
Dynamic Multi-Agent Team Forming:

Asymptotic Results on Throughput Versus Delay

Stephen L. Smith Francesco Bullo

Abstract— In this paper we focus on problems in which tasks
(demands for service) arrive in an environment sequentially
over time. A task is completed when a robot (or team of robots)
provides the required service, and the goal is to minimize the
expected delay between a task’s arrival, and its completion.
We develop a general framework in which these problems can
be described, and propose a set of scaling laws for studying
the relationship between the number of robots, the expected
task delay, and the task arrival rate. We describe two existing
problems in our framework, namely the dynamic traveling re-
pairperson problem, and the dynamic pickup delivery problem,
and present their asymptotic performance. We then introduce
the dynamic team forming problem, in which tasks require
services that can be provided only through complex teams
of heterogeneous robots. We determine a lower bound on the
problem’s achievable performance, and propose three policies
for solving the problem. We show that for each policy, there
is a broad class of tasks for which the policy’s performance is
within a constant factor the optimal.

I. INTRODUCTION

Consider a heterogeneous fleet of mobile robotic agents

deployed in an environment E ⊂ R
2. Each robot in the

fleet is capable of providing certain services. Tasks, which

consist of a set of required services, arrive in the environment

sequentially over time. The fleet is notified of each task upon

its arrival, and a task is completed once the fleet provides

the required services. The goal is to minimize the expected

delay between a task’s arrival and its completion. Thus, it is

a dynamic task allocation problem; determine which robots

should service which tasks, and in what order.

In static task allocation problems, a set of tasks is given

a priori and the goal is to assign vehicles in order to

maximize the “score” of the mission. In [1] a taxonomy

of task allocation problems is given, dividing problems into

groups based on criteria such as the number of tasks a robot

can execute, and the number of robots required for a task.

In papers such as [2], [3], advanced heuristic methods are

developed, and their effectiveness is demonstrated through

extensive simulation or real world implementation.

In dynamic task allocation problems, tasks arrive sequen-

tially over a period of time. Only once a task has arrived

can the robots determine the method in which they will pro-

vide service. In the dynamic traveling repairperson problem

(DTRP) [4], [5], the robots are homogeneous, and each task

consists of a location which requires on-site service. Spatially

distributed algorithms for the DTRP were developed in [6]

This material is based upon work supported in part by ARO MURI Award
W911NF-05-1-0219 and ONR-N00014-07-1-0721.

S. L. Smith and F. Bullo are with the Center for Control, Dynamical
Systems and Computation, University of California, Santa Barbara, CA
93106, USA, {stephen,bullo}@engineering.ucsb.edu

and [7]. In the dynamic pickup delivery problem (DPDP)

[8] the task consists of a source-destination pair. A message

must be picked up from the source, and delivered to the

destination. In [8] the message must be picked up and

delivered by the same robot, and in [9] the message can

be relayed to between robots. For both the DTRP and the

DPDP, lower bounds are found on the expected task delay

(which depend on quantities such as the task arrival rate,

environment size, and the number of robots), and policies

are proposed which provide delays within a constant factor

of this lower bound. In dynamic task allocation problems

the expected delay depends on the task arrival rate; if tasks

arrive more rapidly, then the expected delay increases. This

tradeoff is well known in ad hoc wireless networks [10],

[11]; If nodes increase the rate at which they send messages

(i.e., the throughput), then this increases the expected delay

a message will incur before arriving at its destination.

In this paper we introduce a framework for describing

dynamic task allocation problems. As in the work on wireless

networks, we propose scaling laws which allow us to study

the expected task delay as a function of the throughput of the

robotic network (i.e., the rate at which tasks are serviced). We

revisit the DTRP and DPDP, and present the existing results

on expected delay under our scaling laws. We then introduce

the dynamic team forming problem. The problem consists of

a heterogeneous group of n robots in which each robot is

capable of providing one of k services. Tasks appear in the

environment which require some subset of the k services.

