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Abstract— This work focuses on state feedback model pre-
dictive control of particulate processes subject to asynchronous
measurements. A population balance model of a typical con-
tinuous crystallizer is taken as an application example. Three
controllers, a standard model predictive controller and two
recently proposed Lyapunov-based model predictive controllers,
are applied to stabilize the crystallizer at an open-loop unstable
steady-state in the presence of asynchronous measurements.
The stability and robustness properties of the closed-loop system
under the three controllers are compared extensively under
two different assumptions on how the measurements from the
crystallizer are obtained.

I. INTRODUCTION

Particulate processes play a key role in the manufac-

turing of many chemical products. Examples include the

crystallization of proteins for pharmaceutical applications,

the emulsion polymerization for the production of latex, and

the titania powder aerosol reactors used in the production of

white pigments. It is now widely recognized that particulate

processes present a number of processing challenges which

are not encountered in gas phase or liquid phase processes.

One of these challenges is to operate a particulate process

in a way that it consistently makes products with a desired

particle size distribution (PSD) which is an important quality

index of a particulate product. For example, the shape of the

crystal size distribution in crystallization processes strongly

affects crystal function and downstream processing such as

filtration, centrifugation and milling [1].

Population balance modeling is becoming more and more

important in particulate processes because it provides a natu-

ral framework for the mathematical modeling of particle size

distributions (PSDs) (see, for example, the tutorial article [2]

and the review article [3]) and has been successfully applied

to describe PSDs in many particulate processes. Population

balance modeling of particulate processes typically leads

to systems of nonlinear partial integro-differential equations

that describe the rate of change of the PSD which does not

allow their direct use for the synthesis of low-order (and

therefore, practically implementable with available comput-

ers) nonlinear feedback controllers, see [4].
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To overcome this problem, earlier work of our group took

advantage of the property that the dominant dynamic behav-

ior of many particulate process models is low-dimensional

and proposed [5] a model reduction procedure. This proce-

dure is based on a combination of the method of weighted

residuals and the concept of approximate inertial manifold,

which leads to the construction of low-order ordinary differ-

ential equation (ODE) systems that accurately reproduce the

dominant dynamics of broad classes of particulate process

models. These ODE systems were subsequently used for

the synthesis of nonlinear [5], [6], [4], robust [7], [8] and

predictive [9], [10] controllers that enforce desired stability,

performance, robustness and constraint handling properties

in the closed-loop system. The reader may refer to [11],

[12], [13] for reviews of results on simulation and control of

particulate processes.

All of the above results on controller design for particulate

processes is based on the assumption of continuous sampling

and perfect communication between the sensor and the

controller. However, one may encounter measurement sam-

ple loss, intermittent failures associated with measurement

techniques as well as data packet losses over communication

networks. Previous work on control subject to actuator/sensor

faults has extensively focused on lumped parameter systems.

In a recent work [14], a Lyapunov-based nonlinear controller

was designed in the presence of input constraints to stabilize

a continuous crystallizer subject to asynchronous sensor data

losses. This work assumes that a controller is designed under

the assumption of continuous measurements, and then, the

robustness properties of the closed-loop system under data

losses or actuator/sensor faults are studied.

In the present work, we apply nonlinear model predictive

control to a continuous crystallization process subject to

asynchronous measurement sampling. Asynchronous mea-

surement sampling may arise due to measurement system

malfunctions or different sampling rates of the measurement

sensors. In particular, a standard model predictive controller,

a Lyapunov-based model predictive controller proposed in

[15], and a Lyapunov-based model predictive controller de-

veloped in our recent work [16] which is designed taking into

account explicitly data losses and asynchronous measure-

ments, are applied to stabilize the continuous crystallizer at

an open-loop unstable steady-state. Extensive simulations are

presented to evaluate the closed-loop stability and robustness

of the three control methods under two different assumptions

on how the measurements from the crystallizer are obtained.
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TABLE I

PROCESS PARAMETERS OF THE CONTINUOUS CRYSTALLIZER

cs = 980.2 kg m−3

c0s = 999.943 kg m−3

ρ = 1770.0 kg m−3

τ = 1.0 hr
k1 = 5.065 × 10−2 mm m3 kg−1 hr−1

k2 = 7.958 mm−3 hr−1

k3 = 1.217 × 10−3

II. MODEL OF A CONTINUOUS CRYSTALLIZER

In this section the population balance model of a con-

tinuous crystallizer and the corresponding reduced-order

moments model are introduced.

