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Abstract—Semiconductor Optical Amplifiers (SOAs) are ver-
satile active photonic devices that can provide complex functions
in photonic circuits, such as linear amplification. SOAs must
be regulated due to their nonlinear nature. We consider the
state space formulation of a linear SOA model to design
and analyze controller schemes. We show that delay in the
feedback path is of fundamental importance to the stability
and performance of the SOA system. Due to the sub-nanosecond
dynamics, the SOA system is a challenging system to control. We
derive a design tradeoff on the feedback controller and delay
stability margin of the closed-loop system. Different control
schemes are then compared to show that a dual control scheme
using a feedforward and a feedback controller offers the best
performance.

I. INTRODUCTION

Semiconductor optical amplifiers (SOAs) are active non-

linear photonic devices that are becoming increasing preva-

lent in today’s photonic circuits. SOAs are very fast (sub-

nanosecond) devices that provide functions such as optical

amplification [1]. Due to the nonlinear nature of the SOA,

the amplification function is not ideal. In particular, there

exists a significant amount of channel cross-talk: the output

optical power cannot be maintained constant due the fact that

all optical channels share the same inversion carrier density.

Noise at the input and output terminals can also make it

difficult to design practical devices with SOAs [2].

It was shown in [3]–[5] that a state model can be derived

from the governing non-linear partial differential equations

and channel cross-talk can be reduced by using state feed-

back. However, no feedback loop delay was considered in the

analysis and design in [3]. The total controller delay in the

feedback loop is of fundamental importance for two reasons:

stability and fast control. Controller delay arises naturally

due to photodetection delay, electronic circuits delay, and

modulation delay. In practice, SOAs are used in optical

communications circuits with sub-nanosecond pulses. Since

SOAs have such fast dynamics, the closed loop system is

only able to tolerate a certain amount of delay, called the

delay margin of the system. Thus any controller must be fast

enough so the delay in the feedback does not exceed the

delay margin. Any feedback controller must also be faster
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Fig. 1. Optical amplifications inside the SOA where E denotes energy.
Current Ī supplies the electrons and holes. An incoming photon causes a
stimulated recombination of a mobile electron and a hole, and two identical
photons are released, therefore amplifying the input power along the length
of the SOA.

than the pulse durations to have meaningful control of the

output. This sensitivity of a SOA system to the speed of the

controller presents a challenging control design problem due

to the sub-nanosecond dynamics.

In this paper we analyze the effect of delay in the feed-

back path, starting from a complete model that includes

the drive circuit and the parasitics (Section II). To do this

we design optimal state feedback controllers and Kalman

state estimators which can be used to the reject noise in

the system (Section III), and then we analytically calculate

the delay margin of the system. We thus show that the

system is extremely sensitive to delay (Section IV), and

therefore the feedback controller needs to be designed with

rather demanding constraints. We show that the Frobenius

norm of the controller can be used to effectively characterize

this relationship between the stability delay margin and the

feedback controller. Finally we present several alternative

controllers (Section V) and show that a design that has both a

feedforward and a feedback controller is the best performing

one.

II. MODEL DERIVATION

A SOA is basically a laser diode without end mirrors, and

the amplification of the input optical signals is essentially
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Fig. 2. SOA equivalent circuit model including both the drive circuit and
the SOA electronic parasitics from [6]. All components are defined in Table
I.

TABLE I
PARAMETERS AND VALUES FOR THE MODELS AND SIMULATIONS (ALL

OPTICAL CHANNELS ARE TAKEN TO BE IDENTICAL).