Thus, for each task, a team of robots must be formed which is

capable of providing the required services. We derive a lower

bound on the expected delay of the dynamic team forming

problem, and propose three policies; Complete team, Task-

specific team, and Scheduled task-specific team. We show

that for each policy there is a broad class of tasks for which

the policy performs within a constant factor the optimal. Due

to space constraints all proofs are omitted.

II. BACKGROUND MATERIAL

In this section we review results on the Euclidean traveling

salesperson problem (ETSP), queueing theory, and vertex

coloring in graphs. We let R, R>0, and N denote the

set of real numbers, positive real numbers, and positive

integers, respectively. For a finite set A, we let |A| denote

its cardinality, and for an infinite set A ⊂ R
2 we let |A|

denote its area. For two functions f, g : N → R>0, we

write f(n) ∈ O(g) (respectively, f(n) ∈ Ω(g)) if there exist

N ∈ N and c ∈ R>0 such that f(n) ≤ cg(n) for all n ≥ N
(respectively, f(n) ≥ cg(n) for all n ≥ N). If f(n) ∈ O(g)
and f(n) ∈ Ω(g), then we say f(n) ∈ Θ(g).

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

WeC05.1

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 1406

a) The Euclidean Traveling Salesperson Problem: For

a set Q of n points in R
2, let ETSP(Q) denote the length

of the shortest closed path through all points in Q. The

following result characterizes the length of this path when

Q ⊂ E , where E is a square environment with area |E|.
Theorem 2.1 (ETSP tour length, [12]): There exists β >

0 such that for every set Q of n points in E , ETSP(Q) ≤
β
√

n|E|.
The problem of computing an optimal ETSP tour is NP-

hard. However, there exist many efficient approximation

algorithms such as the Christofides’ algorithm [13].

b) Queueing Theory: Consider a queueing system with

Poisson arrivals at rate λ, and a single server which provides

bulk service. As customers arrive they form a queue and

are served in batches. Every tB seconds a batch is served

containing either the first M customers in the queue, or

the entire queue, whichever is smaller. In [14] the following

result is established.

Theorem 2.2 (Mean waiting time, [14]): If M > λtB,

then the expected waiting time W satisfies

W ≤ M − 1

λ
+

tB

2(M − λtB)
. (1)

c) Vertex Coloring: An undirected graph G = (V, E)
consists of a set of vertices V and a set of edges E ⊂ V ×V .

An edge {v, w} ∈ E is incident to v and w, and v and

w are neighbors. The degree of v ∈ V is the number of

edges incident to v. A vertex-coloring of G is a mapping

f : V → N with f(v) 6= f(w) for all {v, w} ∈ E. The

number f(v) is the color of v. Finding the minimum vertex

coloring is NP-hard, and no approximation algorithms exist.

However, the following theorem gives an upper bound on

the number of colors required.

Theorem 2.3 (Vertex coloring [15]): Let G be an undi-

rected graph with n nodes and with maximum degree α.

Then G has a vertex coloring with at most α+1 colors, and

such a coloring can be found in O(n) computation time.

An α + 1 coloring can be found as follows.

Greedy coloring heuristic of G = (V, E).

Let V = {v1, . . . , vn}.1

for i = 1 to n do2

Set f(vi) to the minimum color k ∈ N such that3

k 6= f(vj) for all neighboring vertices vj , j < i.

III. NETWORK AND TASK MODEL

a) Robot model: Consider n robotic agents contained

in a square environment E ⊂ R
2. The position of agent i ∈

{1, . . . , n}, is denoted by p
[i] ∈ E , and we assume the first

order dynamics ṗ
[i] = u

[i], where ‖u[i]‖ ≤ vmax for some

vmax > 0. Each agent is capable of providing services (or

resources) in the set R := {r1, . . . , rk}. For agent i, C[i] :
R → {0, 1} records its capabilities, i.e., agent i provides

service rj only if C[i](rj) = 1. We assume that computations

are centralized, and leave the problem of decentralizing our

policies to future work.

b) Task model: A task Tj is described by the tuple

{Qj, Rj ,Lj , Sj}. The set Qj ⊂ E contains locations and

the map Rj : Qj → 2R gives the services required at

each location. We assume all services at a location must

be provided simultaneously (if this is not the case, then the

location will appear more than once in Qj). The set Lj

contains rules, or logical connectives, which describe the

task. Possible rules are: (i) A partial ordering on Qj . For

q1,q2 ∈ Qj , we write q1 ≺ q2 if q1 must be serviced

before q2, and q1 ≏ q2 if the locations must be serviced

simultaneously. (ii) An equivalence relation ∼ on Qj , where

q1 ∼ q2 implies that q1 and q2 must be serviced by the

same set of agents. (iii) The temporal operator U (until).

