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Abstract— This paper addresses the problem of multiple
parameter estimation in dynamical systems, where the solution
algorithm is built upon the principles of extracting statistical
information contents or patterns in the framework of Symbolic
Domain Filtering. The proposed algorithm has been tested
for estimation of two slowly varying parameters in an active
electronic system that is constructed in the classical Duffing
equation setting.

Index Terms— Symbolic Dynamics, Parameter Estimation,
Tsallis Thermodynamics

I. INTRODUCTION

RECENT research has explored the problem of anomaly

detection in dynamical systems based on Symbolic

Dynamic Filtering (SDF) [1]–[3]. Component level fault

isolation is of practical significance for health monitoring of

dynamical systems that are composed of mutually interating

subsystems. This is especially important if tractable models

are not available for individual components that are richly

interconnected, physically, as well as through the use of

feedback control loops. The rationale is that degradation

in any one component may affect the input condition for

other components. Thus, detection and isolation of anoma-

lous behavior in multiple components and estimation of the

evolving fault magnitude for the purpose of prognoses and

health monitoring pose a challenging system identification

problem. There are several non-linear system identification

techniques available, such as Bayesian filtering and neural

networks [4].

The key problem, addressed in this paper, is identification

of statistical patterns, which represent evolving dynamical

behavior of the system. The pattern identification problem

is formulated in terms of observation-based estimation of

the process variables. In other words, in the absence of

a feasible mathematical model, the inherent dynamics of

a nonlinear dynamical system are inferred from time se-

ries data generated from sensing devices that are sensitive

enough to capture the essential information on the system

dynamics. Information-based inference of the underlying

process becomes a formidable task. These complexity issues

in the information-based inference of the underlying process

have motivated the study of dynamical systems from the

perspectives of Statistical Mechanics [5], [6].
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07-1-0376 and by NASA under Grant No. NNX07AK49A.

II. SINGLE PARAMETER ESTIMATION PROBLEM

This section explains how anomaly detection algorithms

are constructed for estimating a single parameter in a com-

plex dynamical system under the symbolic dynamic filtering

(SDF ) framework. A brief description of the construction

of the anomaly measure and the parameter estimation from

this anomaly measure for the Duffing equation follows [7].

A. Construction of Anomaly Measure using Symbolic Dy-

namics

The following steps, summarize the procedure of SDF

for anomaly detection.

• Time series data acquisition on the fast scale from

sensors and/or analytical measurements. Data sets are

collected at different slow time epochs t0, t1, t2, ...tk....

• Generation of wavelet transform coefficients [8], ob-

tained with an appropriate choice of the wavelet basis

and scales [2].

• Partitioning [2] of the wavelet space at the nominal

condition at time epoch t0. Each segment of the parti-

tioning is assigned a symbol from the alphabet Σ.

• Construction of a finite state automaton at time

epoch t0 (nominal condition) from alphabet size |Σ|
and window length D. The structure of the finite state

machine is fixed for subsequent slow time epochs

{t1, t2, ....tk....}.

• Calculation of the state probability vectors

p
0,p1,p2, ...pk... The probability distribution p

0 of

patterns is recursively computed as an approximation

of the natural invariant density [5] of the dynamical

system at the slow time epoch t0. Subsequently

p
1,p2, ...pk... at slow time epochs, t1, t2, ...tk... are

computed from the respective symbolic sequences

using the finite state machine constructed at time epoch

t0.

• Computation of scalar anomaly measures

µ1, µ2, ..., µk, ... based on evolution of these probability

vectors and by defining an appropriate scalar distance

function µk = d(pk,p0) with respect to the nominal

condition [1].

B. Single Parameter experiment on an electronic system

An electronic system apparatus is constructed, as de-

scribed in [7], based on the Duffing equation [9] that is a
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Fig. 1. Phase Plots for the Multi-Parameter Duffing Experiment

second-order forced differential equation with a cubic non-

linearity:

d2x(t)

dt2
+ β

dx

dt
+ x(t) + x3(t) = A cos(ωt) (1)

The dissipation parameter β(ts), realized as a resistance

in the circuit, varies with the slow time ts and is treated as a

constant in the fast time scale at which the dynamical system

is excited. The goal is to detect, at an early stage, changes in

β(ts), which are associated with the anomaly. For illustration

purposes, we show the response of a stimulus with amplitude

A = 22 and frequency ω = 5 .