Parameter Symbol Value Unit

Source current Is — mA
Source resistance Rin 50 Ω
Package capacitance Cp 10 pF
Package inductance Lp 1 nH
Package resistance Rp 1 Ω
Chip capacitance Cs 3 pF
Chip resistance Rs 1 Ω
Space-charge capacitance Csc 3 pF

Total active region current Ī — mA

Inversion carrier density N — cm−3

Active region current I — mA

Recombination rate R — cm−3s−1

Single-pass gain g — cm−1

Optical channel power P — mW
ASE channel power Q — mW
Length L 500 µm

Interaction volume V 120 µm3

SOA cross-sectional area A 0.24 µm3

Optical carrier frequency ω 1.2215 rad/s

Waveguide loss α 40 cm−1

Zero-bias inversion density Ne 5 × 1010 cm−3

Diode ideality factor n 2 —
Temperature T 300 K

Planck’s constant ~ 1.054 × 10−34 J · s

Elementary charge q 1.602 × 10−19 C

Boltzmann constant kB 1.38 × 10−23 J/K

Bias inversion density N0 3.8 × 1024 m−3

Bias current I0 0.150 mA
Bias total optical input Pin0 1 mW

a function of the inversion carrier density N(t) as shown in

Fig. 1, where N(t) is the number of electrons in upper energy

level (E1) minus the number of electrons in the lower energy

level (E2). A parasitic network lies between the current

injected into the terminals of the SOA, Is, and the current that

reaches the active region, Ī [6]–[8]. The equivalent circuit is

shown in Fig. 2 with components defined in Table I.

A. Governing Equations and Driver Circuit

The SOA is governed by the following set of equations

[9]: the inversion carrier density rate equation,

N(z, t)t =
I(z, t)

qV
− R(N, z, t)

−
1

A

m
∑

i=0

gi

(

N(z, t), P (z, t), Q±(z, t)
)

~ωi

Pi(z, t)

−
2

A

µ
∑

j=1

gj

(

N(z, t), P (z, t), Q±(z, t)
)

~ωj

(

Q+
j (z, t) + Q−

j (z, t)
)

(1)

the set of signal propagation equations,

∂Pi(z, t)

∂z
= gi

(

N(z, t), P (z, t)
)

Pi(z, t) − αiPi(z, t), (2)

and the set of amplified spontaneous emission (ASE) propa-

gation equations,

∂Q±

j (z, t)

∂z
= ± gj

(

N(z, t), P (z, t), Q±(z, t)
)

Q±

j (z, t)

∓ αjQ
±

j (z, t) + ~ωjRsp,j ,

(3)

where i ranges over the number of optical channels, j
ranges over the number of ASE channels, N(t) is the

inversion carrier density and all other parameters are given

in Table I. We take the states of the system to be z(t) =
[

vp(t) ip(t) vs(t) N(t)
]T

. The non-linear state equa-

tions are derived in [4] using length-averaging and verified

experimentally in [5]. The state equations are restated here

for convenience:

v̇p =
vp

RinCp

ip
Cp

+
Is

Cp

(4a)

i̇p =
vp

Lp

−
Rpip
Lp

−
vs

Lp

(4b)

v̇s =
ip
Cs

−
vs

RsCs

+

nkBT
q

ln ( N
Ne

+ 1)

RsCs

(4c)

Ṅ =

[

Csc
nkBT

q
ln (

N

Ne

+ 1)N + qV

]−1[
vs

Rs

−
nkBT

q
ln( N

Ne
+ 1)

Rs

− qV R̄

− qL
m

∑

i=0

(

Pout,i − Pin,i

~ωiL
+

αiP̄i

~ωi

)

− 4qL

µ
∑

j=1

(

Qj(L) − Qj(0)

~ωjL
+

αjQ̄
+
j

~ωj

)]

.

(4d)

B. Linear Model

The linearization of the nonlinear equations results in a

state space model as:

ż = Fz + Gu (5a)

v = Hz + Ju, (5b)
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where z is the state vector in (4), u is the input vector

composed of

u =
[

Is(t) PT
in(t)

]T
, (6)

and v is the output vector composed of

v(t) =
[

Isoa(t) PT
out(t)

]T
(7)

where Pin and Pout represents the total input and total output

powers respectively. The algebraic expressions of matrix F

is obtained by linearizing (4),

F =









−1/RinCp −1/Cp 0 0
1/Lp −Rp/Lp −1/Lp 0

0 1/Cs −1/RsCs F3,4

0 0 F4,3 F4,4









, (8)

where

F34 =
1

RsCs

nkBT

q
ln(

N

Ne

+ 1)N (9a)