A. Population Balance Model

Under the assumptions of isothermal operation, constant

volume, mixed suspension, nucleation of crystals of infinites-

imal size, and mixed product removal, a dynamic model for

a continuous crystallizer can be derived from a population

balance for the particle phase and a mass balance for the

solute concentration. The resulting model has the following

form [17], [18]:

∂n

∂t̄
= −

∂(R(t̄)n)

∂r
−

n

τ
+ δ(r − 0)Q(t̄)

dc

dt̄
=

(c0 − ρ)

ǭτ
+

(ρ − c)

τ
+

(ρ − c)

ǭ

dǭ

dt̄

(1)

where n(r, t̄) is the number density of crystals of radius r ∈
[0,∞) at time t̄ in the suspension, τ is the residence time,

c is the solute concentration in the crystallizer, c0 is the

solute concentration in the feed, ǭ = 1 −
∫ ∞

0
n(r, t̄)4

3πr3dr
is the volume of liquid per unit volume of suspension, R(t̄)
is the growth rate, δ(r−0) is the standard Dirac function and

Q(t̄) is the nucleation rate. The term δ(r − 0)Q(t̄) accounts

for the production of crystals of infinitesimal (zero) size via

nucleation. R(t̄) and Q(t̄) are assumed to follow McCabe’s

growth law and Volmer’s nucleation law, respectively; that

is:

R(t̄) = k1(c − cs), Q(t̄) = ǭk2 exp
[

−k3/(c/cs − 1)
2
]

(2)

where k1, k2, and k3 are positive constants and cs is the

concentration of solute at saturation.

The values of the parameters in Eqs. 1 and 2 that define

the process studied in this work are given in Table I. The

open-loop crystallizer model exhibits a highly oscillatory

behavior, which is the result of the interplay between growth

and nucleation caused by the relative nonlinearity of the

nucleation rate as compared to the growth rate. See [5] for a

detailed discussion on the nature of the oscillations exhibited

by this process. The population model introduced provides

a good approximation of the dynamics of a continuous

crystallizer [4]. All simulations have been carried out using

the model of Eq. 1.

B. Reduced-order Moments Model

The population balance model is not appropriate for

synthesizing model-based low-order feedback control laws

due to its distributed parameter nature. To overcome this

problem, following the same approach as in [5], we derive a

reduced-order moments model which accurately reproduces

the dominant dynamics of the system. We define the jth

moment of n(r, t̄) as:

µj =

∫ ∞

0

rjn(r, t̄)dr, j = 0, 1, . . .∞ (3)

Multiplying the population balance in Eq. 1 by rj , integrating

over all particle sizes, and introducing the following set of

dimensionless variables and parameters:

x̃0 = 8πσ3µ0, x̃1 = 8πσ2µ1,

x̃2 = 4πσµ2, x̃3 =
4

3
πµ3, ...,

t =
t̄

τ
, σ = k1τ(c0s − cs), Da = 8πσ3k2τ,

F =
k3c

2
s

(c0s − cs)2
, α =

(ρ − cs)

(c0s − cs)
,

ỹ =
(c − cs)

(c0s − cs)
, u =

(c0 − c0s)

(c0s − cs)

(4)

where c0s is the steady-state solute concentration in the feed,

the dominant dynamics of Eq. 1 can be adequately captured

by the following fifth-order moments model which includes

the dynamics of the first four moments and those of the solute

concentration:

dx̃0

dt
= −x̃0 + (1 − x̃3)Dae

−F

ỹ2

dx̃1

dt
= −x̃1 + ỹx̃0

dx̃2

dt
= −x̃2 + ỹx̃1

dx̃3

dt
= −x̃3 + ỹx̃2

dỹ

dt
=

1 − ỹ − (α − ỹ)ỹx̃2

1 − x̃3
+

u

1 − x̃3

(5)

