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Abstract— Sensing in support of combat teams may be
performed both by human elements and by UAVs. With
the increasing pace of modern combat operations, and the
developing networked-management of such, the problem of how
to task sensor assets is entering the realm where automated
decision-support tools should be applied. The objective by
which the relative value of possible future sensor tasks should
be compared is the value that they bring to the combat
operation, with adjustment by the possible costs of these
sensing operations. A mathematical theory allowing for the
determination of the minimax value as a function of information
state (where this information state is described by a probability
distribution) has recently been obtained. Possible future sensing
tasks are mapped into the (stochastic) observation outcomes,
and these are further mapped into potential a posteriori
probability distributions. The value to the combat operation
is the expectation of the minimax value as a function of these
potential future probability distributions. This is used as an
objective function, according to which optimal sensing-platform
tasking is computed. Both open-loop and observation-feedback
sensing-platform tasking controllers are developed. A simple
example is studied.

I. INTRODUCTION

Sensing in support of combat teams may be performed

both by human elements and by UAVs. With the increasing

pace of modern combat operations, and the developing

networked-management of such, the problem of how to task

sensor assets is entering the realm where automated decision-

support tools should be applied.

This problem falls into the category that is sometimes

referred to as observation control. Earlier, mathematically

strong research on this general area may be found in Miller

and Runggaldier [6]. In that case, a different measure of

information value (covariance) was used, as well as a differ-

ent dynamics model. Questions of observation control have

arisen more recently in the context of control of groups of

UAVs and UUVs (Unmanned Undersea Vehicles), viewed as

mobile sensor networks. Such an approach is considered in

[1], where the authors look at this problem in the context of

underwater vehicles. Similarly, in [2] a related problem with

air vehicles is considered. In both of those cases, the goal of

the sensing operation was very different from that considered

here. Here, we are concerned with optimizing expected

observation value, where that value is through the effect

the information has on a related partial-information game

or control problem, which involves a separate set of entities
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which are consuming the observation-induced information.

In the application here, this related control problem consists

of combat operations. The nature of this related problem

figures very heavily into the solvability of the observation

control problem. In particular, it implies a specific structure

(piecewise linear) for the value-of-information function, and

this structure is exploited.

The correct measure of value for sensor UAV tasking

consists of two components. The first is simply the expected

cost of the sensing action (expected cost of loss and mainte-

nance). The second component is much more important, and

it is the expected payoff to the warfighters of the possible

observational data returns. In [3], [4], the authors develop an

object, Vt(q) which describes the minimax expected payoff

for a game between Blue and Red combat teams at time t

as a function of the Blue knowledge of the system state,

specified as probability distribution q. (It is assumed that

Red has perfect state information.) We’ll call this object,

Vt(q), ground operations payoff in order to distinguish it

from sensing operations payoff, which will be defined after

the next paragraph.

This object may be used to determine the value of sensing

actions. For discussion purposes, suppose a simple, decom-

posed problem is given as follows. Suppose Blue will choose

a sensing control action, ending at time, t = T > 0,

immediately followed by a combat action. At time, t = 0,

Blue knowledge is described by q0. Given a series of sensing

actions, uo
[0,T−1]

.
= {uo

t}
T−1
t=0 , there is an associated set

of possible observations, {yt(u
o
t )}

T−1
t=0 . Note that the yt

are random variables - the actual observation that will be

obtained will be corrupted by noise. Given such a set of

observations, one may update the distribution q0 to qT by

an estimator such as Bayes rule. Note that qT is a random

variable. The obvious resulting ground operations payoff is

VT (qT ).
One may use this payoff to formulate this sensing opera-

tion as an optimization problem. Select uo
[0,T−1] to maximize

the sensing payoff, J(uo
[0,T−1]), defined as,

J(uo
[0,T−1])

.
= E

{
VT (qT ) − C(uo

[0,T−1])
}

,

where C(uo
[0,T−1]) is a random variable describing the possi-

ble UAV (or other sensing platform) losses due to the control

choice.

