curve and

a sharp representation at the bifurcation point that is

analogous to the onset of a large failure.

2) Statistical and neural network tools of pattern recogni-

tion perform at a speed comparable to that of symbolic

dynamic filtering. However, they do not capture the

gradual evolution of anomalies as early as SDF does.

3) Bayesian methods have the advantage of computing

the estimated states. However, prolonged computation

time requirements make them difficult to implement in

an online scenario.

A major advantage of working with SDF is that pattern

vectors are computed in real time and can be effectively

transmitted over mobile wireless networks, thus making

SDF ideally suited for online health monitoring and failure

prognosis at a remote location. This is extremely important,

for example, in a sensor network scenario, where both

memory and processor time of local computers might be

severely constrained.

Further theoretical and experimental research is recom-

mended in the following areas:

1) Input independence of SDF by taking advantage of

model-based analysis and system identification

2) Robustness assessment under noise contamination of

time series data

3) Implementation of SDF on a sensor network for real

time, online fault detection

REFERENCES

[1] A. Ray, “Symbolic dynamic analysis of complex systems for anomaly
detection,” Signal Processing, vol. 84, no. 7, pp. 1115–1130, 2004.

[2] S. Gupta, A. Ray, and E. Keller, “Symbolic time series analysis of
ultrasonic data for early detection of fatigue damage,” Mechanical

Systems and Signal Processing, vol. 21, no. 2, pp. 866–884, 2007.

[3] V. Rajagopalan and A. Ray, “Symbolic time series analysis via
wavelet-based partitioning,” Signal Processing, vol. 86, no. 11, pp.
3309–3320, 2006.

[4] C. Andrieu, A. Doucet, S. Singh, and V. B. Tadic, “Particle methods
for change detection, system identification, and control,” Proceedings

IEEE, vol. 92, no. 3, pp. 423–438, 2004.

[5] S. Julier, J. Uhlmann, and H. F. Durrant-Whyte, “A new method for
the nonlinear transformation of means andcovariances in filters and
estimators,” IEEE Transactions on Automatic Control, vol. 45, no. 3,
pp. 477–482, 2000.

[6] P. Li and V. Kadirkamanathan, “Particle filtering based likelihood ratio
approach to fault diagnosis in nonlinear stochastic systems,” IEEE

Transactions on Systems, Man and Cybernetics, vol. 31, no. 3, pp.
337–343, 2001.

[7] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. John
Wiley, 2001.

[8] J. Shawe-Taylor, Kernel Methods for Pattern Analysis. Cambridge,
U.K.: Cambridge University Press, 2004.
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