where x̃ν , ν = 0, 1, 2, 3, are dimensionless moments of the

crystal size distribution, ỹ is the dimensionless concentration

of the solute in the crystallizer and u is a dimensionless

concentration of the solute in the feed. The values of the

dimensionless model parameters in Eq. 4 are given in Ta-

ble II. Note that since the moments of order four and higher

do not affect those of order three and lower, the state of the

infinite dimensional system is bounded when x̃3 and ỹ are

bounded, and it converges to a globally exponentially stable

equilibrium point when lim
t→∞

x̃3 = c1 and lim
t→∞

ỹ = c2, where

c1, c2 are constants. The state of the crystallizer is denoted

as x̃ = [x̃0 x̃1 x̃2 x̃3 ỹ]T .

The reduced-order moments model is a very good ap-

proximation of the population balance model and is suitable

for directly synthesizing model-based low-order feedback
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TABLE II

DIMENSIONLESS PARAMETERS OF THE CONTINUOUS CRYSTALLIZER

σ = k1τ(c0s − cs) = 1.0 mm
Da = 8πσ3k2τ = 200.0
F = k3c2s/(c0s − cs)2 = 3.0
α = (ρ − cs)/(c0s − cs) = 40.0

control laws. The reader may refer to [5], [8] for a detailed

derivation of the moments model, and to [4] for further

results and references in this area.

The stability properties of the fifth-order model of Eq. 5

have been studied and it has been shown [18] that the global

phase space of this model has a unique unstable steady-state

x̃s = [x̃0s x̃1s x̃2s x̃3s ỹs]
T surrounded by a stable periodic

orbit at

x̃s = [0.0471 0.0283 0.0169 0.0102 0.5996]T ,

and that the linearization of Eq. 1 around the unstable steady-

state includes two isolated complex conjugate eigenvalues

with a positive real part. The control objective is to regulate

the system to the unstable steady state x̃s by manipulating

the solute feed concentration c0.

We consider constraints in the input. The dimensionless

solute feed concentration, u, is subject to the constraints:

−umax ≤ u ≤ umax, where umax = 3. For umax = 3, the

constraint on the inlet solute concentration corresponds to

940 kg/m3 ≤ c0 ≤ 1060 kg/m3.

We define x as the deviation of the state of the system x̃
from the steady-state x̃s; that is x = x̃ − x̃s. Using Eq. 5,

the dynamics of x can be written in the following compact

form:

ẋ(t) = f(x(t)) + g(x(t))u(t) (6)

where x = [x0 x1 x2 x3 y]T .

Next we are going to define a feedback control law hL :
Rn → R which satisfies hL(0) = 0 that renders the origin

x = 0 of the closed-loop system of Eq. 6 asymptotically

stable under continuous measurements. Stabilizing state feed-

back control laws for nonlinear systems have been developed

using Lyapunov techniques; the reader may refer to [19], [20]

for results on this area. In this work we use the Lyapunov-

based feedback control proposed in [21] (see also [22], [23])

which is based on a control Lyapunov function of the open-

loop system.

Consider the control Lyapunov function V (x) = xT Px
with P = I for the system of Eq. 6. The following Lyapunov-

based feedback control law [21] asymptotically stabilizes

the open-loop unstable steady-state under continuous state

feedback implementation for an appropriate set of initial

conditions:

hL(x) = −k(x)LgV (x) (7)

where k(x) is equal to


















0, if LgV (x) = 0

LfV (x) +

√

(LfV (x))
2

+ (umaxLgV (x))
4

(LgV (x))
2

[

1 +

√

1 + (umaxLgV (x))
2

] , else

with LfV (x) =
∂V (x)

∂x
f(x) and LgV (x) =

∂V (x)

∂x
g(x).

