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Abstract— In this paper a new algorithm for discrete-time
overlapping decentralized state estimation has been analyzed.
It is based on a combination of Kalman filters implemented
by local agents using intermittent observations and a dynamic
consensus strategy connecting the agents with possible com-
munication faults. Under general conditions concerning the
agent resources and the network topology, sufficient conditions
for the asymptotic stability in the sense of bounded mean-
square estimation error are derived. It is also demonstrated
how the complexity of the multi-agent network contributes to
the suppression of the measurement noise influence.

I. INTRODUCTION

Recently, much research has been done in the field of

decentralized state estimation of complex dynamic systems.

When dealing with these problems, different structures have

been considered, including totally decentralized, partially

decentralized and hierarchical structures. In all these ap-

proaches a large scale system is modelled as an intercon-

nection of subsystems where each subsystem has a decision

maker (intelligent agent) associated with it. Depending on

the available resources, each agent might have different

sensor characteristics, different models of the system and its

environment, and each agent might communicate with differ-

ent sets of other agents. The main principles and structures

for decentralized estimation can be found in e.g. [1], [2], [3],

[4], [5]. However, none of the existing methodologies is able

to provide a systematic and general method for designing

a scheme for inter-agent communication without having a

strong fusion center. Also, the important practical problems

of intermittent observations and communication faults have

not been treated in this context.

Some important results in the area of distributed asynchro-

nous iterations in parallel computation and distributed opti-

mization were already obtained in the 80’s (e.g. [6], [7], [8]).

On the other hand, much research has been done recently in

the field of multi-agent systems related to sensor networks,

with numerous applications. One approach to solving a

large class of problems is based on agreement or consensus

strategies between the agents (see, e.g. [9], [10], [11], [12],

[13], [14], [15]). The consensus problem can be related to

the decentralized state estimation problem either implicitly,
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through the very definition of the consensus algorithms (e.g.,

see [15]), or explicitly, where the dynamic consensus strategy

between multiple agents is used for obtaining, on the basis

of averaging, optimal parameter or state estimates (e.g., see

[16], [17], [18]). However, none of these approaches provide

a general cooperation scheme between the local estimators

for the overlapping decentralized estimation problem.

This paper is a continuation of [19], in which a novel

state estimation algorithm for complex linear discrete-time

systems is proposed. It is based on: (1) decomposition of

the large system into overlapping subsystems and imple-

mentation of local state estimators, for each subsystem, by

intelligent agents according to their sensing and computing

resources; (2) application of a consensus strategy which

provides the global state estimates to all the agents in the

network; (3) taking into account influence of the possible in-

termittent observations and communication errors. The paper

is organized as follows. The definition of the problem is given

in Section 2. In Section 3, the proposed estimation algorithm

is described. The algorithm can be considered as a discrete-

time version of the state estimation algorithm proposed in

[20], or an extension of the parameter estimation algorithm

proposed in [21]. It is structurally similar to the distributed

computation algorithm proposed in [7] and [8]. In Section 4

the stability analysis of the proposed scheme is presented.

Sections 2, 3 and 4 are technically the same as in [19];

they are repeated here for completeness of the presentation.

Section 5 provides an insight into an interesting and im-

portant problem of the influence of the network topology to

denoising, that is, to the measurement noise suppression. It is

shown that the network complexity is crucial in determining

denoising capabilities of the algorithm.

II. OVERLAPPING DECENTRALIZED ESTIMATION

Let a discrete-time stochastic system be represented by

S : x(t + 1) = Fx(t) + Ge(t)

y(t) = Hx(t) + v(t), (1)

where t is the discrete-time instant, x = (x1, . . . , xn)T , y =
(y1, . . . , yp)

T , e = (e1, . . . , em)T and v = (v1, . . . , vp)
T

are its state, output, input and measurement noise vectors,

respectively, while F , G and H are constant n × n, n × m

and p × n matrices, respectively. It is assumed that {e(t)}
and {v(t)} are white zero-mean sequences of independent

vector random variables with covariance matrices Q and R.

Our task is to consider the problem of decentralized

estimation of the state x of S. We shall assume that N

autonomous agents generate their estimates of the state of
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S using locally available measurements, specific a priori

knowledge about the system model or its parts, and estimates

of other agents communicated in real time.