Of course, the sensing actions will occur, not only be-

fore, but in parallel with the combat actions. Further, the

optimal sensing action at the next time-step could (and

almost certainly would) depend on the observations thus

far obtained. Consequently, the above optimization-problem
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Fig. 1. ρ
l(q) for a micro-action

format generalizes to a control problem.

The key to reasonable computational speed with this

approach is an ability to model the probability of kill

against Blue, ρ = ρ(q), as a function of Blue’s information

state (where the argument indicates that this depends on

probability distribution q, i.e., the information state) for each

micro-action of the future engagements. Micro-actions are

essentially single steps on an abstract graph-based model

of combat force movement. More specifically, Blue forces

will move on the nodes of this graph, where each node

represents a sub-region of the terrain. Let ql be a prob-

ability distribution over the lth sub-region of the terrain,

representing the unknown Red force locations in that sub-

region. We will demonstrate that the probability of kill

for that sub-region, ρl(ql), takes the form of a concave

piecewise-linear function. See Figure 1 for an example.

These forms can be pre-computed as functions of the local

geometry. The survival probability of a Blue entity over a

larger set of actions is simply the product of the survival

probabilities for the constituent micro-actions (each taking

the form 1−ρi(ql)). Thus, the cost criterion to be optimized

in the control problem is a function of products of these

forms. The theory of dynamic programming can be used

to develop the general algorithm, and of course, advanced

numerical approaches and approximations must be employed

to solve reasonably large problems. A very simple example

of an optimal path can be seen in Figure 2, where the blue

path indicates movement of the Blue combat ground forces,

and the green path indicates the optimal tasking path of

a single supporting sensor platform. The red dots indicate

potential locations of Red forces.

II. MODELING THE VALUE OF INFORMATION

The (unknown) state of the Red forces will be modeled as

a set of positions on an abstract graph. As this is a discrete

object, the corresponding probability distribution will be a

vector of probabilities. The Blue combat force state will also

be modeled as a discrete position or set of positions, moving

on an abstract graph.

Fig. 2. Optimal sensing-support route an Blue COA

Each observation will propagate an a priori probability

distribution representing Blue’s knowledge into a resulting

a posteriori distribution, via Bayes rule. In fact, this time-

indexed sequence of probability distributions will represent

the state of the system (of the observation-control problem).

That is, the state-process we are interested in here consists of

the probability distributions, ql
t. Note that given a sequence of

observation tasks, the resulting observations form a stochas-

tic process (due to observation noise such as induced by false

positives), and consequently, ql
t is a stochastic process. In

order to obtain the cost criterion for our observation control

problem, we must look at the problem of determining the

value of probability distributions, ql
t.

We now begin to develop this value-of-distribution. Keep

in mind that this is not the value of the observation-control

problem, but is the value of information, which will form

the cost criterion of the observation-control problem to be

discussed in the next section. In Section 4 of [4], a minimax

game value for Blue under partial information, modeled as

qt, was obtained. In that case, both Blue and Red were active

players. However, for the problem under consideration here,

we will not model them as such. The reason for this is that

it is not generally military policy to allow a sensor-tasking

controller to direct combat operations, and this latter task is

(very reasonably) kept under human control. Consequently,

we will assume that we are given a Blue COA (course-of-

action) for combat operations, and that this will remain fixed,

as far as our control problem is concerned.

For a first problem formulation, which is what we are

studying here, we assume that this is a “Blue-attack mission”

where Red is in some fixed, but unknown, set of positions.

With such a model, and more specifically with a fixed Blue

COA, it is not at first obvious how Blue would benefit from

observational data. The key is to note that the Blue COA is a

high-level controller, and that there exist finer actions which

the local commander controls.