The feedback controller hL(x) will be used to design the

contractive constraints of the two Lyapunov-based model

predictive controllers which will be presented in Section IV

III. MODELING ASYNCHRONOUS MEASUREMENTS

Most control systems assume that the measurements from

the sensors are obtained in a continuous periodic pattern and

that the communications between the different components

of the system are flawless. However, in many processes these

assumptions do not hold due to a host of measurements

difficulties and possible errors in the communications (for

example if wireless links are used to implement the control

system). In this case, the system is subject to asynchronous

measurements. Measuring the concentration and the prop-

erties of the PSD of a continuous crystallizer is a difficult

task that might take a variable time. We assume that the

sampling of the state of the continuous crystallizer of Eq. 1

takes at least 15 minutes, and if errors occur in the sampling

system or in the communication network, it may take a

much longer time. We assume that the maximum time

interval (worst case occurrence) between two consecutive

measurements is shorter than 2.5 hours, which is denoted

as Tmax. In Section V we present simulation results under

two different assumptions on how the measurements from

the crystallizer are obtained. In this section, we present how

we model sampled-data systems subject to asynchronous

measurements.

To account for asynchronous sampling, the sampling times

are defined by an increasing time sequence {tk≥0}. At each

sampling time tk, a new measurement from the sensors is

obtained. The interval between two consecutive samplings is

not fixed. In the simulation section, we present two different

ways of generating the time sequence {tk≥0}. The only

assumption made on the time sequence {tk≥0} is that there

is an upper bound (which is Tmax) on the maximum time

in which the system operates in open-loop. This bound on

the maximum period of time in which the loop is open has

been also used in other works in the literature [24], [25],

[26], [27] and is needed in the present stabilization problem

because the open-loop crystallizer is unstable.

In this paper we also take into account that the controller

may not receive the whole state (x0, x1, x2, x3, y) at each

sampling instant but just part of it; that is, the PSD measure-

ment x0, x1, x2, x3 or the solute concentration measurement

y (see Fig. 1-2). This is due to the fact that PSD and

solute concentration are measured by different sensors with

different sampling rates. At sampling time tk, if only part

of the state is available, an estimation of the current state

x̂(tk) is obtained and sent to the controller to generate a new

control input. We use an auxiliary variable s(tk) to indicate

what part of the process state is available at sampling time

tk as follows:

1) s(tk) = 1 implies that both measurements of PSD and

solute concentration are available at tk, and x̂(tk) =
x(tk).
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2) s(tk) = 2 implies that only the measurement of PSD

is available at tk. The corresponding value of the

solute concentration at tk is estimated by using the

last available value of solute concentration; that is,

ŷ(tk) = ŷ(tk−1).
3) s(tk) = 3 implies that only the measurement of solute

concentration is available at tk. The corresponding

state of PSD at tk is estimated by the reduced-order

moments model of Eq. 6.

The estimated state used by the controller at each sampling

time x̂(tk) is given by the following equation:






x(tk) if s(tk) = 1
{x0(tk), x1(tk), x2(tk), x3(tk), ŷ(tk−1)} if s(tk) = 2
{x̂0(tk), x̂1(tk), x̂2(tk), x̂3(tk), y(tk)} if s(tk) = 3

(8)

where x̂ν , ν = 0, 1, 2, 3, are estimated by using the reduced-

order moments model. Note that we have to store the

implemented manipulated input trajectory.

In this class of processes, the solute concentration is

obtained with a higher sampling rate than the crystallizer

PSD. This motivates using the last available value of the

solute concentration when a new PSD measurement is ob-

tained. On the other hand, instead of using the last available

values of the PSD each time we obtain a new concentration

measurement, which may introduce a large error because

the PSD is sampled less frequently, we use the reduced-

order moments model to estimate the missing information,

which increases the computational complexity but decreases

the estimation error.

The controller has to take into account that the measure-

ments arrive in an asynchronous manner and that the time in

which it has to operate in open-loop may be long. In order

to decide the manipulated input u(t) that has to be applied at

each time t, the controller uses the last estimated state x̂(tk)
and the corresponding sampling time tk. We assume that

each controller is defined by a function h(∆, x̂(tk)), where

x̂ is the last available estimated state and ∆ is the time that

has passed since that state was received. This function allows

us to model different implementation strategies.

