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Abstract— This paper addresses the issues of counting the
occurrence of special events in the framework of partially-
observed discrete-event dynamical systems (DEDS). First, we
develop a noble recursive procedure that updates active counter
information state sequentially with available observations. In
general, the cardinality of active counter information state
is unbounded, which makes the exact recursion infeasible
computationally. To overcome this difficulty, we develop an ap-
proximated recursive procedure that regulates and bounds the
size of active counter information state. Using the approximated
active counting information state, we give an approximated
minimum mean square error (MMSE) counter. The developed
algorithms are then applied to count special routing events in
a material flow system.

I. INTRODUCTION

The failure/fault analysis of discrete-event dynamical sys-

tems has received attentions from academia and industries

since the seminal work [8] was published. The framework

presented in [8] deals with the detection of special events

where the finite-state automaton describes the dynamic of

the system and the associated partial-observation is assumed

to be reliable.

Among the subsequent extensions and improvements of

[8], recent developments on the detection problem of special

events accounting for sensor unreliability and stochastic

aspects in discrete-event systems include [6], [9], [1]. In [6],

the authors show that, in general, the observer of a finite-state

stochastic automaton cannot be represented by another finite-

state stochastic automaton. In [9], the authors introduced

the notions of stochastic diagnosability that incorporate the

stochastic automaton describing the behavior of the system.

These notions of diagnosability relax that of deterministic

automaton introduced in [8]. Also presented in [9] is the

procedure of building the stochastic diagnoser1 that bears

a similar structure of the logical diagnoser of [8]. The

transitions of the stochastic diagnoser include probability

transition matrixes that can be used to update the probability

distribution on the state estimate. In [1], the authors present

a method of calculating the observation likelihood of the

stochastic automaton. The authors then used the developed

procedure to decide the most-likely stochastic automaton ex-

plaining the observed output sequence among the candidate

stochastic automata.

One can find attempts addressing special events with

repeatable nature in [3], [5], [10], [4]. Intermittent or
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1The stochastic diagnoser is not a stochastic automaton. Therefore, the
results presented in [6], [9] do not contradict each other.

non-persistent faults are repetitive in nature and can au-

tonomously reset. The issue of detecting whether or not

a resetting has occurred was addressed in [3]. In [5], the

authors addressed fault counting problems and introduced

several notions of diagnosability that capture the various

counting capabilities of special events.

Though results on probabilistic detection/diagnosis for

stochastic automata and event counting for deterministic

automata are available, results on the “probabilistic counting”

of special events for stochastic automata are limited at best.

In [10], a counting strategy accommodating stochastic au-

tomata and unreliable observations was presented. However,

the counting strategy of [10] is deterministic in that the pre-

sented counting algorithm searches the minimum count of the

associated state estimate rather than using the probabilistic

distribution of state estimate of the stochastic automaton;

essentially, it deals with possibility rather than probability.

In this paper, we attempt to fully utilize the probabilistic

aspect of stochastic automata in developing algorithms for

special event counting.

The main contributions of this paper are summarized

below.

• A noble recursive procedure for updating counter infor-

mation state is given;

• An approximated recursive procedure for updating

counter information state is developed;

• An approximated MMSE conditional expectation

counter is given;

• We apply the developed methodology to a material flow

system where some special routing events are counted

dynamically.

The rest of the paper is organized as follows. In Section II,

we provide necessary notation and definitions. Section III

defines MMSE counter and gives the associated counter

information state. Also given in Section III is a recursive pro-

cedure for sequentially updating counter information state. In

Section IV, we develop an approximated algorithm for the

recursive procedure given in Section III. An approximated

MMSE counter is described in Section IV as well. In Section

V, we give an illustrative material flow system application

where the developed counters provide the dynamic estimates

on the number of occurrences of special routing events.

We assume in the remainder of this paper that the reader

is familiar with terminologies typical of DEDS.

II. PRELIMINARIES

In this section, we define the model of DEDS under

consideration and related necessary notation. We consider
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a stochastic automaton as the system model. A stochastic

automaton is a quadruple

A = (X, Σ, a, π0)

where X := {x1, x2, . . . , xnx
} is the finite state space,

Σ := {σ1, σ2, . . . , σnσ
} is the set of events, and π0 :=

{π0(xi) : xi ∈ X} is the initial probability distribution of the

system. The state transition probability function a is defined

as below:

a : X × Σ × X → [0, 1]

where, ∀x ∈ X ,

nσ∑

i=1

nx∑

j=1

a(x, σi, xj) = 1.

