
Path Planning for Cooperative Time-Optimal Information Collection

Andrew T. Klesh, Pierre T. Kabamba and Anouck R. Girard

Abstract— Motivated by cooperative exploration missions,
this paper considers constant velocity, level flight path planning
for Unmanned Air Vehicles (UAVs) equipped with range limited,
omni-directional sensors. These active energy-based sensors
collect information about objects of interest at rates that depend
on the range to the objects according to Shannon’s channel
capacity equation, where the signal-to-noise ratio is governed by
the radar equation. The mission of the UAVs is to travel through
a given area and collect a specified amount of information
about each object of interest while minimizing the total mission
time. This information can then be used to classify the objects
of interest. An optimal path planning problem is formulated
where the states are the Cartesian coordinates of the UAVs
and the amounts of information collected about each object of
interest, the control inputs are the UAV heading angles, the
objective function is the total mission time, and the boundary
conditions are subject to inequality constraints that reflect the
requirements of information collection. Necessary conditions
for optimality are given, whose solutions yield extremal paths,
and whose utilization highlights analytical properties of these
extremal paths. The problem exhibits several limiting regimes,
including the so-called Watchtower and the Multi-Vehicle Trav-
eling Salesman Problem. These results are illustrated on several
time-optimal cooperative exploration scenarios.

I. INTRODUCTION

A. Overview

This paper is devoted to the problem of planning the paths
of multiple aircraft for cooperative exploration of a given
area. By exploration we mean collecting information about
objects of interest with known locations, where information
is understood in the classical sense of Shannon [1] as a
“selection from a set.” Although the information collected is
to be used to classify the objects of interest (e.g., friend or
foe, interesting or uninteresting, etc.), this paper focuses on
information collection rather than classification. Information
is collected by active onboard omni-directional sensors (e.g.,
radar, sonar) that read energy signals reflected off the objects
of interest, implying a signal-to-noise ratio that decays as the
reciprocal of the fourth power of the range.

The key idea of this work is to recognize and exploit the
similarity between communication and exploration. Specifi-
cally, exploration can be viewed as a communication process
where the object of interest is the transmitter, the sensor is
the receiver, the sensing process is the noisy communication
channel, and the sensed signal carries information about the
object of interest. Consequently, the maximum rate at which
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the sensor can collect information about the object of interest
is in fact the capacity [1] and depends on the signal-to-noise
ratio of the channel through Shannon’s equation.

Hence, the problem of exploration features the cou-
pling between aircraft kinematics and information collection,
which occurs through the signal-to-noise ratio of the sensor.
Accounting for this coupling in the design of optimal paths
for exploration is the main conceptual contribution of this
paper.

B. Motivation

Unmanned Air Vehicles (UAVs) are increasingly used for
dirty, dull or dangerous missions [2]. The most common
use of UAVs is the collection of data for Intelligence,
Surveillance and Reconnaissance missions. We are partic-
ularly interested in missions where multiple, possibly het-
erogeneous, cooperative UAVs are tasked with exploring a
given area. An example of such a mission involves Mars
exploration where objects of interest have been located by
the Mars Global Surveyor. The collection of a specified
amount of information is performed using UAVs, which
requires planning paths. Moreover, it is often the case that
gathering information quickly is of paramount importance
(e.g., for tactical reasons in military operations or to avoid
inclement weather on Mars). This motivates the time-optimal
path planning problem formulated and solved in this paper.

C. Literature Review

A large body of research has been published in recent
years about motion control and collaborative control of
networked autonomous vehicles. Although an exhaustive
overview of the state of the art is beyond the scope of this
paper, a brief review of the most relevant literature is as
follows.

Much of the collaborative control work focuses on forma-
tion maneuvering of multiple vehicles, such as satellite inter-
ferometry, gradient/environmental estimation using vehicle
formations, etc. Moving vehicles as a formation simplifies
path planning as a single path can be specified for the group
[3].

Many methods exist for solving the basic trajectory-
planning problem [4]. However, not all of them solve the
problem in its full generality. For instance, some methods re-
quire the workspace to be two-dimensional and the obstacles,
if any, to be polygonal. Despite many external differences,
the methods are based on few different general approaches:
roadmap [4], [5], [6], cell decomposition [7], [8], [9], [5],
[10], potential field [11], [12], [13] and probabilistic [14],
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[15]. Optimal control approaches have also been studied in
[16] and [17].

Although the current literature discusses various methods
of planning optimal paths for multiple UAVs, no approach
accounts for the coupling between UAV kinematics and
information collection through the signal-to-noise ratio of
the sensors. The current paper addresses this issue.

D. Original Contributions

This paper presents an integrated model of the aircraft
kinematics and information collection, applicable to cooper-
ative exploration, with the following original features. First,
the rate at which a sensor collects information about an
object of interest is specified by Shannon’s channel capacity
equation [1], which depends on the sensor’s signal-to-noise
ratio. Second, the signal-to-noise ratio decays as the recipro-
cal of the fourth power of the range to the object of interest,
according to the radar equation [18]. This paper accounts
for the coupling between aircraft kinematics and information
collection.

Based on the integrated model, the problem of coop-
erative exploration for UAVs is formulated as an optimal
path planning problem where the states are the Cartesian
coordinates of the UAVs and the amounts of information
collected about each object of interest, the control inputs are
the UAV heading angles, the objective function is the total
mission time, and the boundary conditions are subject to
inequality constraints that reflect the requirements of infor-
mation collection. The present paper studies this optimization
problem and provides the following original contributions:
• The necessary conditions for optimality are derived

using the integrated model.
• A numerical method is developed to generate optimal

paths and infer their qualitative properties.
• The necessary conditions are used to prove analytically

properties of the optimal paths.
• Several limiting regimes are identified for optimal paths.