In order to consider the models in this work in a unified

time scale and with the same manipulated input, we sub-

stitute Eq. 2, the expressions of dimensionless time t and

manipulated input u into Eq. 1. We obtain the following

asynchronous nonlinear model for the closed-loop system of

the crystallizer:

1

τ

∂n

∂t
= −k1(c − cs)

∂n

∂r
−

n

τ
+δ(r − 0)ǭk2 exp

[

−k3/(c/cs − 1)
2
]

1

τ

dc

dt
=

(c0s − ρ)

ǭτ
+

(ρ − c)

τ

+
(ρ − c)

ǭτ

dǭ

dt
+

(c0s − cs)u(t)

ǭτ
, t ∈ [tk, tk+1]

u(t) = h(t − tk, x̂(tk))
(9)

At time tk, new information is available from the sensors

and the content of the information is decided by the corre-

sponding value of s(tk). The state x̂(tk) is an estimation of

the actual state x(tk) and it is estimated by the approach

presented before in this section, see Eq. 8. The controller

generates a future manipulated input trajectory h(∆, x̂) that

depends on this estimated state, where ∆ is the time that has

passed since tk.

IV. MODEL PREDICTIVE CONTROL

Model predictive control (MPC) is a popular control

strategy based on using a model of the process to predict

at each sampling time, the future evolution of the system

from the current state along a given prediction horizon.

Using these predictions, the manipulated input trajectory

that minimizes a given performance index is computed

solving a suitable optimization problem. To obtain finite-

dimensional optimization problems, MPC optimizes over

the family of piecewise constant trajectories with a fixed

sampling time and a fixed prediction horizon (i.e., a fixed

length). This implies that the MPC controllers are imple-

mented in a sample and hold scheme. The MPC framework

is particularly appropriate for controlling systems subject to

asynchronous measurements because the actuator can profit

from the predicted evolution of the system, to update the

manipulated input when feedback is lost, instead of setting

the manipulated input to a fixed value (normally to zero or

to the last implemented manipulated input). In this section,

three different MPC controllers, a standard model predictive

controller and two recently proposed Lyapunov-based model

predictive controllers are introduced. These controllers are

based on the reduced-order moments model of Eq. 6 and the

Lyapunov-based controller of Eq. 7 presented in Section II.

A. Standard Model Predictive Control

The standard MPC controller used in this paper is based

on the following optimization problem [28]:

min
u(τ)∈S(∆c)

∫ N∆c

0
[x(τ)T Qcx(τ) + u(τ)T Rcu(τ)]dτ

s.t. ẋ(τ) = f(x(τ)) + g(x(τ))u(τ)
x(0) = x̂
|u(τ)| ≤ umax, ∀τ ∈ [0, N∆c]

(10)

where S(∆c) is the family of piece-wise constant functions

with sampling period ∆c, x(τ) is the predicted trajectory

of the system by the reduced-order moments model for the

manipulated input trajectory computed by the MPC, Qc, Rc

are positive definite weight matrices that define the cost, x̂
is the initial condition and umax is the bound on the control

action.

The initial state is provided as a parameter to the MPC

optimization problem. When at a given time step, a new

estimate of the actual state x̂ is obtained, the optimization

problem defined in Eq. 10 is solved to obtain the cor-

responding optimal manipulated input trajectory u∗(τ) of

length N∆c. Usually, only the first move of the trajectory

(u(τ) ∈ [0, ∆c]) is used. This is the standard receding

horizon strategy and it does not take into account that

the state might be not available at a given sampling time

2236



due to data losses or asynchronous measurement sampling.

The control law corresponding to the MPC controller that

takes into account asynchronous measurements is defined as

follows:

h(∆, x̂) = u∗(∆)

where u∗ is the solution of the optimization problem defined

in Eq. 10 for an initial state x(0) = x̂. Note that this control

law is not defined for all times. The optimal trajectory u∗ is

of length N∆c. This limits the maximum time in which the

MPC controller can operate in open-loop.