In practice, sensors are seldom perfect. Observation in-

formation from sensors thus can be unreliable. We model

the unreliability of observation information in the following

manner. Let ∆ := {y1, y2, . . . , yny
} be the set of distinctive

observation symbols. The set of output symbols is

∆∗ := ∆ ∪ {ǫ}
where the symbol ǫ represents the situation of having no

observation. The unreliable output function b : Σ × ∆∗ →
[0, 1] satisfies the following: ∀σ ∈ Σ,

b(σ, ǫ) +

ny∑

i=1

b(σ, yi) = 1.

The functional value b(σ, y) is the conditional probability of

having output y ∈ Σ × ∆∗ when the system executes event

σ ∈ Σ.2

For any finite set S, S∗ denotes the Kleene closure of S.

A run of the system is the sequence of transitions of system

states such that

(x1
s, σ

1, x1
d) . . . (xn

s , σn, xn
d ) ∈ (X × Σ × X)∗

where xi
s, x

i
d ∈ X and σi ∈ Σ, for i = 1, . . . , n. For brevity,

let us have the following sequence notation:

{(xi
s, σ

i, xi
d)}n

i=1 := (x1
s, σ

1, x1
d) . . . (xn

s , σn, xn
d ).

The above run of the system is called feasible if and only if

the following conditions satisfy conjunctively:

• π0(x
1
s) > 0;

• a(xi
s, σ

i, xi
d) > 0, ∀i ∈ {1, . . . , n};

• xi
s = xi+1

d , ∀i ∈ {1, . . . , n − 1}.
An output run of the system is the sequence of output

symbols such that

{oi}n
i=1 := o1o2 . . . on ∈ (∆∗)

∗

where oi ∈ ∆∗ for i = 1, . . . , n. The output run {oi}n
i=1 is

called feasible if and only if there is a feasible run of the

system {(xi
s, σ

i, xi
d)}n

i=1 such that

b(σi, oi) > 0, ∀i ∈ {1, . . . , n}.
2One can also model insertion or false alarm by including the self-

loop with insertion events to the stochastic automata A and updating b
appropriately to include the insertion events.

An observation run of the system is the sequence of

observation symbols such that

{yi}m
i=1 := y1y2 . . . ym ∈ ∆∗

where yi ∈ ∆ for i = 1, . . . , m. The observation run {yi}m
i=1

is called feasible if and only if there is a feasible output run

of the system {oi}n
i=1 ∈ (∆∗)

∗ such that

P∆({oi}n
i=1) = {yi}m

i=1

where P∆ : (∆∗)
∗ → ∆∗ is a plain projection function that

removes ǫ symbol from the output runs of the system.

Given the above stochastic model, we are interested in

sequentially estimating the number of occurrences of event

f ∈ Σ with observation sequences from ∆.3 We call these

sequential estimation functions as counters in this paper.

Formally, a counter is a function C : ∆∗ → R∗ where R∗

is the set of non-negative real numbers. We denote Nt(f)
a random variable on the number of transitions incurred

by event f up to the moment when the tth observation is

available.

We note that the above stochastic model is similar to

a Hidden Markov Model (HMM) [7] in that it is doubly-

stochastic; i.e., the dynamics of the underlying system and

the associated observations are both stochastic. A major

distinction is that the above stochastic model explicitly

accounts for “no observation” represented by the ǫ symbol.

In HMM, one usually assumes that stochastic observations

are available and ready to be processed if and only if

the underlying Markov model makes a transition. In this

sense, the presented framework of stochastic automata and

unreliable output functions subsumes HMM.

An example is given below illustrating the notation pre-

sented above.

Example 1: Consider the stochastic automaton A and the

associated unreliable output function b described in Fig. 1.

Fig. 1. Stochastic automaton and unreliable output function

Consider a sample run of the system and corresponding

output and observation runs below.

System run : (1, e, 1)(1, f, 2)(2, f, 2)(2, e, 1) . . .

Output run : e e ǫ f . . .

Observation run : e e f . . .