C. Inverse Problem: Single Parameter Solution

This section focuses on the inverse problem of parame-

ter estimation based on computed values of the deviation

measure. The parameter is a slowly varying random process

and is therefore assumed to be a random variable at each

slow time epoch, for which the deviation measures are the

only observables. To account for the inherent uncertainties

in the system components and to ensure robust estimation, a

large number of experiments are performed and the deviation

measures are calculated from observed time series data

during every experiment, with the objective of estimating

the unknown parameter.

The range of the computed deviation measure is dis-

cretized into finitely many levels. A pattern matrix is created

where each column represents the spread of the parameter

for a particular value of the deviation measure. A statistical

distribution is hypothesized for the spread of the parameter

and the goodness-of-fit of the hypothesized distribution is

assessed with χ2 and Kolmogorov-Smirnov tests.

III. THE MULTI-PARAMETER ESTIMATION PROBLEM

A. Multiple Parameter Experiment

The Duffing equation is a second-order forced differential

equation with a cubic non-linearity . It is given by

d2x(t)

dt2
+ β

dx

dt
+ α1x(t) + x3(t) = A cos(ωt) (2)

In this experiment, the dissipation parameters are chosen

as β and α1. The input stimulus are chosen as A = 5 and

ω = 5. The stationary behavior of the system is obtained with

several combinations of values, with β ranging from 0.10 to

0.40, and α1 ranging from 0.10 to 1.50. The phase plots are

shown in Figure 1. The third row of plots corresponds to a

value of α1 = 1.0 which is exactly the same as considered

in Section II-B. It can be seen that increasing (decreasing)

the value of α1 causes an early (late) onset of bifurcation.
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Fig. 2. Three Dimensional view of Anomaly Measure µ

Also, a bifurcation is associated simply with a rise in α1 for

low values of β as can be seen in the first row of plots. It is

also clear that there is very little visible difference in most

plots before the onset of bifurcation. The challenge of this

experiment is to determine the values of both α1 and β by

looking at data gathered at a slow time scale.

B. Formulation of the Problem Statement

The method outlined in Section II-C cannot directly be

extended to a multiple parameter framework. That is, the

anomaly measure µ obtained from a single time series cannot

always be used to isolate and estimate multiple faults in a

system. Consider the Duffing equation elaborated in Section

III-A. The anomaly measure µ is obtained for each pair of

(β, α1) values, for one single run of the system and a three

dimensional plot is obtained as shown in Figure 2, with α1 on

the x-axis, β on the y-axis and the anomaly measure µ on the

z-axis. Figure 3 shows a contour plot with each line joining

points with the same value of anomaly measure µ. The value

of µ is indicated by the color of the line, with a colorbar to

the right of the plot. The nominal condition is represented by

α1 = 1, β = 0.1 which corresponds to an anomaly measure

of 0. It can be seen that µ increases as the system deviates

in either direction from the nominal condition, rising sharply

at bifurcation. Unlike the single parameter case, the anomaly

curves are not normalized.

It is clear from Figure 3 that a single value of µ would

contribute to infinitely many combinations of (β, α1). For

example, taking a section along µ = 0.4 gives a contour.

Now, every point (β, α1) along this contour yields the same

value of µ and hence the current information does not help in

isolating the exact values of (β, α1) that describe the system

at the present case.

IV. THERMODYNAMIC FORMALISM FOR PARAMETER

ESTIMATION

In order to solve this problem, the principles of ther-

modynamics and statistical mechanics [5] are invoked. In
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Fig. 3. Contour Plot of Anomaly Measure µ

statistical mechanics, a few macroscopic parameters (e.g.

pressure and temperature) are used to describe the intrinsic

dynamics of the entire system in terms of the estimates

derived from the distribution of the elementary particles in

various micro states. In the same fashion, the behavior of a

dynamical system can be investigated both from microscopic

and macroscopic points of view. In the study of a dynamical

system, the measured time series data of the observable

parameters on the fast time scale can be analyzed to generate

the pattern vectors in terms of the probability distributions,

which can be used to describe the macroscopic or global

behavior of the system at a particular slow time epoch.

The information derived from these pattern vectors can be

further compressed into a few macroscopic parameters such

as entropy, Kullback distance, and Euclidean norm.

Statistical Mechanics ⇒ distribution of microstates →
macroscopic properties

Dynamical System⇒ pattern vectors from time series data

→ System Parameters

A. Escort Probabilities and Distributions

Escort distributions [5] scan the attributes of the original

distribution, while describing the features of a non-linear

dynamical system. [10]. Let {pi} be the original distribution.

Then its escort is given by:

Pi =
φ(pi)

∑

j φ(pj)
(3)

where φ is a positive function.