For example,the statement (q2 is unknown)U(q1 is serviced)

implies that location q2 is unknown until service Rj(q1) is

provided at location q1.

Finally, the random variable Sj : Qj → R≥0 gives the

on-site service time required at each location. Using Sj we

can also define the total on-site service time sj of task Tj .

The partial ordering 4 partitions the set Qj into disjoint

subsets Q1, . . . , Qp, containing simultaneous tasks. That is,

if q1 ∈ Q1, then q2 ∈ Q1 if and only if q1 ≏ q2. Thus, the

total on-site service time sj is sj :=
∑p

i=1 maxq∈Qi
Sj(q).

c) Task arrival model: We assume that tasks enter the

environment according to a Poisson process with intensity

λ. We define s̄ := limj→+∞ E[sj] to be the expected total

on-site service time for a task. Consider a policy P by which

agents service tasks. This policy induces a control law u
[i](t)

for each agent. For policy P , let Dj denote the difference

between the service completion time and the arrival time

of task Tj . This time consists of a waiting time Wj , and

a service time sj . Then, we let DP := limj→+∞ E[Dj],
denote the expected delay. Little’s result [16] states that if

DP exists, then the expected number of tasks N̄P in the

environment under policy P , is given by N̄P = λDP . If n
agents are servicing tasks arriving at rate λ, then a necessary

condition for there to exist a stable policy is that λs̄/n < 1.

That is, during an on-site service time s̄, fewer than n tasks

must arrive.

With the task arrival model described above, we define

the following quantities: the total throughput is λ, and the

per-agent throughput T (n) is λ/n.We let D∗(n) denote the

optimal (least achievable) delay, and T ∗(n) the maximum

achievable throughput (capacity).

IV. ANALYZING THROUGHPUT AND DELAY

In this section we introduce scaling laws for studying the

expected delay as a function of the per-agent throughput and

look at two existing dynamic task allocation problems.

A. Scaling laws

We are interested in studying the expected task delay

D(n) as a function of the per-agent throughput T (n). In

particular we look at the case where the number of agents

becomes large and the arrival rate λ scales (increases) with

n. We assume that s̄, the expected on-site service time of a

task, remains constant. Also, as n increases, the environment

must grow to accommodate the increase in agents. In [17]

1407

it was shown that in order to maintain a reasonable safety

distance between agents, the ratio
√

|E|/vmax must scale

with n as
√

n. In [18] this scaling was referred to as a

critical environment. These scaling laws can be summarize

as follows.

Definition 4.1 (Asymptotic regime): In the asymptotic

regime (i) the number of agents n → +∞; (ii) s̄ is

independent of n; (iii) |E(n)|/(nv2
max(n)) → const2 ∈ R>0.

B. Multiple dynamic traveling repairperson problem

In the multiple dynamic traveling repairperson problem

(DTRP), there is a single service, R := {r1}, and C[i](r1) =
1 for each agent i. The tasks are of the form T :=
{q, , r1,L, s}, where an agent must visit q, which is known

upon task arrival (i.e., (q is unknown)U(T arrives)), and

provide service r1 for time s. Tasks arrive according to

a Poisson process with rate λ , and the location q is

independently and uniformly distributed in E . The on-site

service times are independent with mean s̄.

In [5], two lower bounds on the expected delay are

presented. The first states that

D∗ ≥ 1

vmax

E

[

min
q0∈D∗

‖q − q0‖
]

+ s̄, (2)

where D∗ is the set of n locations that minimizes the

expected distance to the uniformly distributed location q.