F43 =
1

(Csc
nkBT

q
ln( N

Ne

+ 1)/N + qV )Rs

(9b)

F44 = −
Csc

(Csc
nkBT

q
ln( N

Ne

+ 1)/N + qV )2

[

vs

Rs

−
nkBT

q
ln( N

Ne
+ 1)

Rs

− qV R

− qL
m

∑

i=0

(

Pout,i − Pin,i

L
+ αP̄i

)

− 4qL

µ
∑

j=1

(

Qout,j − Qin,j

L
+ αQ̄j

)]2[

nkBT

q
ln

(

N

Ne

+ 1

)

N2

]

+
1

Csc
nkBT

q
ln( N

Ne

+ 1)/N + qV

[

−
1

Rs

nkBT

q
ln(

N

Ne

+ 1)N

− qV RN − qL

m
∑

i=0

(

1

L
Pout,iN + αP̄iN

)

− 4qL

µ
∑

j=1

(

1

L
Qout,jN + αQ̄jN

)]

,

(9c)

and G, H, and J can be obtained similarly.

The numerical values matrices F, G, H, and J are

calculated around the bias point given in Table I,

F =









−2e9 −1e11 0 0
1e9 −1e9 −1e9 0
0 3e11 −3e11 4.7e−15

0 0 2e34 −4.4e10









G =









1.0e11 0
0 0
0 0
0 −4.9e36









H =

[

−0.02 0 0 0
0 0 0 3.7e−25

]

J =

[

1.0 0
0 102.5

]

.

The linearized system can be easily checked to be con-

trollable and oberservable. The linearized model has been

[Is PT
in(t)]T v

z̃

F,G,H, and J
Linear SOA model

K

Fig. 3. A system view of the SOA and the feedback controller.

checked to be valid around the bias point for a 20% mod-

ulation in the input power, and its operation range expands

when feedback is used [3]. It is important to note here that

our analysis holds regardless of the actual number of optical

channels in the SOA. The goal of the controller is to maintain

the total output optical power constant when the input into

the SOA changes or some input channels are dropped. This

goal is equivalent to maintaining the inversion carrier density

constant [3].

C. Model Scaling

Note that the system matrices F,G and H are not numeri-

cally well conditioned. For example, the reciprocal condition

number [10] of F is RCOND(F) = 5.2 × 10−48. This

numerical problem is general once the equivalent electronic

circuit of the SOA is taken into account. To solve this, we

use scaling. Specifically, if we look more closely at the

eigenvalues of F,

eig(F ) =
[

−3.3e11 −2e9 + 1e10i −2e9 − 1e10i −4.3e10
]

(11)

since the eigenvalues of F are not far apart and so F is not

a stiff matrix [11]. We use a simple diagonal scaling matrix

T on the state vector, such that

z̃ = Tz (12)

where

T =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 10−25









. (13)

In the new coordinates, the linear representation is

˙̃z = F̃z̃ + G̃u (14a)

v = H̃z̃ + Ju (14b)

where F̃ = TFT−1, G̃ = TG, and H̃ = HT−1. With

the new scaling RCOND(F̃) = 2.3 × 10−3. From this we

can see that after scaling the numerical conditioning of the

system is much improved.

III. OPTIMAL CONTROL DESIGN

A. Optimal State Feedback

The general setup of the feedback controller is given in

Fig 3. The goal of the feedback controller K is to keep the
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inversion carrier level constant to suppress crosstalk. This

controller can be generated using many standard techniques;

here we choose to use optimal state feedback. In a real

physical system not all states can be equally used to for

feedback. For example, according to the circuit in Fig 2,

only the state vp is directly accessible, and the other states,

ip, vs and N need to be estimated. Therefore, we want to

rely more heavily on vp then on the other states. Optimal

control can be used to achieve the above criteria. The SOA

here is modeled as a linear time-invariant system, so we use

the well-known linear quadratic regular (LQR) design [12].