Formally speaking, the i-th agent measures the pi-

dimensional vector y(i) = (yli
1

, . . . , ylipi

)T , composed of the

set of components of y with indices contained in the agent’s

output index set I
y
i = {li1, . . . , l

i
pi
}, li1, . . . , l

i
pi

∈ {1, . . . p},

li1 < . . . < lipi
, pi ≤ p. We shall assume that vector y(i)

satisfies the following relation

y(i)(t) = H(i)x(i)(t) + v(i)(t), (2)

where x(i) is an ni-dimensional vector composed of the

components of x selected by the agent’s state index set

Ix
i = {ji

1, . . . , j
i
ni
}, ji

1, . . . , j
i
ni

∈ {1, . . . n}, ji
1 < . . . < ji

ni
,

ni ≤ n, C(i) is a constant pi × ni matrix and v(i) a

measurement noise vector containing the components of v

selected by I
y
i , having covariance matrix R(i) (which can

be easily derived from R). According to the definition of

x(i), we introduce an ni × ni matrix F (i) containing those

components of F that are selected by the pairs of indices

defined by Ix
i × Ix

i . In an analogous way we can obtain

matrix G(i), composed of ni rows of matrix G selected by

Ix
i . Consequently, the local models of S utilized by the agents

are defined by

Si : x(i)(t + 1) = F (i)x(i)(t) + G(i)e(t),

y(i)(t) = H(i)x(i)(t) + v(i)(t), (3)

for i = 1, . . . , N , where dynamic systems Si represent

overlapping subsystems of S ([3], [22]).

Starting from the model Si and the accessible measure-

ments y(i), each agent is assumed to be able to generate its

own local estimate x̂(i) of the vector x(i) using an estimator

designed on the basis of the local model (3). Having in mind

the stochastic nature of the system model S, the following

local steady-state Kalman filters will be assumed to be

implementable by each agent [23]:

Ēi : x̂(i)(t + 1|t) = F (i)x̂(i)(t|t − 1) +

γi(t)F
(i)L(i)[y(i)(t) − H(i)x̂(i)(t|t − 1)], (4)

where L(i) is the steady state Kalman gain, while γi(t)
is a scalar equal to 1 when the i-th agent receives mea-

surements y(i), and 0 otherwise. We shall assume that the

pairs (F (i), G(i)Q
1

2 ) are completely stabilizable and the pairs

(F (i),H(i)) completely detectable, so that the the state ma-

trices F (i)−L(i)H(i) of the estimators (4) are asymptotically

stable, i = 1, . . . , N [23], [24].

The above described overlapping decentralized estimators

defined by (4) generate a set of overlapping estimates x̂(i).

If the final goal is to enable each agent to get an estimate x̂

of the whole state vector x of S, additional strategies have to

be combined with the local estimators (e.g., see [1], [2], [4],

[5], [3]). However, it is typical that such approaches require

a kind of centralized strategy or special, model dependent

communications.

III. CONSENSUS-BASED ESTIMATOR

Our goal is to design an algorithm which provides to all the

agents in the network reliable estimates of all the components

of the whole state vector x using locally generated estimates

x̂(i) and a decentralized communication strategy, in spite

of missing measurements and communication faults. We

propose the following algorithm based on the synergy of

local estimators of Kalman filtering type and a consensus

scheme defining communications between the agents:

Ei : ξi(t|t) = ξi(t|t − 1) + γi(t)Li[y
(i) − Hiξi(t|t − 1)]

ξi(t + 1|t) =
∑N

j=1 Cij(t)Fjξj(t|t) (5)