The second bound states that there exists γ > 0 such that

D∗ ≥ γ2 λ|E|
n2v2

max(1 − ρ)2
− s̄(1 − 2ρ)

2ρ
=: DDTRP(n), (3)

where ρ := λs̄/n. In the asymptotic regime (2) becomes

D∗(n) ∈ Ω(1), and (3) becomes D∗(n) ∈ Ω(T (n)). Note

that for stability λs̄/n < 1, and thus T (n) < 1/s̄.

In [5] several policies are developed. When T (n) → 0+

as n → +∞, an optimal policy is to place the vehicles at

locations D∗ and service tasks first-come, first-served, by

the closest vehicle, which returns to its location in D∗ after

each service is completed. When T (n) → const ∈ R>0 as

n → +∞, the TSP partitioning policy is developed.

The TSP partitioning policy

Optimize: over M .
Partition E into n regions and assign a vehicle to each region.1

foreach region-vehicle pair do2

As tasks arrive in the region, form sets of size M .3

As sets are formed, deposit them in a queue.4

Service the queue first-come, first-served, following an5

optimal TSP tour on each set of M tasks.

By combining the analysis in [5] , combined with The-

orem 2.1 one can show that in the asymptotic regime, the

delay of this TSP partitioning policy is in O(max{T (n), 1})
when T (n) < 1/s̄. Thus, we have the following.

Theorem 4.2 (DTRP delay, [5]): In the asymptotic

regime, if T (n) → const < 1/s̄, then the optimal delay of

the DTRP is in Θ(1). If T (n) → const > 1/s̄, then the

optimal delay is infinite.

Thus, in the DTRP we can achieve a per-agent throughput

of Θ(1), while incurring a delay of only Θ(1).

C. Dynamic pickup delivery problem

In the dynamic pickup delivery problem (DPDP) [8] there

are two services, R := {pickup,deliver}. Each agent

has the capability of providing both services, and so for each

agent i, C[i](pickup) = C[i](deliver) = 1. The tasks

are of the form T := {{q1,q2}, R,L, S}, where the set

of rules L indicates that q1 ≺ q2, q1 ∼ q2, and (q1,q2

are unknown)U(T arrives).1 The service requirements are

R(q1) = pickup and R(q2) = deliver. Thus, when a

task arrives, a message must be picked up from a known

source location q1 and delivered to known destination lo-

cation q2 by the same agent. A fixed on-site service time

of s := S(q1) = S(q2) is incurred at each location. Tasks

arrive according to a Poisson process with rate λ, and for

each task, q1 and q2 are uniformly randomly distributed in

E . In [8] it is shown that for this problem

D∗ ≥ max

{

γ2

4

λ|E|
n3/2v2

max(1 − ρ)2
,

√

|E|
2vmax(1 − ρ)

, s

}

, (4)

where ρ := λs/n. In addition, a policy P is introduced which

yields a delay DP within a constant factor of the lower bound

in (4). Thus, we have the following result.

Theorem 4.3 (DPDP delay, [8]): In the asymptotic

regime, if T (n) → const < 1/(2s), then the optimal delay

of the DPDP is in Θ(
√

n). If T (n) → const > 1/(2s), then

the optimal delay is infinite.

This result implies that a delay of order
√

n must be

incurred regardless of the per-agent throughput.

V. DYNAMIC TEAM FORMING PROBLEM

We now introduce the dynamic team forming problem

(DTFP) and present a lower bound on the optimal delay. In

the DTFP there is a heterogeneous group of vehicles in which

each vehicle provides one of k services. Tasks appear in the

environment which require some subset of the k services.

Thus, teams of agents must be formed in order to provide

the services required for each task. This type of problem

could arise in UAV surveillance [19] where the services

represent waveforms for interrogation of a target/region, such

as electro-optical, infra-red, synthetic aperture radar, foliage

penetrating radar, and moving target indication radar.

A. Problem statement

In the DTFP, there is a set of services R := {r1, . . . , rk}.