The optimal control problem is to find a controller, K, such

that the cost function J

J =

∫ ∞

0

(z̃T (t)Qz̃(t) + uT (t)Ru(t)) dt (15)

is minimized, where Q is a positive semi-definite matrix

representing the cost associated with the states, and R is a

positive definite matrix representing the cost associated with

the outputs. K is selected by solving the algebraic Riccati

equation

F̃TP + PF̃ − PG̃R−1G̃TP + Q = 0, (16)

where

K = −R−1G̃TP. (17)

The efficiency of such a controller can be seen in Fig. 4

where we plotted the result for

Q =









1 0 0 0
0 10 0 0
0 0 10 0
0 0 0 10









, R =

[

1 0
0 1

]

. (18)

The carrier density of the closed-loop system is almost

constant compared to the carrier density of the open-loop

system under 50% input optical power modulation as desired.

B. Observer

In the above section discussing state feedback, we have

assumed that all the states would be available for feedback.

This is not the case in practice. The only state directly

accessible is vp. The other electronic states ip and vs come

from the small signal model of the driver electronics of

the SOA, and are not accessible physical quantities. Also

the inverse carrier density N is very difficult to measure.

Therefore we must design a state observer as shown in Fig.

5.

Since both the input signal u and the output signal v are

corrupted by noise, we need to use a noise rejection filter.

With our state space model, we can use a Kalman filter that

would reject the noise and give a good estimation of the

states. The filter is set up as

˙̃z = F̃z̃ + G̃ũ + Bw (19a)

v = H̃z̃ + Ju + r, (19b)

Fig. 4. Comparison of the closed-loop and open-loop system: top graph
shows the changes in the inversion carrier density, and bottom graph shows
the total input optical power.

K

u

F,G,H, and J

ˆ̃z

v

v̂

ũ

Kalman Filter

Linear SOA model

w

r

Fig. 5. Setup of the SOA state estimator.

where w and r are noises at the input and output of the SOA

respectively. For simplicity of design, w and r are assumed to

be uncorrelated wide-sense stationary vector Gaussian white

noises with zero-mean. The estimation error is given by

e(t) = z̃(t)− ˆ̃z(t). The Kalman filter can be easily designed

by solving an algebraic Riccati equation and Fig. 6 shows

the estimated state and the actual state. The estimated state

tracks the actual state very well and is much less noisy.

IV. DELAY ANALYSIS

The SOA is useful in communications because its fast

speed and small size. If state feedback is used, and all of

the states except vp are not directly accessible, the delay

in the closed loop system in Fig. 3 becomes an important

problem. In this section we show that delay is an important

factor and might make state feedback impractical. Delay in

this system arises out of two mechanisms, the first is from

the signal propagation delay through the SOA and the second

is the delay from the surrounding optoelectronics. The later

delay arises naturally from the state observer circuits due to

photoelectric conversion delay and electronic circuits delay.

Since the optoelectronic delay is much larger than the signal

propagation delay, the delays in the system term can be
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Fig. 6. Comparison between the actual SOA state (solid line) and the
estimated SOA state (dash line). Transients are included to show tracking.

K

[Is PT
in(t)]T

e−τs

F,G,H, and J

ṽLinear SOA model

Fig. 7. Feedback loop with delay.

considered as a lumped delay as shown in (20). A block

diagram representation is shown in the closed loop system in

Fig. 7.

˙̃z = A0z̃ + A1z̃(t − τ) + G̃u, (20)

where A0 = F̃ and A1 = G̃K. Thus we can apply Theorem

2.13 in [13] to obtain necessary and sufficient conditions

for delay stability. This theorem essentially gives a test for

the delay in the feedback loop that would cause the poles

(eigenvalues) of the closed-loop system to cross into the right

half complex plane using constant matrices formed by the

Kronecker tensor product. This theorem can be efficiently

implemented numerically in Matlab based on the eigenvalues

and generalized eigenvalues of constant matrices. It is stated

here for convenience.

Theorem 1 (Constant Matrices Test): Suppose the system

in (20) is stable at τ = 0. Define τ̄ to be the the delay margin

of the system. Define the matrices B0,B1, and B2 ∈ R
16x16

by B1 = A0 ⊕ AT
0 ,B0 = I ⊗ AT

1 , and B2 = A1 ⊗ I.
Furthermore, define

U =

[

I 0
0 B2

]

V =

[

0 I
−B0 −B1

]

.