for i = 1, . . . , N , where ξi is an estimate of x generated

by the i-th agent. Fi is an n × n matrix with at most

ni × ni nonzero elements that are equal to those of F (i),

but are placed at the indices defined by Ix
i × Ix

i , Li is an

n × pi matrix obtained similarly as Fi, in such a way that

its nonzero elements are those of L(i) placed row by row at

row-indices defined by Ix
i , Hi is a pi × n matrix composed

of the entire rows of H selected by I
y
i (notice that we have

H(i)x(i) = Hix). We shall assume that Cij(t) are n × n

time-varying gain matrices of the consensus scheme given

in the form Cij(t) = kij(t)Kij , where kij(t) = 1 when

the directed communication from the node j to the node i

exists, and kij(t) = 0 otherwise; Kij are diagonal matrices

with nonnegative elements, giving weights to the estimates

Fjξj(t|t) that the agents send to each other (for example, its

elements can be inversely proportional to the variances of the

local estimates). Formally, we shall assume that {kij(t)},

i, j = 1, . . . , N, i 6= j, are mutually independent scalar

sequences of independent binary random variables, satisfying

P{kij(t) = 1} = pij and P{kij(t) = 0} = 1 − pij

for i 6= j, and that that kii(t) = 1, i = 1, . . . , N ; the

N × N matrix K(t) = [kij(t)] determines connections

between the agents at time t. Also, we shall assume that

{γi(t)} is a sequence of independent binary random variables

independent of {kij(t)}, i, j = 1, . . . , N, i 6= j, such that

P{γi(t) = 1} = pii and P{γi(t) = 0} = 1 − pii.

Furthermore, we shall introduce a random vector Ξt com-

posed of N2 binary components: N(N − 1) elements kij(t)
(i, j = 1, . . . , N, i 6= j) and N elements γi(t). This vector is,

by assumption, generated on the basis of Bernoulli trials, i.e.,

{Ξt} represents a sequence of independent random vectors.

Let πr, i = 1, . . . , ν = 2N2

, be the probabilities of all

possible realizations Ξ[r] of Ξt, , r = 1, . . . , ν. Assume

that the nN × nN ”consensus matrix” C̃(t) = [Cij(t)],
i, j = 1, . . . , N is row-stochastic for all t. Introduce also

Φi(t) = Fi − γi(t)LiHi, F̃E = diag{F1, . . . , FN} and Φ̃(t)
= diag{Φ1(t), . . . ,ΦN (t)}, as well as Ã(t) = C̃(t)Φ̃(t).
Denote by Ã[r], C̃[r] and Φ̃[r] realizations of Ã(t), C̃(t)

and Φ̃(t) resulting from different realizations X [r] of Xt,

r = 1, . . . , ν .

It can be observed that the algorithm represents a combina-

tion of: a) decentralized overlapping estimators represented

by (4), and b) the consensus scheme tending to make the

local estimates ξi as close as possible (e.g., see [8], [7], [9],

4365



[10], [11], [12], [13], [14], [15]). The algorithm reduces to

the local estimators when the ”consensus part” is eliminated

(Kij = 0, i 6= j). The ”consensus part” alone asymptotically

provides ξi = ξ under a proper choice of the matrices

Kij , where ξ is a weighted sum of the a priori estimates

ξ(t0), and t0 the initial time instant ([14], [15]). Notice

that the estimator reminds structurally of the discrete time

distributed optimization algorithm proposed in [8], [7], [6].

Also, it can be considered as a discrete time counterpart

of the continuous time overlapping decentralized estimator

proposed in [20]. Additionally, it represents a generalization

of the parameter estimator based on stochastic approximation

proposed in [21].

By defining X̂(t|t) = vec{ξ1(t|t), . . . , ξN (t|t)} and X̂(t+
1|t) = vec{ξ1(t + 1|t), . . . , ξN (t + 1|))}, we can obtain a

compact formulation of the proposed algorithm

X̂(t|t) = X̂(t|t − 1) + Γ̃(t)L̃[Y (t) − H̃X̂(t|t − 1)]

X̂(t + 1|t) = C̃(t)F̃EX̂(t|t), (6)

where Y (t) = vec{y(1)(t), . . . , y(N)(t)}, L̃ =
diag{L1, . . . , LN}, Γ̃(t) = diag{γ1(t), . . . , γN (t)} and

H̃ = diag{H1, . . . ,HN}. Further, for the prediction error

ε(t + 1|t) = X̂(t + 1|t) − X(t + 1), we obtain

ε(t + 1|t) = Ã(t)ε(t|t − 1) + C̃(t)(F̃E − F̃ ) +

+C̃(t)Γ̃(t)L̃H̃V (t) − E(t), (7)

where F̃ = diag{F, . . . , F}, V (t) =
vec{v(1)(t), . . . , v(N)(t)} and E(t) = vec{e(t), . . . , e(t)}.