We use the following simple example to motivate the

mathematical model, but the approach applies to a larger

variety of Command and Control (C2) problems. We suppose

that the Blue forces are moving in urban terrain, see Figure 2.
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Fig. 3. Abstracted Blue COA

Red forces may lie in any of the buildings marked with a Red

dot. We break this problem into a simple three-step process

in which Blue combat forces make three steps to reach their

goal. In each step, they may come under attack from Red

forces, see Figure 3. The three steps are indicated by the three

ovals. We suppose that, at each step, Blue can be attacked

only from the locations in the corresponding oval. (This is

not essential to the theory, but simplifies the computations

for us here.)

We continue to use this simple example problem in defin-

ing the underlying value-of-distribution/observation-control

cost criterion. We suppose that in the kth step, a single

Blue combat entity (e.g., a fire-team) will be at lk ∈ L =
{1, 2 . . .L} where L is the set of nodes of an abstract graph

representing allowable movement in the battlespace, where

as noted above, these nodes correspond to sub-regions of

the terrain. (See, for example, [5] for a discussion of such a

graph representation.) In the example depicted in Figure 3,

L = 3. Let the possible Red locations in subregion l ∈ L be

Nl = {1, 2 . . .Nl}. Suppose, for this study, that we know that

there is exactly one Red unit in each subregion; otherwise

the analysis is more complex, but not conceptually different.

If Red is at location n ∈ Nl, we say xR
l = n. In the example

depicted in Figure 3, N1 = 2, N2 = 3 and N3 = 2.

The Blue information on the Red state in subregion l is

described by probability distribution ql. Note that distribution

ql lies in simplex SNl where

Sn =

{
q ∈ IRn | qi ∈ [0, 1] ∀i ≤ n and

n∑

i=1

qi = 1

}
.

In particular, the nth component of ql, ql
n, is the probability

that there is a Red entity at location n of subregion l. The

full Blue information state is

Q
.
= {ql}L

l=1. (1)

Continuing the development using our motivational ex-

ample we suppose that the allowable local, combat Blue

controls (finer actions) at node l are U l = {0}∪Nl. In other

words, at time-step k, Blue is at node lk and may apply local

control uk ∈ U lk . In our example, uk = n ∈ Nl implies

that Blue is laying cover fire on potential Red location n,

while proceeding with its Blue COA. Further, uk = 0 implies

that Blue is “tight” during this step, meaning that the local

Blue entity does not fire unless fired upon during this step.

We will make the assumption that Blue is well-protected if

firing upon the correct potential Red location. Further, we

will assume that Blue is somewhat better able to defend

itself from an attack from location n′ if in stance “tight”

(u = 0) rather than in stance u = n 6= n′ (with n > 0). The

inclusion of control u = 0 is not necessary to the approach,

but is included for additional realism.

The local Blue forces will have a health state h ∈ {0, 1},

where h = 1 represents healthy, and h = 0 represents

destroyed. This simple model is sufficient for our purposes

here; our goal is the development of the sensing-platform

control. At each time-step, Blue wishes to maximize its

probability of survival. Let ρl : Nl × U l → [0, 1], where

specifically, ρl
k(xR

l , u) will be the probability that Blue is

destroyed (h transitioning from 1 to 0) at node l given true

Red position xR
l and Blue local combat control u.

In order to obtain the value-of-information, we form a

small control problem for each micro-action. The dynamics

are those of the Blue entity health, given just above. The

cost criterion will be

J l(q, u)
.
=
∑

x∈Nl

ρl(x, u)ql
x = pl(u) · ql, (2)

where pl(u) is the vector of length Nl with elements ρl(x, u)
for x ∈ Nl. The value-of-information is the value of this

small control problem, also referred to as a micro-action,

and is given by

V l(q)
.
= min

u∈Ul

{
pl(u) · q

}
. (3)

We see that each V l is a piecewise linear function of its

argument, Blue’s probability distribution of Red. Specifically,

V l maps SNl into IR.