Then, τ̄ = ∞ if σ(U,V)∩ ∂D = ∅. If, however, σ(U,V)∩
∂D 6= ∅ and eig(A0+A1zi) = {0} for all zi ∈ σ(U,V)∩D,

then τ̄ = ∞ as well. In these cases the system in (20) is stable

independent of delay. Otherwise,

τ̄ = min
θi

ωi

, (21)

where θi ∈ [0, 2π], ωi ∈ R
+, ωi 6= 0, and e−jθi ∈ σ(U,V)

satisfy the relation jωi ∈ eig(A0 + A1e
−jθi). The system

in (20) is stable for all τ ∈ [0, τ̄),but is unstable at τ =
τ̄ . Here ⊕ denotes the Kronecker tensor sum, ⊗ denotes

the Kronecker tensor product, eig(·) denotes the eigenvalues,

σ(·, ·) denotes the generalized eigenvalues, and ∂D denotes

the unit circle on the complex plane. �

For our system, the delay margin depends on the feedback

controller K used. According to Thm 1, for a different K,

there would be an different A1, and thus a different delay

margin. For example, the LQR controller used in Fig. 4 gives

a delay margin of about 17.4 ps. It is very difficult to design

a optoelectronic circuit with delay less than 17.4 ps, since a

single gate delay in a NOT gate is around 4.5 ps [14], and

the observer is likely much more complex since it needs to

include detection, processing and optical modulation circuits.

In general, once a electronic circuit is chosen to implement

the feedback controller K, the delay in the circuit is known.

However, a general method to design a feedback controller

for a MIMO system to have a specific delay margin does

not exist. Here we propose to use the Frobenius norm of the

controller to characterize the overall strength of feedback,

i.e.,

||K||2F =
m

∑

i=1

n
∑

j=1

|kij |
2 = trace(KT K) =

min(m,n)
∑

i=1

σ2
i

(22)

where σi terms denote the singular values of K and K ∈
R

m×n. It is expected that the delay margin is inversely

proportional to the strength of feedback (||K||F ). To validate

this hypothesis, optimal feedback controllers with different

Frobenius norms are designed, the associated delay margins

are calculated via Thm 1, and the results are plotted in Fig.

8. The controllers are generated using the LQR design by

varying over different Q and R matrices and for simplicity,

Q and R and kept as diagonal matrices. Fig. 8 is a log-

log plot of about 1000 points with the delay margin τ̄ on

the x-axis and the feedback controller ||K||F on the y-axis.

This plot clearly shows that the delay margin is inversely

proportional to the strength of the feedback controller K. In

fact, a simple function of the form f(x) = ax−1 + b fits the

curve with a R2 of 99%. It should be noted that for large

delay margins, the curve will become flat because there exists

a threshold controller strength for which the delay margin

becomes infinite.

The sensitivity of the SOA system to delay presents a

challenging design problem because it puts some rather de-

manding constrains on the feedback controller. For example,

for a delay margin of 50 ps, the maximum strength of the

controller can have is 0.2. Fig. 8 gives the design tradeoff

rule: if a large delay margin is required (due to a slow

state estimator and controller), then the controller must be
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Fig. 8. Feedback controller norm against the delay margin on a log-log
scale. A clear inverse relationship f(x) = ax−1 + b is demonstrated. The
line flats out for larger delay margins because the delay margin becomes
infinite for controller norm less than a certain threshold.

relatively weak in strength while still performing adequately;

on the other hand, if a strong controller is needed, then fast

state estimator and controller need to be designed to meet

a more stringent delay margin. Analysis of this kind can be

used in practice as a valuable design tool to trade feedback

strength versus delay margin.

A. Output Feedback

If the output from the SOA is used as feedback instead

of the states, then no estimation is needed since all optical

outputs are available. However, delay is still present since

there are conversions between optical and electrical signals,

or at least in routing the optical signals to allow feedback.

This problem can also be analyzed by using the state space

model under the general delay framework established in (20)

with the assumption that the SOA itself has negligible delay.