Finally, we have the following state space system-estimator

model:

Z(t + 1) =

[

F̃ 0

C̃(t)(F̃E − F̃ ) Ã(t)

]

Z(t) +

+

[

G̃ 0

−G̃ C̃(t)Γ̃(t)L̃H̃

]

N(t), (8)

where Z(t) = vec{X(t), ε(t|t − 1)} and N(t) = vec{E(t),
V (t)}. Applying the mathematical expectation on both sides

of (8), we obtain for Z̄(t) = E{Z(t)} the recursion

Z̄(t + 1) =
ν

∑

i=1

πiB[r]Z̄(t), (9)

where B̃[r] =

[

F̃ 0

C̃[r](F̃E − F̃ ) Ã[r]

]

and C̃[r] is obtained

from C̃(t) by choosing Ξt = Ξ[r].

Similarly, we obtain the following recursion for the mean-

square error matrix P (t) = E{Z(t)Z(t)T }:

P (t + 1) =

ν
∑

i=1

πi[B̃[r]P (t)B̃T
[r] + D̃[r]WD̃T

[r]], (10)

where D̃[r] =

[

G̃ 0

−G̃ C̃[r]Γ̃[r]]L̃H̃

]

and W =

E{N(t)N(t)T } = diag{Q∗, R̃}, where Q∗ =







Q · · · Q

...
Q · · · Q






,

R̃ = diag{R(1)(t), . . . , R(N)(t)}. Relation (10) can be

rewritten in the following way:

col{P (t + 1)} =
∑ν

r=1 πr[(B̃[r] ⊗ B̃[r])col{P (t)}+

+(D̃[r] ⊗ D̃[r])col{W}] (11)

where col{.} denotes a vector obtained by concatenating

columns of an indicated matrix and the sign ⊗ denotes the

Kronecker’s product.

IV. STABILITY

For the stability analysis of the proposed estimator, we

shall use the following results from the general matrix theory.

Lemma 1. Let f(.) be a matrix norm having the property

f(A) ≤ f(B) for two n×n matrices A and B satisfying A ≤
B (A ≥ 0 means that all the elements of A are nonnegative).

Let g(.) be any matrix norm and let A be partitioned into

square blocks Aii. Then, h(A) is a matrix norm, where

h(A) = f

















g(A11) · · · g(A1k)

...
...

g(Ak1) · · · g(Akk)

















. (12)

Lemma 2. Let A be an n × n matrix and ε > 0. Then,

there exists a matrix norm ‖A‖ such that

ρ(A) ≤ ‖A‖ ≤ ρ(A) + ε, (13)

where ρ(A) is the spectral radius of a matrix A (ρ(A) =
maxi |λi(A)|, where λi(A) are the eigenvalues of A).

A norm satisfying the requirement of Lemma 2 is the

norm ‖A‖t = ‖DtU
T AUD−1

t ‖∞, where U is an orthogonal

matrix in A = U∆UT , where ∆ is an upper triagonal

matrix (Schur’s theorem), Dt = diag{t, t2, t3, . . . , tn} and

‖A‖∞ = maxi

∑n

j=1 |aij | (for A = [aij ], i, j = 1, . . . , n).

Inequality (13) is satisfied for any given ε > 0 by choosing

t ≥ 0 large enough.

Lemma 1 can be found in [25] as Conlisk observation,

while Lemma 2 and the related statement can be found in

[26] (Lemma 5.6.10).

The following theorem gives sufficient conditions for

stability in the sense of boundedness of the mean-square

error (10). The applied methodology is based on [24], [27]

and the definition of a specially constructed norm adapted to

the partition of the consensus matrix.

Theorem 1. Let Ã[r] be partitioned into blocks Ã
[r]
jk =

C
[r]
jk Φ

[r]
j , where C

[r]
jk and Φ

[r]
j are realizations of Cjk(t) and

Φj(t) obtained by choosing Xit = Ξ[r], and let ρ(Φ
[r]
k ) <

R
[r]
k , k = 1, . . . , N , together with

ν
∑

r=1

πr(max
j

N
∑

k=1

ρ(C
[r]
jk )R

[r]
k )2 < 1. (14)

Then, the proposed estimator is stable in the sense that

‖E{ε(t|t−1)ε(t|t−1)T }‖ < ∞, if the system (1) is stable,

or if the system (1) is unstable and F̃E = F̃ .
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Proof: If Ã[r] is partitioned into n× n blocks A
[r]
ij , i, j =

1, . . . , N , then the matrix Ã[r] ⊗ Ã[r] is cogredient to ÃP
[r] ⊗

ÃP
[r], i.e. ÃP

[r] ⊗ ÃP
[r] = T (Ã[r] ⊗ Ã[r])T

T , where T is a

permutation transformation, where

ÃP
[r] ⊗ ÃP

[r] =























A
[r]
11 ⊗ A

[r]
11

. . . A
[r]
11 ⊗ A

[r]
1N

. . . A
[r]
1N ⊗ A

[r]
1N

...