The probability that Blue is destroyed at time-step k is

P̂k(q)
.
= Plk(q) = V lk(q). Suppose there are K time-steps

in the Blue COA. Then, the probability that the Blue entity

survives to reach the goal is

P s(Q)
.
=

K∏

k=1

[
1 − Plk(qlk)

]
. (4)

The goal of the sensing operation is to maximize the

expected value (recalling that Q will be random) of P s

through the tasking control of the sensor platform(s), and

this will be discussed in the next section. Prior to that we

note that Pl(q) may be computed offline and stored for

use in the computations. Further beyond that, one may be

able to simply store Pl functions indexed according to local

geometry, rather than computing them for each geography

encountered.

III. OBSERVATION-CONTROL PROBLEM

As noted above, we consider here the simplest case,

where the Blue combat forces act after the completion of
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the sensing operations. For the more general problem, we

consider the sensing actions operating in parallel with the

combat operations, and as the speeds of the sensing and

combat entities may be dissimilar, we need to use multiple

time-scales which must be properly synchronized. In that

case, we also include the information gained by the combat

forces as they move through the physical space. These

additional aspects (of parallel operations) induce consider-

able additional notation and technicalities which obscure the

main point. Consequently, for this presentation, we assume

the sensing actions take place first, and then the combat

operations occur. With this simplified model, the observation-

platform tasking control problem is a finite time-horizon,

terminal-cost problem.

In order to simplify notation for the subsequent mathemat-

ical development, we now let information state at time t be

qt where qt : J → [0, 1] where J is the set of possible

Red configurations, and [qt]j ∈ [0, 1] and
∑

j∈J [qt]j =
1. (Recall that we are assuming that there is exactly one

Red entity in each subregion. In the notation used for the

combat operations sub-problem of the last section, J =
{j1, j2, . . . jL} where each jl ∈ {1, 2, . . .Nl}.) Then qt ∈ SJ

where J = #J . Let the mapping from q ∈ SJ to Q of

(1) be denoted by F : SJ → SN1 × . . . × SNL , and define

P̃s(q)
.
= P s(F (q)) for all q ∈ SJ . Let the initial information

state (at sensing-platform control problem time t = 0) be q0.

The expected costs due to maintenance and loss of sensing

platforms, i.e. E{C(uo
· )}, is easily modeled. We concentrate

here on the, more interesting, payoff-component – the value

for combat teams P̃s(q), and ignore the C(uo
· ) component.

For simplicity, we suppose that the sensing platforms can

move from any position to any other position in one time-

step. With this freedom, any sequence of ordered pairs, (l, x)
where l ∈ L and x ∈ Nl, is an admissible sensor-platform

control. Let U be the set of ordered pairs (l, x) where l ∈ L
and x ∈ Nl, i.e., U = {(l, x) | l ∈ L, x ∈ Nl}.

Suppose there are T time-steps in the sensing-platform

control problem. The payoff for information state q at time

t with observation-platform control uo
· is

Jo,o(t, q, uo
· )

.
= E

{
P̃s(qT )

}
(5)

where

uo
· = uo

[t,T−1] = {uo
t ∈ U | t ∈ {t, t + 1, . . . T − 1} }.

Note that uo
[t,T−1] ∈ UT−t, where the superscript indicates

outer product T − t times. The propagation of the state from

q to qT is discussed further below.

We consider multiple approaches to the optimal control

problem. The first is simply open-loop optimization. This

would be appropriate for a concept-of-operations where in-

coming observational data could not be used to re-adjust the

sensing-platform task plan. With such a model, the control

problem reduces to an open-loop optimization problem. In

particular, one solves for the value function

V o,o(t, q) = max
uo
·

∈UT−t
Jo,o(t, q, uo

· ), (6)

and the corresponding optimal task-plan.

The second approach is the true feedback case, in which

the state at time t consists of the current sensor position and

the current information state, qt. As the sensor can move

from any location to any other in one time-step, we will

suppress the sensor-position as state component. Let At
.
=

{α : SJ → U} where J
.
= #J . Let

At .
=
{

α[t,T−1] : [SJ ]T−t → UT−t
∣∣ if qr = q̂r for all

r ≤ t̄, then αr[q·] = αr[q̂·] for all r ≤ t̄
}
.