In addition, there are k different types of agents, and an

agent of type j ∈ {1, . . . , k}, can provide only service

rj . We assume that the total number of agents n satisfies

n/k ∈ N, and thus we say that for agent i, C[i](rj) = 1
only if i(mod k) = j. That is, agent i can provide only

service ri(mod k). The task we consider is of the form T :=
{q, R,L, S}, where R(q) ⊂ R, L dictates that (q, R(q) are

unknown)U(T arrives). Tasks arrive according to a Poisson

process with rate λ, and the location q is independently and

uniformly distributed in E . For each task, the set R(q) is

independently and uniformly randomly selected from a set

of subsets of R of cardinality K ≤ 2k − 1 (at this time,

1The case where (q2 is unknown)U (q1 is serviced) is also considered.

1408

T

D∗

1

fKk3/2

1
fKk

√
k

k

+∞

Fig. 1. Dynamic team forming lower bound: Delay versus throughput.

we leave the set of subsets unspecified). The on-site service

time is independent of the number of services required for

a task, has mean s̄, and is upper bounded by smax ∈ R>0.

Thus for a task with R(q) = {r1, r4}, the task is completed

when agents 1(mod k) and 4(mod k) simultaneously spend

an on-site service time of S(q) = s at location q.

B. Lower bound on optimal delay

In total there are K different task types. Let fj denote

the fraction of task types that require service rj . In order

to derive a lower bounds, and analyze proposed policies we

make two simplifications. First, we assume that f1 = · · · =
fk =: fK. This implies that the required services are spread

evenly over the task types, and thus, each service appears

in fKK task types. Since the service set for each task is

chosen uniformly and randomly, this also implies that fK
is the probability that a task requires service ri. Notice that

1/k ≤ fK ≤ 1. Second, we only consider task-type unbiased

policies. These are policies for which the delay for each task

type is equal, limj→+∞ E[Dj |task j is of type R(q)] = D∗,

for each task type R(q) ∈ R.

With these assumptions we can lower bound the optimal

delay. Note, that all parameters are potentially a function

of n and we should be writing k(n), K(n), fK(n), and so

on. However, to simplify the notation we omit the explicit

dependence. For convenience, Table I contains a list of

parameters and their definitions.

Theorem 5.1 (Optimal delay): In the asymptotic regime,

if kfKT (n) → const < 1/s̄, then the optimal delay of the dy-

namic team forming problem is in Ω(max{fKk2T (n),
√

k}).
If kfKT (n) → const > 1/s̄, then the delay is infinite.

Fig. 1 shows the order of the optimal delay as a function

of the per-agent throughput.

VI. POLICIES FOR DYNAMIC TEAM FORMING

A. Complete team policy

Here we propose a policy that has good performance when

each service is required in a constant fraction of the tasks.

Complete team policy

Form n/k teams of k agents, where each team contains one1

agent of each type.
Have each team meet and move as a single entity.2

As tasks arrive, service them by one of the n/k teams3

according to the TSP partitioning policy.

TABLE I

PARAMETERS USED IN THE DYNAMIC TEAM FORMING PROBLEM.

Parameter Definition

T expected per-agent throughput
D expected task delay
k number of different services

K number of different task types, ≤ 2k − 1
fK fraction of tasks requiring an individual service
s̄ expected on-site service time

smax maximum on-site service time
L number of time slots in service schedule
w fractional length of service schedule, L/K
b maximum number of services required for a task

Fig. 2. Complete team policy: Delay versus throughput.

With this policy, the problem is simply a DTRP with

n/k vehicles, and an arrival rate of λ. Hence, we have the

following result.

Theorem 6.1 (Complete team delay): In the asymptotic

regime, if kT (n) → const < 1/s̄, then the expected delay

of the Complete team policy is O(max{k2T (n),
√

k}). If

kT (n) → const > 1/s̄, then the delay is infinite.

Notice that if fK ∈ Ω(1), then the policy is within a

constant factor of the optimal. Fig. 2 shows the order of

the delay as a function of the per-agent throughput.

Thus, when each service is required in a constant fraction

of the tasks, or when k(n) → const ∈ N as n → +∞,

the Complete team policy is within a constant factor of the

optimal. However, in certain instances the above policy may

be inefficient as each agent visits every task, not just the ones

which require its service. This manifests itself as a limit on

the per-agent throughput to 1/k, independent of fK.