This equation comes about when we consider that the

Renyi information is a monotonically increasing function of

β [5]. An important case occurs if φ(s) = sq , for 0 < s ≤ 1

and q > 0 then P
(q)
i ≡ Pi and

P
(q)
i =

(pi)
q

∑

j(pj)q
(4)

1294



Expectations with respect to the original distribution p are

denoted as Ep. Also, expectations with respect to the escort

distribution P (q) are denoted as Fq . More formally,

Epf =

∫

Ω

dµ(x)p(x)f(x) (5)

and

Fqf =

∫

Ω

dµ(x)P (q)(x)f(x) (6)

Now, pi
q
→ P

(q)
i can be regarded as a transformation.

P
(q)
i

r
→=

(pi)
qr

∑

j(pj)qr
= P

(qr)
i (7)

This transformation forms a one-parameter Abelian group

with the identity transformation corresponding to the order

unity. The parameter is obviously, q.

In the context of Symbolic Dynamics, it is proposed

that the State Probability Vector corresponds to the original

distribution, {pi}, while the escort distribution is P
(q)
i =

(pi)
q

∑

j
(pj)q where q is defined as the Tsallis degree of non-

extensivity of the complex dynamical system. In the two

cases considered in this paper, it is assumed that q = 1 and

the original distribution and the escort distribution are the

same.

B. Parameter Estimation using Escort Probabilities

The concept of Fisher information is introduced in a ther-

modynamic sense, which is then applied to the problem of

parameter estimation. The discussion follows the principles

embodied in [5], [10]. In statistics and information theory,

the Fisher information (denoted I(β)) is the variance of the

score. The Fisher information is the amount of information

that an observable random variable X carries about an

unknown parameter β upon which the likelihood function

of X , I(β) = f(X; β), depends. The likelihood function is

the joint probability of the data, the Xs, conditional on the

value of β, as a function of β. Since the expectation of the

score is zero, the variance is simply the second moment of

the score, the derivative of the log of the likelihood function

with respect to β.

I(β) = E

{

[

∂

∂β
ln f(X;β)

]2
∣

∣

∣

∣

∣

β

}

, (8)

This implies 0 ≤ I(β) < ∞.

To introduce a thermodynamic formalism based definition

of the Fisher information, it is necessary to first define

Kullback information and the Kullback Distance.

The Kullback Liebler relative entropy is defined for two

distributions π and πa as:

K [π ‖ πa] =
∑

i

πi ln
πi

πa
i

(9)

This is positive definite and vanishes only if πi = πa
i ∀i.

The Kullback Liebler divergence is defined for the same

two distributions as:

D [π, πa] = K [π ‖ πa] + K [πa ‖ π] (10)

Let πi depend on a set of parameters q. That is, let πi =
πi(q), where q = (q1, q2, . . . , qn).

Let πa
i represent πi(q + dq). D[π, πa] is calculated as:

D [π, πa] =
n

∑

µ,ν=1

gµν(q)dqµdqν (11)

where gµν is given as:

gµν(q) =
∑

i

∂µπi(q)∂νπi(q)

πi(q)
(12)

gµν is defined as the Fisher Information, or the Fisher

metric, and ∂µ = ∂
∂qµ

. q supplies a local coordinate in

the n-dimensional submanifold of the functional space of

distributions. The Fisher metric is merely an induced metric

on this manifold [5], [10].

V. MULTIPLE PARAMETER ESTIMATION FRAMEWORK

The principles detailed in section IV are now applied to

the problem of multiple parameter estimation. The following

analogies are proposed:

π ≡ p0 (13a)

πa ≡ pk (13b)

q ≡ β (13c)

It is proposed that the escort probabilities in Gibbs’ ex-

tensive thermodynamics correspond to the state probabilities

in symbolic dynamics. Just as the escort probabilities evolve

under a thermodynamic process, the state probabilities evolve

as the complex dynamical system is run. Also, the escort

probabilities represent a map to the physical properties of

the system, in a manner analogous to the state probabilities

in SDF . The parameter set q is considered analogous to

β which can itself be considered to be a vector of system

parameters i.e. β = [β1, β2, . . . βn]
The two equations (11) and (12) can be combined to

obtain:

D [π, πa] =
n

∑

µ,ν=1

∑

i

∂
∂qµ

πi(q) ∂
∂qν

πi(q)

πi(q)
dqµdqν (14)

The inner summation goes over the length of the πi(q)
vector. If we invoke the analogy listed in (13), we can

substitute πa ≡ pk, and the summation will be over the

number of symbols (alphabet size) i.e. |Σ| used in symbolic

dynamic filtering.