Note that the third transition (2, f, 2) of the sample run

of the system does not generate an observation symbol in

3For simplicity, we only consider a single event f ∈ Σ to be counted.
Extension to multiple events or multiple types of multiple events in the
sense of [8] is straightforward.
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∆. Counters will use the observation run eef . . . to update

functional values. Also note that system transitions incurred

by f occurred twice while eef is observed. Therefore,

N3(f) = 2 for the above system run.

III. INFORMATION STATE OF COUNTERS

We are interested in designing counters that minimize

the mean square error. Formally, for any function gt of the

sequence of random observations from ∆ of length t, say

{Yk}t
k=1 := (Y1, Y2, . . . , Yt), we want to find a function

that minimizes the mean square error as below:

argmin
gt

E[(Nt(f) − gt)
2].

It is well-known that the conditional expectation of Nt(f)
given Y t

1 is a minimizer for the above optimization argument.

That is,

E[Nt(f)|{Yk}t
k=1] ∈ argmin

gt

E[(Nt(f) − gt)
2].

The state space of counters considered in this paper is

X × Z∗ where Z∗ is the set of non-negative integers. Let

αt(xi, c) denote the probability that the system is at state xi

while executed the special event f c-times given that realized

observation sequence is {yik
}t

k=1 and the system state is

initially distributed according to π0. With this, we set the

information state of counters as all possible special event

counts of all system states:

Zt := {αt(xi, c) : xi ∈ X, c ∈ Z∗}
where

ns∑

i=1

∞∑

c=0

αt(xi, c) = 1.

We call that αt(xi, c) is active if αt(xi, c) > 0. The set of

active counts after observing {yik
}t

k=1 is

Ct := {c : αt(xi, c) > 0, xi ∈ X, c ∈ Z∗}.
The initial information state of counters is

Z0 = {α0(xi, c) : i = 1, . . . , ns, c ≥ 0}
where

α0(xi, c) =

{
π0(xi) if c = 0;
0 if c > 0.

The above simply implies that the system is initially dis-

tributed following π0 while the special event f has never

been executed.

We find a recursive form of updating information state Zt

from Zt−1: for c1 ≥ 0 and xi ∈ X ,

αt(xi, c) =

c∑

c′=0

ns∑

j=1

αt−1(xj , c
′)λ(xi, c − c′|xj , yit

) (1)

where λ(xi, c2|xj , yit
) denotes the probability that the sys-

tem reaches state xi while executing event f c2-times along

the sequence of transitions when we start in state xj and

observed yit
. Note that information state is updated only if

new observation from ∆ is available. The above recursion

implies that, when we receive a new observation, yit
, we

can compute αt(xi, c) by adding all probabilities to reach

state xi from previous information state while executing the

special event c− c′ times given that we observed yit
. Then,

the conditional expectation of special event count given the

observation sequence is

E[Nt(f)|{yik
}t

k=1] =
∞∑

c=0

c

ns∑

i=1

αt(xi, c).

In the next subsection, we develop a procedure for computing

λ(xi, c|xj , yit
).

A. Computation of λ(x, c|x′, y)

For brevity, let us introduce the following notation. For

o ∈ ∆∗,

p
o,1
i,j := a(xi, f, xj)b(f, o) and

p
o,0
i,j :=

∑

σ∈Σ\{f}

a(xi, σ, xj)b(σ, o).

Intuitively, p
o,1
i,j is the probability of reaching xj ∈ X by

executing f event with output o ∈ ∆∗ when we start in state

xi. On the other hand, p
y,0
i,j is the probability of reaching

xj ∈ X with output o ∈ ∆∗ while the system does not

execute f when we start in state xi.

We denote the probability of reaching state xj with

observation y ∈ ∆ while executing f events c-times along

the transitions when we start in state xi by λ(xj , c, y|xi).
For brevity, we will use a short handed notation λ

y
i,j(c) for

λ(xj , c, y|xi). Note that λ
y
i,j(c) differs from λ(xj , c|xi, y) in

that observation y is not conditioned. The reach probability

λ
y
i,j(c) satisfies the following set of recursive equations: For

all 1 ≤ i, j ≤ ns, y ∈ ∆, and c ≥ 0,

λ
y
i,j(c) =

ns∑

k=1

p
ǫ,0
i,kλ

y
k,j(c) +

ns∑

k=1

p
ǫ,1
i,kλ

y
k,j(c − 1) + p

y,c
i,j (2)