A
[r]
21 ⊗ A

[r]
11

. . . A
[r]
21 ⊗ A

[r]
1N

. . . A
[r]
2N ⊗ A

[r]
1N

...

A
[r]
N1 ⊗ A

[r]
N1

. . . A
[r]
N1 ⊗ A

[r]
nN

. . . A
[r]
NN ⊗ A

[r]
NN























.

Therefore, any norm of ÃP
[r] ⊗ ÃP

[r] is a norm of Ã[r] ⊗ Ã[r].

Define the norm of ÃP
[r] ⊗ ÃP

[r] in the following way:

‖ÃP
[r]⊗ÃP

[r]‖c =

∥

∥

∥

∥

∥

∥

∥

∥

∥











‖A
[r]
11 ⊗ A

[r]
11‖t

. . . ‖A
[r]
1N ⊗ A

[r]
1N‖t

...
...

‖A
[r]
N1 ⊗ A

[r]
1N‖t

. . . ‖A
[r]
NN ⊗ A

[r]
NN‖t











∥

∥

∥

∥

∥

∥

∥

∥

∥

∞

,

where ‖.‖t is defined within Lemma 2. For particular terms

in the last expression we have

‖A
[r]
jk ⊗ A

[r]
lm‖t ≤ ρ(A

[r]
jk)ρ(A

[r]
lm) + ε ≤ ‖A

[r]
jk‖‖A

[r]
lm‖ + ε

(15)

for any ε > 0 and t large enough, according to the

Lemma 2. Furthermore, we have ‖A
[r]
jk‖ = ‖C

[r]
jk Φ

[r]
k ‖t ≤

ρ(C
[r]
jk )‖Φ

[r]
k ‖t, having in mind that ‖C

[r]
jk ‖t = ρ(C

[r]
jk ) for

C
[r]
jk diagonal. Moreover, it is always possible to find such

a t̄ > 0 that for any t > t̄ we have ‖Φ
[r]
k ‖t ≤ ρ(Φ

[r]
k ) + ε,

for any given ε > 0. Making ε small enough we always

have ρ(Φ
[r]
k )+ ε ≤ R

[r]
k (having in mind the strict inequality

in ρ(Φ
[r]
k ) < R

[r]
k ), and, therefore, ‖Φ

[r]
k ‖t ≤ R

[r]
k . Conse-

quently, one obtains that

‖ÃP
[r] ⊗ ÃP

[r]‖c ≤ max
j,l

(
N

∑

k=1

ρ(C
[r]
jk )R

[r]
k )(

N
∑

m=1

ρ(C
[r]
lm)R[r]

m ).

Coming back to (11), we directly obtain (14). The second

conclusion follows trivially from the definition of the matrix

B̃[r]. Thus the result.

Remark 1. A comparison with the results obtained in rela-

tion with the continuous-time estimator based on consensus

described in [20] shows basic similarity of the main ideas, but

also some differences which should be emphasized. Namely,

the main point of the stability analysis in [20] has been to

show the existence of stabilizing consensus gains, while the

stability conditions given here give a deeper insight into the

influence of particular terms, even in the case of intermittent

observations and communication faults.

Remark 2. The derived conditions are sufficient for sta-

bility in the sense of mean-square error boundedness. Fol-

lowing the same line of thought, it is possible to for-

mulate conditions for the convergence of the mean value

Z̄(t) to zero (see [19]). It is possible to show that

these conditions are based on the modified condition (14):
∑ν

r=1 πr(maxj

∑N

k=1 ρ(C
[r]
jk )R

[r]
k ) < 1. It can be observed

immediately that the last condition is implied by (14), which

is logical, having in mind that the requirement for the mean-

square error boundedness is stronger that the requirement for

the convergence of the mean.