D
[

pk(q), p0(q)
]

=
N

∑

µ,ν=1

|Σ|
∑

i

∂
∂qµ

pk(q) ∂
∂qν

pk(q)

pk(q)
dqµdqν

(15)

The pk(q) in the denominator serves as a normalizing

constant. Now, q is replaced by β. In order to do this, we
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need to define how partial derivatives are computed in this

setting. Define:

∂pk
β1

∂β1
dβ1 = p(βk+1

1 , β2, . . . , βn) − p(βk
1 , β2, . . . , βn) (16)

where p(βk
1 , β2, . . . , βn) represents the probability vector

for the kth slow time epoch for β1 and a nominal condition

for β2 . . . βn.

Now, the distances are evaluated for all values of µ and ν

over all state symbols. It is proposed that the probability of

occurrence of a particular combination of β1, β2, . . . , βn are

inversely proportional to the distance D
[

pk(β), p0(β)
]

.

When a time series data is obtained at the slow time scale,

which depends on a series of β values, then it is initially

passed through the symbolic dynamic filter. The probability

sequence pk is obtained and the Kullback distance is de-

termined for a set of points in a stored library. Depending

on the location of this pk in a |Σ| dimensional space, and

its proximity to various points, the parameters β can be

determined.

This approach can be viewed as determining contours for

each element of pk. Let pk = [pk
1 , pk

2 , . . . pk
|Σ|] where the

subscript denotes the energy states, and varies from 1 to |Σ|.
The point of intersection of these |Σ| number of contours

then gives the point corresponding to β which is to be

determined. A variation of this approach involves finding

a probabilistic map for each symbol for all possible values

of β. Then, an overall probabilistic map is found by giving

equal weightage to all symbols, and a most likely estimate

of β can be determined.

The methods described in Section V are implemented on

the Duffing Data with multiple parameters. Snapshots of

the data have been presented in Figure 1. During training,

test data is generated with values of β ranging from 0.10
to 0.40 in steps of 0.02, and values of α1 from 0.01 to

1.50 in steps of 0.02. This data is then passed through an

optimally constructed symbolic dynamic filter, and values of

the probability vector p(α1, β) are obtained. These values are

rounded off to the same level of precision considered while

constructing the stopping rule for SDF . During testing,

time series data are generated with process noise variance

w = 0.001 and sensor noise variance v = 0.01, and

unknown values of (αa
1 , βa). This data is then passed through

the same symbolic dynamic filter, that was used during

the forward problem and values of the probability vector

p(αa
1 , βa) are obtained. The distances are computed, and

for each [pk
1 , pk

2 , . . . pk
|Σ|, a contour (i.e. a set of candidate

(αa
1 , βa)) is obtained. An estimate of (αa

1 , βa) is calculated

from the intersection of all these contours. Two randomly

chosen values of (αa
1 , βa) are selected, one which is close to

a value in the training set, and one that is relatively further

away from values in the training set, and the results are

shown below. Two implementations are shown, one which

relies on direct contour intersection and one that relies on

the probabilistic approach.

Fig. 4. Probability for various points for the two parameter Duffing
estimation problem
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Fig. 5. Zoomed in Contour plot for the two parameter Duffing estimation
problem

VI. RESULTS

Here, we consider α1 = 0.75, β = 0.23. A 3 dimensional

plot of the probabilities is shown in Figure 4, and also a

close up of the contour plot is presented in Figure 5.

It can clearly be seen that the anomaly has been well

isolated and a single, sharp peak is obtained in the probability

plot. The predicted values of α1 lie between 0.74 and 0.76,

while the values of β lie between 0.234 and 0.240, which

is within a fairly high confidence value of the actual value

selected for the test. In the forward problem, eight symbols

are used, and the contours for each symbol are shown in the

Figure 6

VII. SUMMARY AND CONCLUSIONS

This paper formulates and validates a real-time algorithm

for simultaneous estimation of multiple parameters and

anomaly pattern identification in the presence of (possibly

slowly varying) anomalies. A central step in this kind of
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Fig. 6. Contour plot for each symbol for the two parameter Duffing estimation problem

identification methodology is based on analysis of the ob-

served time-series data via conversion into a corresponding

sequence of symbols. The algorithm is formulated in terms

of Symbolic Dynamics and escort probabilities [5] in the

setting of thermodynamic formalism.

This proposed algorithm has been tested for estimation

of two slowly varying parameters in an active electronic

system that is constructed in the classical Duffing equation

setting. The proposed method is robust with respect to sensor

noise, and computationally simple enough to be implemented

in mobile platforms or even embedded within the sensor

software system. The resulting compressed information can

be conveniently transmitted over a sensor network and im-

plemented efficiently with respect to memory requirements

and processing needs.
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