B. Task-specific team policy

Notice that there are n/k agents of each type, and each ser-

vice appears in fKK service sets. Thus, if fKK ≤ n/k there

are enough agents of each type to create all K service sets.

More specifically, we could create Ncopy := ⌊n/(kfKK)⌋
copies of each of the K service sets. Thus, when fKK ≤ n/k
we have the following policy.

Task-specific team policy

Assumes: fKK ≤ n/k.
For each of the Ncopy := ⌊n/(kfKK)⌋ different service sets,1

create Ncopy teams of agents, where the number of agents in
each team is equal to the number of required services, and
each agent provides a required service.
Service each task by one of its Ncopy corresponding teams,2

according to the TSP partitioning policy.

1409

Fig. 3. Task-specific team policy: Delay versus throughput.

In the following theorem we characterize the delay of

Task-specific team policy.

Theorem 6.2 (Task-specific policy delay): In the asymp-

totic regime, If kfKT (n) → const < 1/(2s̄),
then the expected delay of the Task-specific policy is

O(max{f2
Kk2KT (n),

√
fKkK}). If kfKT (n) → const >

1/s̄, then the delay is infinite.

Fig. 3 shows the order of the delay as a function of the

per-agent throughput for the Task-specific team policy.

C. Scheduled task-specific team policy

The Task-specific team policy can only be applied when

fKK ≤ n/k. Here we propose a policy for all parameter

values which divides the task types into several groups, and

then runs the Task-specific policy on each group sequentially.

We begin by defining a service schedule.

Definition 6.3 (Service schedule): A service schedule S is

a partition of the K service sets into L time slots, such

that each service set appears in exactly one time slot, and

the service sets in each time slot are pairwise disjoint. The

schedule has length L, and fractional length w := L/K.

The following lemma lower bounds the length of a service

schedule by using the fact that for each i ∈ {1, . . . , k}, fKK
contain service ri.

Lemma 6.4 (Schedule length I): If S is a service sched-

ule, then it contains at least fKK time slots (i.e., w ≥ fK).

From Lemma 6.4, every service schedule must contain

at least fKK slots. We now give a method for creating a

schedule. Consider the graph consisting of K vertices, one

for each service set, and edges connecting any two vertices

whose service sets have a non-empty intersection. This is

known as an intersection graph. A service schedule, is then

simply a vertex coloring of this graph. From Section II the

problem of determining the optimal (minimal) coloring is

NP-hard. However, we can color the graph using the greedy

heuristic in Section II. An example is shown in Fig. 4. Using

Theorem 2.3 we arrive at the following result.

Lemma 6.5 (Schedule length II): If each task requires no

more than b ≤ k services, then a service schedule with w ≤
min{bfK, 1} can be found in O(K) computation time.

We are now ready to present the Scheduled task-specific

team policy.

{3}

{4}

{5}

{6}

{1}

{2}

{1, 2}

{1, 4}

{2, 5}{3, 4}

{3, 6}

{5, 6}

{1, 2, 3}

{1, 3, 5}

{1, 4, 6}

{2, 3, 5}

{2, 4, 6}

{4, 5, 6}

Fig. 4. Creating a service schedule using the greedy vertex coloring
heuristic. In this figure, k = 6, K = 18, fK = 6/18, and the resulting
schedule has length L = 6.

timetB 2tB 3tB 4tB 5tB 6tB

{1}

{2}

{3}

{4}

{5}

{6}

{1, 2}

{3, 4}

{5, 6}

{1, 4}

{2, 5}

{3, 6}

{1, 2, 3}

{4, 5, 6}

{1, 3, 5}

{2, 4, 6}

{1, 4, 6}

{2, 3, 5}

0

Fig. 5. Service schedule created by the coloring in Fig. 4. The task types
serviced during each time slot are shown (e.g., in time slot [tB, 2tB[, agents
1(mod k) and 2(mod k) meet to service tasks with service set {1, 2}).