Example 1. Assume that the system S is of first order and

unstable, with F = 1.2 and that we have two first order

local estimators. Assume also that F1 = 1.2, L1 = 0.5 and

H1 = 1 for the first estimator, and F2 = 1.2, L2 = 0.3
and H2 = 1 for the second; both estimators are stable when

the measurements are available (when γi = 1). The local

steady state estimators alone are mean-square stable (in the

sense of Theorem 1) if the probabilities p11 and p22 for

not getting measurements are less than p̄11 = 0.6303 and

p̄22 = 0.6741. Assume now that the network is implemented

with constant communication gains Kij = 0.5, i, j = 1, 2,

according to the proposed algorithm (recall (6) and the

notation therein). According to Theorem 1, it is possible

to find regions in the plane p11 − p22 which guarantee the

mean-square stability of the whole estimator for different

values of the communication probability p = p12 = p21

(Fig. 1, curves with the label (1)). The obtained boundaries

are conservative, as expected; however, the beneficial effects

of the consensus scheme are obvious. Intercommunications

between the agents increase robustness of the local estimators

to intermittent measurements. Curves with the label (2)

represent, on the same figure, the corresponding boundaries

guaranteeing convergence of the mean; their relation with

the curves corresponding to the mean-square stability is in

accordance with Remark 2. The bounding probabilities for

the case of independent estimators are in this case p̄11 =
0.7143 and p̄22 = 0.7778, according to (9).

p
11

p
2
2

Stability Boundaries

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p=0
p=0.5

p=1

(1)

(2)

(1)

(2)

(2)

(1)

(1)

(2)

Fig. 1. Stability boundaries

V. DENOISING

In this section we shall pay our attention to an important

aspect of the analyzed scheme related to its capability to

reduce the noise influence by increasing the number of active
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measuring and processing agents. The basic problem of

consensus averaging has been studied for different network

topologies in, e.g., [17]. In [20] and [21], an analysis is

given of the continuous-time Kalman filtering algorithms and

stochastic approximation algorithms connected by a dynamic

consensus scheme, which demonstrates that it is possible

to reduce the measurement noise influence by increasing

the complexity of the network. We shall provide here an

insight into this problem in the context of the proposed

discrete-time state estimation algorithm by using a special

simplified setting which enables getting qualitatively clear

conclusions. Generalizations to more complex structures are

feasible, although technically more complex.

We shall assume further that all the estimators have the

information about the system model, and that they observe

the identical components of the state vector, but with differ-

ent realizations of the measurement noise, having the same

covariance R. We shall also assume that the measurements

are never interrupted, and that there are no communication

faults.

Case (a): the consensus matrix C̃(t) is constant and given

in the form C̃(t) = C̃
(N)
1 = 1

N







I I · · · I
I I · · · I

· · ·
I I · · · I






, where I stands

for In.

From (10) we obtain for the steady-state estimation mean-

square error S the following Lyapunov-like algebraic equa-

tion:

S =
ν

∑

r=1

πr[Ã
N
[r]SÃT

[r] + Ẽ[r]WẼT
[r]], (16)

where Ẽ[r] =
[

−G̃ C̃[r]Γ̃[r]]L̃H̃
]

. The above simplifying

assumptions lead to

S(N) = C̃
(N)
1 [Φ̃S(N)Φ̃T + L̃H̃R̃H̃T L̃T ]C̃

(N)
1 + G̃Q∗G̃T

(17)

where the upper index (N) emphasizes that there are N

agents; the block-diagonal matrices Φ̃, L̃, H̃ and G̃ are

composed of identical block-diagonal elements.

We observe now that C̃
(N)
1 has n eigenvalues at 1, and

(N − 1)n eigenvalues at 0. Its diagonalization can be done

using

TN =









I I · · · I

I −(N − 1)I · · · I
· · ·

I · · · −(N − 1)I









,

so that

T−1
N C̃

(N)
1 TN = C̄

(N)
1 =







I 0 · · ·
0 0 0 · · ·

· · ·
0 0 · · · 0






. (18)