This is equivalent to assuming that a change in the input u

will produce an immediate change in the output v through

the coupling matrix J. For a typical SOA with a length of 500

microns and a relative index refraction of 3, the propagation

time is 5 ps; this is much smaller than the delay in the

feedback path, justifying the above assumption. With this

assumption, the vector signal ṽ = v−Ju = H̃z̃ is available

and can be feedback into the system. Considering the set up

in Fig. 9, we can rewrite (20) as

˙̃z = A0z̃ + A1z̃(t − τ) + G̃u, (23)

where A0 = F̃ and A1 = G̃KH̃. Thus only A1 needs to

be changed in order to analyze delay in the output feedback

case.

B. Feed-forward and Feedback

We can also use a feed-forward control scheme, which

would be fast and delay-tolerant, but it needs the model

K

[Is PT
in(t)]T

e−τs

F,G,H, and J

ṽLinear SOA model

Fig. 9. Output feedback configuration with delay in the feedback path. ṽ

is assumed to be available for feedback.

K

F,G,H, and JPin(t)
Pout(t)

e−τs

e−µs

Is(t) Iout(t)

Linear SOA model
KF

Fig. 10. Setup of the combined system involving both feedback and
feedforward. Only the output current Iout is used in feedback for simplicity
in physical implementations.

to match well with the physical SOA, which is unlikely

to happen in practice. Output feedback is insensitive to

modeling errors, but is intolerant to delay as shown in last

section. Thus similar to erbium-doped fiber amplifier control

in [15], we propose to combine both schemes to have fast

regulator action and also insensitivity to SOA modeling

errors. One such setup is shown in Fig 10, where both output

feedback and feedforward controllers are used. In this setup,

the input optical signal is split into two signals, with one

entering the feedforward controller while the other one enters

a delay loop represented by e−µs, where µ is an delay to

be designed such that the two input signals arrive in sync.

The feedforward controller takes Pin and Is and adjust the

bias current of the SOA accordingly, i.e. to maintain N(t)
constant. This is further supplemented by a feedback signal

of the output current Iout that is directly accessible so that

no additional optoelectronics are needed. Furthermore, the

feedback controller K can be simply proportional, leading to

a simple physical implementation.

The closed-loop general system in Fig. 10 is described by

(24),
˙̃z = A0z̃ + A1z̃(t − τ) + G̃KF u (24)

which is essentially (23) with u replaced by KF u every-

where.

Fig 11(b) compares the performances of different control

schemes. The delay in the feedback path τ is 100 ps. Since

only the output current is fed back into the input current,

a 100 ps delay is reasonable. The input consists of optical

signals with sharp pulses and a slow sinusoidal variation over

a longer time scale as shown in Fig. 11(a). Feedforward-

only control reduces the the fast transients in the carrier

density, but does not reduce the long-term variations. On the

4159



(a) Input test signal: the sinusoidal component represents the large time-scale
power drift and the pulses represent data signals.

(b) Results of various control schemes for input test signal in (a). The mixed
control scheme of both feedforward and feedback loops performs the best by
keeping inversion carrier density relatively flat. The offset in the inversion
carrier curves are caused by different biasing in the input current, and it is
adjusted such that all curves are easily visible.

Fig. 11. Input and the responses of the different controllers.

other hand, feedback-only control does not perform better

than the open-loop system due to the weak control signal

that is limited by the delay margin. The mixed configuration

of feedforward and feedback performs much better than the

others, giving a relatively flat carrier density profile.

V. CONCLUSIONS

We used a state space model to design and analyze various

controllers for the SOA. In particular, delay in the feedback

loop is shown to be of fundamental importance to the stability

of the closed-loop system. We showed that the Frobenius

norm can be used to effectively characterize the relationship

between the feedback controller and the delay margin in the

system. This framework gives a practical method of trading

controller strength and delay margin in design. We then

proposed different controller schemes that can work around

the closed-loop delay stability problem. We showed that a

dual control scheme of a feedforward controller together

with a purely electronic feedback controller gives the best

performance.
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