Scheduled task-specific team policy

Assumes: A service schedule with time slot duration tB.
Optimize: over tB and M .
Partition E into n/k regions and assign one agent of each1

type to each region.
foreach region do2

Form a queue for each of the K task types.3

foreach time slot in the schedule do4

Divide agents into teams to form required task types.5

For each team, service the first M tasks in the queue,6

or as many as can be served in time tB (whichever
comes first), by following an optimal TSP tour.

When the end of the service schedule is reached, repeat.7

By applying the results on the Euclidean traveling sales-

person tour and on batch queues in Section II, we are able to

bound the delay of the Scheduled task-specific team policy.

Theorem 6.6 (Scheduled task-specific team delay): In the

asymptotic regime, if kwT (n) → const < 1/smax, then the

expected delay of the Scheduled task-specific team policy is

O
(

max
{

w2k2KT (n), wK
√

k
})

. If kwT (n) → const >

1/s̄, then the delay is infinite.

Fig. 6 shows delay as a function of the per-agent through-

put for the Scheduled task-specific team policy.

Remark 6.7 (Comments on Theorem 6.6): When bfK ≤
1, the greedy vertex coloring scheme creates a service

schedule with w ≤ bfK. In this case, one can achieve

1410

Fig. 6. Scheduled task-specific team policy: Delay versus throughput.

TABLE II

POLICY COMPARISON WITH K = bk, AND fK ∈ Θ(b/k).

Policy Capacity Delay at capacity

Optimal Θ(1/b) Ω(k)
Complete team Θ(1/k) O(k)

Task-specific team Θ(1/b) O(b2k)
Scheduled task-specific (greedy) Θ(1/b2) O(b3k)
Scheduled task-specific (optimal) Θ(1/b) O(b2k)

a per-agent throughput of Θ(1/(bfKk)), with a delay of

O(bfKkK). Thus, if b is small compared to k, the service

schedule can provide a near optimal maximum per-agent

throughput (i.e., capacity). However, the delay depends on

the number of different task types, K, and thus could be

significantly larger than the optimal delay.

When the per-agent throughput is “high,” the delay of

the Task-specific team policy is O(max{k2f2
KKT (n)). In

comparison, the delay of the Scheduled task-specific team

policy is O(max{w2k2KT (n)). By Lemma 6.4, w ≥ fK,

and thus the Task-specific policy performs at least as well

as the Scheduled task-specific policy. However, we can only

use the policy when fKK ≤ n/k. Also, the policy does not

easily adapt to situations where new tasks types are added,

and old task types are removed, since the entire partitioning

of the agents into teams must be recalculated. •

D. Policy comparison

To compare the performance of the policies, consider

the specific case where, for each j ∈ {1, . . . , b}, with

b < k, there are k service sets with cardinality j. That is,

k task types require one service, k task types require two

services, and so on. Thus, K = bk. Further, assume that

each individual service appears in j of the k service sets of

cardinality j, for each j ∈ {1, . . . , b}. From this, we obtain

fK =

∑b
j=1 j

K =
b(b + 1)/2

bk
∈ Θ(b/k).

An example of service sets satisfying these assumptions is

shown in Fig. 4 and Fig. 5. Using these values, we can

compare the maximum achievable throughput (or capacity)

for each of the policies, and the delay at capacity. These

results are summarized in Table II, where Scheduled task-

specific team bounds assume b2 ≤ k. In Table II we see that

if b ∈ Θ(k) when n is large, then the Complete team policy

is within a constant factor of the optimal. However, if b ∈

Θ(1), then the per-agent throughput of the Complete team

policy cannot be raised above 1/k, whereas the Scheduled

task-specific and Task-specific policies provide capacity, and

delay, within a constant factor of the optimal.

VII. CONCLUSIONS

In this paper we presented a model for dynamic task

allocation problems, and a framework within which they

can be studied. We introduced the dynamic team forming

problem, and proposed three team forming policies. There

are many areas for future work. We would like to look

into creating distributed versions of our policies, and extend

our dynamic team forming analysis to nonuniform task type

distributions, task-type biased policies, and the case where

services are not evenly spread among task types.