The payoff for information state qt = q and non-anticipative

control α ∈ At is

Jo,f(t, q, α·)
.
= E

{
P̃s(qT )

}
, (7)

and (again) the propagation of the state from q to qT is

discussed below. The corresponding value function is

V o,f(t, q) = sup
α

·
∈At

Jo,f (t, q, α·). (8)

We have not yet indicated the dynamics of the state in

these above definitions, and now do so. The dynamics of the

information state are given by Bayes rule. More specifically,

suppose the sensor is at (l, x) at time t. The observation

y = yt will take a value in Y
.
= {0, 1} where y = 0 indicates

that no Red entity is observed at (l, x), and y = 1 indicates

that a Red entity is observed there. (We recall that an “entity”

may be a Red combat team.) Let R
y,u
j be the probability of

observation y given given the sensor is at u ∈ U and the Red

force state is j ∈ J . Let Ry,u be the vector of length J with

components R
y,u
j , and let D(Ry,u) be the J×J matrix with

diagonal elements [D(Ry,u)]j,j = R
y,u
j and [D(Ry,u)]i,j =

0 for i 6= j. Then, given any sensing control action ut ∈ U
and resulting (random-variable) observation yt, one has

qt+1 =
1

Ryt,ut · qt

D(Ryt,ut)qt
.
= βyt,ut(qt) (9)

which defines the stochastic information state dynamics.

Using the above dynamics model, one may obtain com-

putationally explicit forms for Jo,o and V o,o. Suppose one

applies control sequence u[0,T−1], resulting in observation

sequence y[0,T−1]. The probability of any such sequence is

P (y[0,T−1]) =
∑

x∈J

P (y[0,T−1]|x)qx. (10)

Also, since the observation noises are (assumed) indepen-

dent, one has

P (y[0,T−1]|x) =

T−1∏

t=0

Ryt,ut

x . (11)

Combining (10) and (11) yields

P (y[0,T−1]) =
∑

x∈J

[
T−1∏

t=0

Ryt,ut
x

]
qx

=
∑

x∈J

[(
T−1∏

t=0

D(Ryt,ut)

)
q

]

x

. (12)
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Also note that

qT = βyT−1,uT−1 ◦ βyT−2,uT−2 ◦ · · · ◦ βy0,u0(q)
where ◦ indicates composition, and one can show that this

is

=

(∏T−1
t=0 D(Ryt,ut)

)
q

∑
x∈J

[(∏T−1
t=0 D(Ryt,ut)

)
q
]

x

. (13)

By (5), (12) and (13),

Jo,o(t, q, uo
· ) =

∑

y[0,T−1]∈YT


P̃s




(∏T−1
t=0 D(Ryt,ut)

)
q

∑
x∈J

[(∏T−1
t=0 D(Ryt,ut)

)
q
]

x






·

[
∑

x∈J

[(
T−1∏

t=0

D(Ryt,ut)

)
q

]

x

]
. (14)

One can easily check that, if P̃s(q) = aT q + b for some

a ∈ IRJ and some b ∈ IR, then

Jo,o(t, q, uo
· ) = aT q + b = P̃s(q),

in which case, the expected gain from any sensing would be

zero. It is important to note that the fact that sensing has

value is dependent on the nonlinearity of the dependence of

the survival probability, P̃s on q.

Now we return to the information state feedback case. The

first thing we obtain is the dynamic programming principle

(DPP):

Theorem 3.1: For t ∈ {0, 1, . . . T − 1},

V o,f(t, q) = max
u∈U

Ey

{
V o,f(t + 1, βy,u(q))

}

where the expectation is over the set of possible observations.

The proof is not included, but is of standard form.

We indicate how the backward DPP is mechanized. First,

of course,

V o,f(T, q) = P̃s(q).

Next, note that

V o,f (t, q) = max
u∈U

∑

y∈Y

P (y)V o,f (t + 1, βy,u(q))

which, by the above exposition,

= max
u∈U

∑

y∈Y

{
[Ry,u · q] (15)

·V o,f

(
t + 1,

1

Ry,u · q
D(Ry,u)q

)}
.