In the above set of equations, p
ǫ,0
i,kλ

y
k,j(c) implies the proba-

bility of the following scenario. First, the system moves from

xi to xk (with 1 step) while avoiding the execution of the spe-

cial event and generating no observable symbol. Then, from

xk, the system reaches xj while generating observation y and

executing the special event c-times. Similarly, p
ǫ,1
i,kλ

y
k,j(c−1)

implies the probability of the following scenario. First, the

system moves from xi to xk (with 1 step) while executing

the special event and generating no observable symbol. Then,

from xk, the system reaches xj while generating observation

y and executing the special event c − 1-times. The quantity

p
y,c
i,j is the probability that the system moves from xi to xj

(with 1 step) while executing the special event c-times and

generating observation y. Note that λ
y
k,j(−1) = 0 because

negative counting is not possible. Also note that p
y,c
i,j = 0,

if c ≥ 2, because the system only can execute at most one

special event per system execution. As the above scenarios

are all disjoint and include all possible paths to λ
y
i,j(c), by

adding up these probabilities, we can compute λ
y
i,j(c) as in

(2).
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Let In be the n × n identity matrix. Rewriting (2) gives

the following set of equations:

Λy
0 = (Ins

− P ǫ
0 )−1P

y
0 ;

Λy
1 = (Ins

− P ǫ
0 )−1(P ǫ

1Λy
0 + P

y
1 );

Λy
c = [(Ins

− P ǫ
0 )−1P ǫ

1 ]c−1Λy
1 , ∀c ≥ 2.

(3)

where the elements at the ith column and the jth row are:

Λy
c (i, j) := λ

y
i,j(c), P

y
0 (i, j) := p

y,0
i,j , and P

y
1 (i, j) := p

y,1
i,j .

We note that
∞∑

k=0

λ
y
i,j(k) = λ

y
i,j

where λ
y
i,j denotes the probability of reaching state xj with

one observation step while observing y ∈ ∆ when we start

in state xi. We can set up the following set of equations for

λ
y
i,j . For all 1 ≤ i, j ≤ ns, y ∈ ∆,

λ
y
i,j =

ns∑

k=1

pǫ
i,kλ

y
k,j + p

y
i,j ,

where po
i,j is the probability of reaching xj ∈ X with output

o ∈ ∆∗ when we start in state xi. Formally, for o ∈ ∆∗,

po
i,j :=

∑

σ∈Σ

a(xi, σ, xj)b(σ, o).

Solving the above set of equations gives

Λy = (Ins
− P ǫ)−1P y

where the elements at the ith column and the jth row are:

Λy(i, j) := λ
y
i,j , P ǫ(i, j) := pǫ

i,j , and P y(i, j) := p
y
i,j .

Note that P 0 = P o
0 + P o

1 , for o ∈ ∆∗.

With marginalization, we have that, for xi, xj ∈ X , y ∈ ∆,

and c ∈ Z∗,

λ(xj , c|xi, y) =
λ

y
i,j(c)∑ns

j=1 λ
y
i,j

. (4)

We provide next an example illustrating the computation

procedures presented above.

Example 2: Consider the stochastic automaton described

in Fig. 1. Then, we have

P ǫ
0 =

(
0.06 0
0.1 0

)
, P ǫ

1 =

(
0 0.14
0 0.1

)
,

P e
0 =

(
0.18 0
0.3 0

)
, P e

1 =

(
0 0.07
0 0.05

)
,

P
f
0 =

(
0.06 0
0.1 0

)
, and P

f
1 =

(
0 0.49
0 0.35

)
.

With (3), we have that, for e ∈ ∆,

Λe
0 = (I2 − P ǫ

0 )−1P e
0 =

(
0.1915 0
0.3191 0

)
;

Λe
1 = (I2 − P ǫ

0 )−1(P ǫ
1Λy

0 + P e
1 ) =

(
0.0475 0.0745
0.0367 0.0574

)
;

Λe
c+1 = [(I2 − P ǫ

0 )−1P ǫ
1 ]cΛe

1 =

(
0 0.1489
0 0.1149

)c

Λe
1.