REFERENCES

[1] B. P. Gerkey and M. J. Mataric, “A formal analysis and taxonomy
of task allocation in multi-robot systems,” Int J Robotic Research,
vol. 23, no. 9, pp. 939–954, 2004.

[2] M. F. Godwin, S. Spry, and J. K. Hedrick, “Distributed collaboration
with limited communication using mission state estimates,” in Proc

ACC, Minneapolis, MN, Jun. 2006, pp. 2040–2046.
[3] M. Alighanbari and J. P. How, “Robust decentralized task assignment

for cooperative UAVs,” in Proc AIAA GN&C, Keystone, CO, Aug.
2006.

[4] D. J. Bertsimas and G. J. van Ryzin, “A stochastic and dynamic vehicle
routing problem in the Euclidean plane,” Operations Research, vol. 39,
pp. 601–615, 1991.

[5] ——, “Stochastic and dynamic vehicle routing in the Euclidean plane
with multiple capacitated vehicles,” Operations Research, vol. 41,
no. 1, pp. 60–76, 1993.

[6] E. Frazzoli and F. Bullo, “Decentralized algorithms for vehicle routing
in a stochastic time-varying environment,” in Proc CDC, Paradise
Island, Bahamas, Dec. 2004, pp. 3357–3363.

[7] M. Pavone, E. Frazzoli, and F. Bullo, “Decentralized algorithms for
stochastic and dynamic vehicle routing with general target distribu-
tion,” in Proc CDC, New Orleans, LA, Dec. 2007, pp. 4869–4874.

[8] H. A. Waisanen, D. Shah, and M. A. Dahleh, “A dynamic pickup and
delivery problem in mobile networks under information constraints,”
IEEE Trans Automatic Ctrl, Nov. 2006, accepted.

[9] ——, “Fundamental performance limits for multi-stage vehicle routing
problems,” Operations Research, Aug. 2007, submitted.

[10] G. Sharma and R. M. N. Shroff, “Delay and capacity trade-offs
in mobile ad hoc networks: A global perspective,” in INFOCOM,
Barcelona, Spain, Apr. 2006, pp. 1–12.

[11] A. E. Gamal, J. Mammen, B. Prabhakar, and D. Shah, “Optimal
throughput-delay scaling in wireless networks. Part I: The fluid
model,” IEEE Trans Inf. Theory, vol. 52, no. 6, pp. 2568–2592, 2006.

[12] J. M. Steele, “Probabilistic and worst case analyses of classical prob-
lems of combinatorial optimization in Euclidean space,” Mathematics
of Operations Research, vol. 15, no. 4, p. 749, 1990.

[13] N. Christofides, “Worst-case analysis of a new heuristic for the
traveling salesman problem,” Carnegie-Mellon University, Pittsburgh,
PA, Tech. Rep. 388, Apr. 1976.

[14] N. T. J. Bailey, “On queueing processes with bulk service,” Journal
of the Royal Statistical Society. Series B, vol. 16, no. 1, pp. 80–87,
1954.

[15] B. Korte and J. Vygen, Combinatorial Optimization: Theory and
Algorithms, 3rd ed., ser. Algorithmics and Combinatorics. New York,
NY: Springer Verlag, 2005, no. 21.

[16] L. Kleinrock, Queueing Systems. Volume I: Theory. New York, NY:
John Wiley and Sons, 1975.

[17] V. Sharma, M. Savchenko, E. Frazzoli, and P. Voulgaris, “Transfer time
complexity of conflict-free vehicle routing with no communications,”
Int J Robotic Research, vol. 26, no. 3, pp. 255–272, 2007.

[18] S. L. Smith and F. Bullo, “Target assignment for robotic networks:
Worst-case and stochastic performance in dense environments,” in
Proc CDC, New Orleans, LA, Dec. 2007, pp. 3585–3590.

[19] E. K. P. Chong, C. M. Kreucher, and A. O. Hero III, “Adaptive sensing
via partially observable Markov decision process approximations,”
IEEE Proceedings, 2007, submitted.

1411