IV. COMPUTATIONAL COMPLEXITY

The open-loop case is straightforward. The computation of

Jo,o(0, q, u·) is given by (14). Using this, given any q and

any u·, one may compute Jo,o directly. Of course, if #YT−1

is large, then this can become burdensome. Further, when op-

timizing over u· ∈ UT to find the optimum, the calculations

become yet more burdensome. Nonetheless, many terms

are computed repeatedly, and so clever pre-computation of

such terms outside the summation and optimization loops is

greatly beneficial.

The feedback case is more demanding. Consider (15). In

order to compute V o,f (t, q), one must have V o,f (t + 1, ·)
on SJ . One option is discretization of SJ , but with large J ,

this quickly becomes unfeasible. Fortunately, one may make

use of the special form of P̃s as a pointwise maximum of

affine functions (implying the same for V o,f , but we do not

include the proof here). This allows us to operate on the value

function parameterized as a maximum of relatively easily

computed functions, thereby making the computations much

more feasible.

For any set, I, and positive integer N , let PN (I) be the

set of all sequences of length N with elements from I, and

note that the cardinality of PN(I) is (#I)N . For simplicity

here, we relabel Y and U as Y = {1, 2, . . .Ny} and

U = {1, 2, . . .Nu}. We state the following maximum-based

numerical propagation result without the (rather technical)

proof. We do note, however, that the result relies heavily on

the form of the V (t, ·) as pointwise maxima of linear forms,

in which case certain terms in (15) cancel.

Theorem 4.1: Suppose V o,f (t + 1, q) takes the form

V o,f(t + 1, q) = max
i∈It+1

bi
t+1 · q

where It+1 = {1, 2, . . . It+1}. Then,

V o,f (t, q) = max
i∈It

bi
t · q

where It = {1, 2, . . . It}, It = Nu(It+1)
Ny ,

bi
t =

∑

y∈Y

D(Ry,u)bj
t+1 (16)

where (u, j) = M−1(i), and M is a one-to-one, onto

mapping from U × PNy(It+1) → It (i.e., an indexing of

U × PNy(It+1) ).

With this result, we see that backward propagation of V o,f

reduces to backward propagation of the sets Bt = {bi
t :

i ∈ It} using (16). This implies that one does not need

to grid SJ , a technique which is subject to the curse-of-

dimensionality. However, note that It will grow rapidly. This

growth may be attenuated by judicious pruning of the Bt,

which may be effected by linear programs. Thus, the use of

Theorem 4.1 leads to much more computationally efficient

schemes.

V. EXAMPLE

We briefly present some results for the simple example

indicated in the introduction.

In this example, the battlespace is divided into three

regions as depicted abstractly in Figure 3. There is exactly

one Red entity in each region. In each of Regions 1 and 3,

there are exactly two buildings where Red may have entities.

For simplicity, the parameters chosen for each of the two

regions were identical. Computing the the probabilities of

Blue entity loss in each of those regions according to the

method of Section II, results in a Pl(q) depicted in Figure 4.

Region 2 has three buildings, and the corresponding Pl(q)
was depicted above in Figure 1. For the example studied here,

the Blue sensor platform could visit two buildings prior to
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Fig. 5. Open-loop value

the start of combat operations. Thereafter, sensing actions

and combat actions were interleaved, until the terminal time

at the end of the third combat step (Region 3).

The value function for the open-loop case is depicted in

Figure 5, as a function of the initial information in Regions

1 and 3. (Note that the information state is minimally stored

as a vector in the four-dimensional unit hypercube, and so

we only display it over two components – the probabilities

that there is a Red entity in Building 1.1 and the probability

there is a Red entity in Building 3.1 according to Figure

3 labeling.) We compare this with a heuristically generated

sensing-platform task plan, which for any specific q, might

be similar to what a commander would choose. The expected

payoff for the heuristic task planner is depicted in Figure 6,

and the percent improvement (in terms of reduced attrition)

is depicted in Figure 7.
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