For f ∈ ∆, we have that

Λf
0 = (I2 − P ǫ

0 )−1P
f
0 =

(
0.0638 0
0.1064 0

)
;

Λf
1 = (I2 − P ǫ

0 )−1(P ǫ
1Λf

0 + P
f
1 ) =

(
0.0158 0.5213
0.0122 0.4021

)
;

Λf
c+1 = [(I2 − P ǫ

0 )−1P ǫ
1 ]cΛf

1 =

(
0 0.1489
0 0.1149

)c

Λf
1 .

We have that

P ǫ = P ǫ
0 + P ǫ

1 , P e = P e
0 + P e

1 , and P f = P e
0 + P e

1 .

Then, we can compute the following.

Λe = (I2 − P ǫ)−1 · P e =

(
0.2452 0.0841
0.3606 0.0649

)
;

Λf = (I2 − P ǫ)−1 · P f =

(
0.0817 0.5889
0.1202 0.4543

)
.

With (4), we can compute λ(xj , c|xi, y), for xj , xi ∈ {1, 2},

y ∈ {e, f}, and c ∈ Z∗.

IV. APPROXIMATING COUNTER INFORMATION STATE

Note that Example 2 of the previous section gives that

λ(xj , c|xi, e) > 0 for all xj , xi ∈ {1, 2}, y ∈ {e, f}, and

c ∈ Z∗. Then, for any initial distribution π0, we have that

αt(x, c) > 0 for all x ∈ X and c ∈ Z∗ and t ∈ Z. Thus,

exact recursion in (1) incurs infinite active counter state,

which makes exact recursion computationally infeasible. To

overcome this difficulty, we give an approximation scheme

that regulates and bounds the set of active counter informa-

tion states. First, we begin with the following formulation

that finds the minimum count explaining counter information

state approximately within the given factor 0 < δ1 ≈ 0 for

each observation symbol y ∈ ∆:

N
y
i,j(δ1) = min

(
N : 1 −

∑N

c=0 λ
y
i,j(c)

λ
y
i,j

< δ1

)
.

Note that for N > N
y
i,j(δ1),

∑∞
c=N λ

y
i,j(c)

λ
y
i,j

< δ1.

Intuitively, the above inequality means that the probability of

getting count beyond N
y
i,j(δ1) for transition to state xj ∈ X

with observation y ∈ ∆ when the system starts at state xi ∈
X is negligible. By finding the maximum among all possible

system state pairs, we get the approximated maximum count

for observation y ∈ ∆ as below:

N
y
δ1

= max
(
N

y
i,j(δ1) : 1 ≤ i, j ≤ ns

)
.

Thus, each time y ∈ ∆ is observed, we use N
y
δ1

in the

following manner to approximate λ(xj , h|xi, y):

λ̃(xj , h|xi, y) =





λ
y
i,j(h)

∑ns
j=1

∑N
y
δ1

c=0
λ

y
i,j(c)

if 1 ≤ h ≤ N
y
δ1

;

0 o.w.
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With the above scheme, we approximate the recursion

(1) in the following manner. First, we have the initial

approximated counter information state

Z̃0 = {α̃0(xi, c) : xi ∈ X, c ∈ Z∗}

where

α̃0(xi, c) =

{
π0(xi) i = 1, . . . , ns and c = 0;
0 o.w.

Approximated recursion is defined by replacing λ with λ̃ as

below.

α̃t(xi, c) =

min(c,N
yit
δ1

)∑

c′=0

ns∑

j=1

α̃t−1(xj , c− c′) · λ̃(xi, c
′|xj , yit

).

Note that, the set of active information states is still not

bounded uniformly over t in general (e.g., Example 2).

This makes the recursion (1) with approximated values

computationally infeasible again. Therefore, we need another

level of approximation scheme to make the recursion (1)

computable.

Let us denote the set of active counts at time t with the

above approximation by

C̃t := {c : α̃t(xi, c) > 0, xi ∈ X, c ∈ Z∗}.

Also denote the probability of count by

α̃t(c) :=

ns∑

i=1

α̃t(xi, c).

We index the elements of C̃t with the following approach.

For ci, cj ∈ C̃t, i < j if and only if

[α̃t(ci) > α̃t(cj)] ∨ [(α̃t(ci) = α̃t(cj)) ∧ (ci < cj)].

Let us denote this complete-ordered set and the ith element

of this set by S̃t and ci, respectively. We find the minimum

count that explains counter information state approximately

within the given factor 0 < δ2 ≈ 0:

N t
δ2

:= min

(
N : 1 −

∑N
i=1 α̃t(ci)∑
c∈C̃t

α̃t(c)
< δ2

)
.