B. Lyapunov-based Model Predictive Control I

The standard MPC controller used in this work is based

on minimizing a given cost function defined by matrices Qc

and Rc, using the reduced-order moments model subject

to constraints on the input. No additional constraints are

used to guarantee closed-loop stability properties. In order

to guarantee the stability and robustness of the closed-

loop system, the MPC optimization problem has to be

modified. In this subsection we present the Lyapunov-based

model predictive controller (LMPC) proposed in [15]. This

controller guarantees practical stability of the closed-loop

system under the assumption of synchronous measurements

and no measurement unavailability. This controller is based

on the previously designed Lyapunov-based controller hL

that guarantees asymptotic stability of the closed-loop system

under continuous measurements. This controller is used to

define a contractive constraint which guarantees that the

LMPC inherits the stability and robustness properties of the

Lyapunov-based controller. The controller introduced in [15]

is based on the following optimization problem:

min
u(τ)∈S(∆c)

∫ N∆c

0

[x(τ)T Qcx(τ) + u(τ)T Rcu(τ)]dτ (11a)

s.t. ẋ(τ) = f(x(τ)) + g(x(τ))u(τ) (11b)

x(0) = x̂ (11c)

|u(τ)| ≤ umax, ∀ τ ∈ [0, N∆c] (11d)

∂V (x̂)

∂x̂
f(x̂, u(0)) ≤

∂V (x̂)

∂x̂
f(x̂, hL(x̂)) (11e)

The constraint of Eq. 11e guarantees that the value of the

time derivative of the control Lyapunov function at the

initial evaluation time of the LMPC is lower or equal to

the value obtained if the Lyapunov-based controller u =
hL(x) is implemented in the closed-loop system. This is

the contractive constraint that allows one to prove (when no

measurement unavailability is taken into account) that the

LMPC inherits the stability and robustness properties of the

Lyapunov-based controller hL. The corresponding function

h(∆, x̂) is defined as in the MPC case.

C. Lyapunov-based Model Predictive Control II

In this section, the Lyapunov-based model predictive con-

trol law developed in [16] is given. This control law takes

into account data losses and asynchronous measurements

explicitly. In order to present the optimization problem that

defines this LMPC, we need the following definition:

Definition 1: The sampled trajectory of Eq. 6 of length

N∆c associated with the Lyapunov-based feedback control

law hL(x) with initial state xL(0) is denoted by xL(τ) and

is obtained by solving recursively

ẋL(τ) = f(xL(τ)) + g(xL(τ))u(τk), τ ∈ [τk, τk+1]
u(τk) = hL(xL(τk))

(12)

where τk = k∆c and k = 0, . . . , N − 1.

The sampled trajectory of Eq. 6 associated with the

Lyapunov-based feedback control law hL(x) is the state tra-

jectory of the crystallizer in closed-loop with the Lyapunov-

based controller applied in a sample-and-hold scheme. This

state trajectory is used to define the contractive constraint of

the following LMPC optimization problem:

min
u(τ)∈S(∆c)

∫ N∆c

0

[x(τ)T Qcx(τ) + u(τ)T Rcu(τ)]dτ (13a)

s.t. ẋ(τ) = f(x(τ)) + g(x(τ))u(τ) (13b)

x(0) = x̂ (13c)

|u(τ)| ≤ umax, ∀ τ ∈ [0, N∆c] (13d)

V (x(τ)) ≤ V (xL(τ)), ∀ τ ∈ [0, N∆c] (13e)

where xL(τ) is the sampled trajectory of Eq. 6 of Defini-

tion 1 for an initial state xL(0) = x̂.

The main difference between the LMPC of Eq. 13 and

the LMPC of Eq. 11 presented in last subsection is the

contractive constraint. The constraint of Eq. 11e guarantees

that the LMPC controller of Eq. 11 provides at least the same

decrease of the control Lyapunov function as the Lyapunov-

based controller in the first time step. When data losses or

asynchronous measurements are taken into account, in order

to prove that the LMPC of Eq. 13 inherits the same properties

of the Lyapunov-based controller, the contractive constraint

of Eq. 13e must hold along the whole prediction horizon. In

this manner, when measurements are unavailable, the optimal

manipulated input trajectory evaluated guarantees that the

predicted decrease of the control Lyapunov function is at

least equal to the one obtained applying the Lyapunov-based

controller. The corresponding function h(∆, x̂) is defined as

in the MPC case.