Applying T−1
N and TN to equation (17), we obtain

S̄(N) = C̄
(N)
1 [Φ̃S̄(N)Φ̃T + L̃H̃R̃H̃T L̃T ]C̄

(N)
1 + Q̄(N) (19)

where S̄(N) = T−1
N S(N)TN and Q̄(N) = T−1

N G̃Q∗G̃T TN =






NGQGT · · · 0

...
0 · · · 0






. A solution to this equation is S̄(N) =







Ŝ(N) 0 · · ·

0 0 0 · · ·
· · ·

0 0 · · · 0






, where Ŝ(N) is obtained from the Lya-

punov equation

Ŝ(N) = ΦŜ(N)ΦT + LHRHT LT + NGQGT . (20)

Obviously, the mean-square error for the whole vector X(t)
is J = Tr S̄(N) = Tr Ŝ(N). Having in mind that N

independent estimators have the mean-square error equal to

NĴ , where Ĵ = Tr Ŝ and Ŝ is a solution to the standard

Lyapunov equation

Ŝ = ΦŜΦT + LHRHT LT + GQGT , (21)

we take J̄ = 1
N

J as the average criterion ”per agent”, and

obtain that for N large enough J̄ ≈ TrS∗, where S∗ is a

solution of the Lyapunov equation

S∗ = ΦS∗ΦT + GQGT . (22)

Comparing (21) and (22), one concludes that for large N the

consensus scheme asymptotically reduces the mean square

error from the level defined by (21) to the level defined by

(22), where the measurement noise is reduced to zero. In

this sense, introduction of the inter-agent communications

based on consensus contributes to the measurement noise

suppression, that is, to denoising.

Our previous case was related to the network with the

maximal connectivity: the next case is related to the network

with minimal connectivity.

Case (b): C̃(t) = C̃
(N)
2 = 1

2









I I 0 · · · 0
0 I I 0 · · ·

· · ·
0 0 · · · I I
I 0 · · · 0 I









, i.e., the

network graph forms a directed ring.

Diagonalization of C̃
(N)
2 produces a diagonal matrix with

the eigenvalues λ
(N)
i , i = 1, . . . , N , uniformly distributed on

a circle in the complex plane of radius 1
2 with the center at

( 1
2 , 0). Consequently, we get for the diagonal blocks (S̄(N))i,

i = 2, . . . , N , the following relations:

(S̄(N))i = |λ
(N)
i |2[Φ(S̄(N))iΦ

T + LHRLT HT ], (23)

except for the first one, which is the same as in Case (a).

It is obvious that in this case the sum of the terms in (23)

does not tend to zero, so that denoising in the above sense

is not achievable in spite of the fact that all the nodes are

reachable from any other node.

However, the relation (23) indicates how asymptotic de-

noising can be achieved in the case of graphs with complex-

ity lying between the above two extremes. Summing up the

terms defined by (23), we easily conclude that

‖ΣN
i=2(S̄

(N))i‖ ≤ k

n
∑

i=1

|λ
(N)
i |2
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for some finite k > 0. Therefore, the condition

N
∑

i=1

|λ
(n)
i |2 = o(N) (24)

is sufficient for successful asymptotical denoising.

Example 2. This example illustrates the denoising capa-

bilities of the proposed estimator. We assume that all the

agents have the identical models of the stable fourth order

system with Q = 0.5I4, R = 0.5I4, but with different

realizations of the measurement noise. It is also assumed that

the measurements are never interrupted and that there are no

communication faults (with probability 1). Average values

of the criterion (J̄) have been calculated for two network

topologies: a) fully connected network; b) directed ring.

The results are shown in Fig 1. The horizontal dashed line

correspond to the criterion lower bound Tr(S∗) where S∗ is

obtained by using (22). The presented results fully confirm

the above analysis. In the case of the fully connected graph,

as the number of agents (N ) goes to infinity the curve exactly

converges to the lower bound of the criterion. In the case of

the directed ring the limit value of the criterion is higher

than Tr(S∗); hence, the complete asymptotic denoising is

not achieved.
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Fig. 2. Average criterion as a function of N

VI. CONCLUSION

In this paper a new algorithm for overlapping decentral-

ized state estimation has been considered. It is based on

a synergy between the local Kalman filters, with possible

intermittent observations, and a consensus scheme which

forms a communication network between the agents, with

possible communication errors. Using a specially defined

matrix norm, sufficient conditions for the asymptotic stability

in the sense of bounded mean-square estimation error have

been derived. The important problem of denoising has also

been considered. It has been shown that the algorithm is

able to contribute to the measurement noise suppression by

increasing the network complexity.
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