To give a hard bound on this set, for a given N∗ > 0, let

N t
δ2

:= min(N∗, N t
δ2

).

Note that when N t
δ2

= N t
δ2

, for N t
δ2

≤ N ≤ |C̃t|,
∑|C̃t|

i=N α̃t(ci)∑
c∈C̃t

α̃t(c)
< δ2,

which intuitively means that the probability of having active

count ci where i > N t
δ2

is negligible. We collect the set of

counts that explains the distribution of counts approximately

in the following manner: For x ∈ X and ci ∈ C̃t,

αδ2

t (x, ci) :=

{
α̃t(x, ci) if i ≤ N t

δ2

0 o.w.

With normalization, we get

α̂δ2

t (x, c) :=
αδ2

t (x, c)

∑Nt
δ2

i=1

∑ns

j=1 αδ2

t (xj , ci)

.

Equipped with the above procedure, we give the approxi-

mated recursion below.

α̃t(xi, c) =

min(c,N
yit
δ

)∑

c′=0

ns∑

j=1

α̂δ2

t−1(xj , c− c′) · λ̃(xi, c
′|xj , yit

).

Note that the approximated set of active counts at time t

is

Ĉt = {c : α̂t(xi, c) > 0, xi ∈ X, c ∈ Z∗}

and |Ĉt| ≤ N∗ for all t ≥ 0, trivially.

Having an approximated active counter information state

developed above, we can give an approximated MMSE

counter as below:

E(Nt(f)|{yk}t
k=1) ≈

Nt
δ2∑

i=1

ci

ns∑

j=1

α̂δ2

t (xj , ci).

V. APPLICATION

Consider a material flow system depicted in Fig. 2. Figure

Fig. 2. Material Flow System

2 depicts a material handling facility where two types of

materials are processed. The possible routes of the first

(second) type of material is depicted with arrowed plain

(dotted) lines.

The numbered rectangles represent Input/Working/Output

stations where materials is processed and transfer to/from.

Station 7 represents an input station where materials are

buffered to be pushed in (to Station 1) for processing.

Stations 1, 2, 3, and 4 are internal material processing

stations. Stations 5 and 6 are output stations where the

processed materials leave the facility.

A. Stochastic Automata System Model

A set of automata is used to model the material flows

among stations. For example, the automaton in Fig. 3 cap-

tures the material flow of station 1. State (Wi, j, k) means

that internal material processing station i has j number of
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material type 1 and k number of material type 2. Event

(i, j, k) means that a material of type k is moved from station

j to station i. For simplicity, we assume zero buffering capac-

ity for all internal material processing stations.4 Therefore,

for instance, after event (1, 7, 1), the feasible events for W1

are the transportation events of material type 1 from station 1

to some other stations, that is, (2, 1, 1) and (3, 1, 1). Output

stations 5 and 6 find the automata model O5 and O6 depicted

in Fig. 4 and Fig. 5, respectively. As one can observe, output

stations 5 and 6 are assumed to take materials indefinitely.

For input station 7, we assume that there are infinite number

of materials to be processed. The automaton model of input

station 7 is denoted by I7 and depicted in Fig. 6.

Fig. 3. Working Station Automaton Model: W1

Fig. 4. Output Station Automaton Model: O5

Fig. 5. Output Station Automaton Model: O6

Fig. 6. Input Station Automaton Model: I7

The global system model is constructed by composing all

component models:

A := W1||W2||W3||W4||O5||O6||I7

where || is the parallel composition operator as in [2].

4Modeling buffering capabilities may amount to introduce more states
depending on the given material processing policies (FIFO, LIFO, etc.) and
define appropriate transitions.

Constructing transition probability function a may require

the assessments of experts and/or samplings from system

operations. Here, for simplicity, we assume that the transition

probability is equally-likely for all active events of a given

state x. That is, ∀x ∈ X , σ ∈ Σ,

a(x, σ, x′) =
1

|act(x)| ,

where act(x) = {σ ∈ Σ : ∃x′ ∈ X s.t. a(x, σ, x′) > 0}.
Assume that, initially, the working stations of the material

flow system do not have materials being processed. That is,

the initial probability distribution is π0(x) = 1 when

π0(x) =

{
1 if x = (W1,0, . . . , W4,0, O5,0, O6,0, I7,∞)
0 o.w.

where

Wi,0 := (Wi, 0, 0), i = 1, . . . , 4;
Oi,0 := (Oi, 0, 0), i = 5, 6;
I7,∞ = (I7,∞,∞).