Note that the three model predictive controllers presented

in this section assume a given sampling time ∆c. In most

control systems where the measurements are obtained syn-

chronously and the communications are flawless, this sam-

pling time is equal to the sampling time used to obtain

new measurements and implement the manipulated input

(sample-and-hold schemes). In this paper, however, we deal

with systems subject to asynchronous measurements. This

implies that and the time sequence that determines when

new information is available is independent of ∆c.

D. MPC Parameters

We denote, in the remainder of this work, the three model

predictive controllers of Eqs. 10, 11 and 13 as MPC, LMPC I

and LMPC II, respectively. The cost functions of these

controllers are defined by matrices Qc = P and Rc = 4. The

weight matrices Qc and Rc have been chosen to provide a
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Fig. 1. Closed-loop system with asynchronous measurements: the whole
state is sampled simultaneously.

performance similar to the Lyapunov-based controller under

a sample-and-hold implementation. The sampling time of

the MPC controllers is ∆c = 0.25h which is equal to the

minimum time needed to obtain a new measurement.

Through simulations, we have estimated the transition time

for the crystallizer in closed-loop with the Lyapunov-based

controller which is 2 hours for states x0, y and 4 hours for

states x1, x2, x3. We choose the prediction horizon N = 11
for the model predictive controllers so that the prediction

captures most of the dynamic evolution of the process.

V. SIMULATION RESULTS

In this section, we apply the three model predictive con-

trol laws MPC, LMPC I and LMPC II to the continuous

crystallizer population balance model of Eq. 9 to evaluate

the stability and robustness properties of the corresponding

closed-loop systems in the presence of asynchronous mea-

surements. First, we simulate the system with asynchronous

measurements in which measurements of PSD and solute

concentration come simultaneously (see Fig. 1), and then

simulate with asynchronous measurements in which PSD and

solute concentration are sampled separately (see Fig. 2). The

control objective is to suppress the oscillatory behavior of the

crystallizer and stabilize it at the open-loop unstable steady-

state x̃s that corresponds to the desired PSD by manipulating

the solute feed concentration. The following initial conditions

are used in the simulations:

n(0, r) = 0.0, c(0) = 990.0 kg m−3,
x̃(0) = [0 0 0 0 0.498]T .

(14)

To simulate the continuous crystallizer, we use a second-

order accurate finite-difference discretization scheme. At

every model evaluation step (which is different from the

sampling time and should be chosen to be sufficiently small

in order to get a continuous and accurate solution) of Eq. 9,

the values of n(t, r) and c(t) can be obtained, so we can use

them to calculate the state x at that time using Eqs. 3 and 4

and the steady-state x̃s.

A. PSD and Solute Concentration Sampled Simultaneously

For the simulations in this subsection, we assume that the

time between consecutive measurements is obtained using a

random process and that the PSD and solute concentration

are measured simultaneously. To generate the time intervals

between samples we use a random Poisson process as in

[29], [14]. The Poisson process is defined by the number

of events per unit time W . At a given time t, an event

Fig. 2. Closed-loop system with asynchronous measurements: the states
of PSD and solute concentration are sampled separately.
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0

1

2

Time (hr)

Fig. 3. Asynchronous sampling times for both PSD and solute concentra-
tion.

takes place which means that the state is sampled. The

interval between two consecutive sampling times is given

by ∆a = −lnχ
W

, where χ is a random variable with uniform

probability distribution between 0 and 1. At t+∆a, another

event occurs. The sequence {tk≥0} and the corresponding

auxiliary variable s(tk) for a simulation of length tsim is

generated as follows:

t0 = 0, k = 0
while tk < tsim

χ = rand(1)
tk+1 = tk + −lnχ

W

if tk+1 > tk + Tmax, then tk+1 = tk + Tmax

if tk+1 < tk + Tmin, then tk+1 = tk + Tmin

s(tk) = 1, k = k + 1

end

where rand(1) generates a uniformly distributed random

value χ between 0 and 1, Tmax is the maximum allowable

transmission interval and Tmin is the minimum time interval

between two consecutive samplings. Note that Tmin should

be smaller than Tmax; that is, Tmin < Tmax. As mentioned

before Tmax is 2.5hr. The minimum time limit Tmin is equal

to the synchronous sampling time, that is Tmin = ∆m =
0.25hr. For the simulations carried out in this subsection

we pick the value of the number of events per unit time to

be W = 0.15. The sampling times for the simulations are

shown in Fig. 3. Note that because the number of events is

low, the time between consecutive samplings (and hence, the

time in which the control system must operate in open-loop)

may be large but always smaller than Tmax.