B. Sensor Models

Suppose that motion sensors are installed at all internal

working stations, W1, W2, W3, and W4. Motion sensors

are only able to identify the first component of the executed

event (i.e., that a material has been transferred to the sensor’s

station). Unidentified attributes of events are marked with

∗. We consider the following two cases when modeling

different qualities for motion sensors.

(Case 1) For i ∈ W := {1, 2, 3, 4},

b1((i, j, k), (i′, ∗, ∗)) =

{
0.87; if i′ = i; (X1)
0.01, if i′ ∈ W \ {i}; (†1)

b1((i, j, k), ǫ) = 0.1 (‡1).
For i 6∈ {1, 2, 3, 4}, b1((i, j, k), ǫ) = 1.

(Case 2) For i ∈ W ,

b2((i, j, k), (i′, ∗, ∗)) =

{
0.6; if i′ = i; (X2)
0.1, if i′ ∈ W \ {i}; (†2)

b2((i, j, k), ǫ) = 0.1 (‡2).
For i 6∈ {1, 2, 3, 4}, b2((i, j, k), ǫ) = 1.

Above, the symbol ∗ is to indicate unidentified attributes

of events; Xi represents the probability of detection for the

Case i; (†i) is to model the probabilities of misclassifications

for the Case i; (‡i) is for the probability of misdetection for

the Case i. It is obvious to see that the motion sensors of

Case 1 are more accurate than the ones of Case 2.

C. Simulation and computational results

Suppose that we are interested in counting the occurrence

of event (2, 1, 1). The following approximation parameters

are used:

δ1 = 0.001, δ2 = 0.001, and N t
δ2

= ∞.

With these parameters, we ran the simulations with the

identical system run of length 3000 for the both cases.
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For the sake of readability, Figs. 7 and 8 are marked

with every 100th computational results. The points con-

nected with the thick line is the approximated maximum

active counts, max(C̃t). The dotted line is to connect the

approximated minimum active counts, min(C̃t) for every

100th computations. We used circles to mark the actual

number of occurrences of event (2, 1, 1). The approximated

MMSE counts are marked with +. We note that the cone

of uncertainty becomes larger as the length of system run

increases for the both cases. However, one can observe that

Case 2 shows the wider band of uncertainty compared to

Case 1, in general. This is expected because Case 1 is

equipped with the sensors of higher accuracy than those of

Case 2.
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Fig. 7. Computational Results for Case 1
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Fig. 8. Computational Results for Case 2

Figure 9 shows the progress of overcount/undercount of

the approximated MMSE counts for the both cases. Overall,

the approximated MMSE counter of the Case 1 shows less

deviations from zero than that of Case 2.

Markers (o for Case 1 and x for Case 2) in Fig. 10
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Count Mistake: Case 2

Fig. 9. Count mistakes

show the probability distributions of count for the both cases

after the system executes the 3000th event. Solid lines are

normal distribution counter parts with mean and variance are

computed from the probability distributions of count. Both

cases show near-perfect fit. Observing this, we conjecture the
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Fig. 10. Convergence to normal distribution

following.

(Conjecture) Let us denote random variable St where

P (St = p) = α̃t(p) for t ∈ Z and p ∈ Z∗. If the stochastic

automaton A is strongly connected, there exists a constant

var ∈ R such that

St − E(St)√
t

 N(0, var) (in distribution)

where var ∈ R is the variance of the normal distribution.

We note that var is a function of locations and qualities

of sensors; higher qualities and better locations would entail

a lower var value. This raises the issue of sensor selection,

which is under current investigation.
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VI. FINAL REMARKS

This paper reports a methodology of stochastic counting of

special events under stochastic automata with unreliable ob-

servation information. To facilitate computational feasibility,

we developed an approximated stochastic counting scheme.

Also notable is the conjecture on the convergence of count

distribution. If this conjecture is positively verified, one can

use the converged variance as a measure for the quality of

the given observational network. Also interesting would be

a synthesis problem such as selecting sensors to minimize

the converged variance.
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