First, we compare LMPC II with MPC. The state and

manipulated input trajectories of this simulation are shown in

Fig. 4. In this simulation, MPC can not stabilize the process,

while LMPC II is able to maintain the process at the desired

steady-state. Second, we compare LMPC II with LMPC I.

The state and manipulated input trajectories are shown in

Fig. 5. Though LMPC II and LMPC I can both stabilize
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Fig. 4. State and manipulated input trajectories of Eq. 9 with PSD and
solute concentration sampled asynchronously and simultaneously using the
predicted manipulated input trajectories of LMPC II of Eq. 13 (solid curves)
and MPC of Eq. 10 (dashed curves).

the process, the transient of the closed-loop system under

LMPC II is shorter than the transient under LMPC I and has

a smaller overshoot.

From the results of this subsection, one can conclude that

LMPC II using the predicted manipulated input trajectory is

the most robust in the presence of asynchronous sampling

among the three controllers.

B. PSD and Solute Concentration Sampled Separately

For this set of simulations, we assume that we have

the measurements of PSD and solute concentration sampled

separately. This implies that we may get a measurement of

PSD at a sampling time but lack corresponding measurement

of solute concentration; and we may have a measurement of

solute concentration but lack the corresponding measurement

of PSD. In addition, we have asynchronous sampling which

means that the length of the time interval between two

consecutive measurements is varying.

Using the same method presented in Section V-A, we

generate two different time sequences {tpk≥0} for PSD (s =
2) and {tck≥0} for solute concentration (s = 3) using W p =
0.15 and W c = 1, respectively. Both time sequences are

generated with the same constraints Tmax = 2.5hr and

Tmin = 0.25hr. The choice of W c = 1 for {tck≥0} is based

on the fact that we can get a measurement of concentra-

tion faster. The two sequences are merged into an ordered

one {tk≥0} by increasing time and the overlapping times

correspond to instants that both measurements of PSD and

solute concentration can be obtained (s = 1). The sampling

sequence {tk≥0} is shown in Fig. 6. Every sampling instant

in the new sequence represents a measurement of PSD or

solute concentration or both. The auxiliary variable s(tk) is

defined accordingly.
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Fig. 5. State and manipulated input trajectories of Eq. 9 with PSD and
solute concentration sampled asynchronously and simultaneously using the
predicted manipulated input trajectories of LMPC II of Eq. 13 (solid curves)
and LMPC I of Eq. 11.
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Fig. 6. Asynchronous sampling times, +: sampling times of PSD (s(tk) =
2), ×: sampling times of solute concentration (s(tk) = 3), ∆: sampling
times of both PSD and solute concentration (s(tk) = 1).

We first compare LMPC II with MPC. The state and ma-

nipulated input trajectories are shown in Fig. 7. As expected,

LMPC II is able to stabilize the process, but MPC fails. The

result is consistent with the previous simulations. Following

that, we compare LMPC II with LMPC I. The state and

manipulated input trajectories are shown in Fig. 8. In this

figure it can be seen that LMPC I can also stabilize the

process but it takes a longer time compared with LMPC II.

Summing up, LMPC II using the predicted manipulated in-

put trajectory yields a more robust closed-loop performance

when the process is subject to asynchronous sampling.

VI. CONCLUSION

In this work, a continuous crystallizer was taken as an

example to demonstrate the problem of preserving closed-

loop stability and robustness of a standard MPC and two

recently proposed Lyapunov-based model predictive con-

trollers in the presence of asynchronous measurements. The

simulation results demonstrate that the closed-loop system

under the LMPC controller that takes into account possible

measurement unavailability is more robust with respect to

asynchronous measurements.
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Fig. 7. State and manipulated input trajectories of Eq. 9 with PSD
and solute concentration sampled asynchronously and separately using the
predicted manipulated input trajectories of LMPC II of Eq. 13 (solid curves)
and MPC of Eq. 10 (dashed curves).
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