E. Paper Outline

The remainder of the paper is as follows. In Section II, the
integrated model is presented. In Section III, the optimiza-
tion problem is formulated to minimize the total mission
time of the UAVs. In Section IV, the model and problem
are non-dimensionalized and in Section V the necessary
conditions for optimality are derived. Section VI presents
the numerical procedure used to generate optimal paths.
Section VII presents properties of the optimal paths and
identifies limiting cases. The results are illustrated through
examples in Section VIII, while conclusions and future work
are discussed in Section IX.

II. MODELING

The model consists of two parts: the aircraft kinematic
model and the information collection model. In this pa-
per, uppercase indicates unscaled while lowercase indicates
scaled parameters.

A. The Aircraft Kinematic Model

The aircraft kinematic model is based upon the unicycle
vehicle model [19]:

X́i = V cosψi, 1 ≤ i ≤ n, (1)
Y í = V sinψi, 1 ≤ i ≤ n, (2)

where Xi and Yi are the Cartesian coordinates of the ith
aircraft, prime denotes time derivative, V is the velocity of
the aircraft, ψi is the heading of the ith aircraft and n is the
number of aircraft. For simplicity, V is assumed to be the
same for all aircraft.

B. The Information Collection Model

We seek to explore a given area, by which we mean to
collect a specified amount of information about each of m
objects of interest, at known locations in the area. Without
loss of generality, assume that the required amount of infor-
mation is one bit for each object. To collect information, we
use onboard active, energy-based sensors, e.g., radar.

The key idea of our work is to recognize and exploit the
similarity between communication and exploration. Accord-
ing to [1], the maximum rate at which information can be
transmitted over a noisy communication channel (i.e., the
channel capacity) is:

İ = W log2(1 + SNR), (3)

where W is the channel bandwidth and SNR is the signal-
to-noise ratio.

Moreover, according to [18], a radar sensor located at
Cartesian coordinates (X,Y ) and observing an object at
Cartesian coordinates (A,B) will provide a reading with
signal-to-noise ratio of the form:

SNR =
K4

((X −A)2 + (Y −B)2)2
, (4)

where the parameter K depends on the object.
Combining (3) and (4), the information collection model

is as follows. Assuming that all explorers contribute the rates
of information collection additively, let Ij denote the amount
of information that the n aircraft have cooperatively collected
about the jth object of interest, 1 ≤ j ≤ m. Then,

İj = W

n∑
i=1

log2(1 +
K4
j

((Xi −Aj)2 + (Yi −Bj)2)2
), 1 ≤ j ≤ m,

(5)

where we assume that all radar sensing processes, viewed as
communication channels, have the same bandwidth, and the
parameters Kj depend on the jth object of interest, which
is located at Cartesian coordinates (Aj , Bj).

III. PROBLEM FORMULATION

The problem treated in this paper is motivated by the goal
of minimizing the total mission time required for n UAVs to
collect a specified amount of information about m objects of
interest in a given area. The UAVs are equipped with active
energy-based sensors.
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The objects of interest are assumed isotropic in that the
rate of information collection is independent of azimuth. We
assume no redundant information is useful, i.e., only one
bit of information about each object of interest is needed to
accomplish the mission. Since the information is collected at
the most optimistic rate possible, (5) becomes a lower bound
on any rate of information collection. A conservative upper
bound is found in [19]. Future work will consider reducing
this upper bound based on our new information collection
model.

The aircraft begin at an initial location with a free heading
and have the objective of collecting at least one bit of
information about each object in the area. Active sensors,
based upon (5), are employed by each aircraft to collect
information.

A. Dynamic Optimization Problem

The dynamic optimization problem is motivated by the
requirement to minimize, with respect to the time-history of
the heading angles, the total mission time, i.e.,

min
ψi(·)

tf , (6)

(7)

subject to (1)-(5) and boundary conditions:

Xi(0) given, 1 ≤ i ≤ n, (8)
Yi(0) given, 1 ≤ i ≤ n, (9)
Ij(0) = 0, 1 ≤ j ≤ m, (10)

Xi(tf ) free, 1 ≤ i ≤ n, (11)
Yi(tf ) free, 1 ≤ i ≤ n, (12)
Ij(tf ) ≥ 1, 1 ≤ j ≤ m. (13)

IV. SCALING

If we assume that lc and tc are a characteristic length and
time, respectively, we can rewrite (1) - (5) in nondimensional
form. We begin by substituting Xi = lcxi, Yi = lcyi and
t = tcτ where xi, yi, and τ are nondimensional. Equations
(1) - (5) become:

ẋi = v cosψi, (14)
ẏi = v sinψi, (15)

İj =
n∑
i=1

wi log2(1 +
k4
j

((xi − aj)2 + (yi − bj)2)2
), 1 ≤ j ≤ m,

(16)

where the dot denotes derivatives with respect to nondimen-
sional time, v = tc

lc
V , w = Wtc, k = K

lc
, aj = Aj

lc
and

bj = Bj

lc
.

This nondimensional form allows for the scaling of solu-
tions by changing the characteristic parameters.

V. OPTIMAL PATH PLANNING

In this section, we derive the necessary conditions for
optimality, adapted from [20]. With states [Ij , xi, yi]T , 1 ≤

i ≤ n, 1 ≤ j ≤ m and control inputs ψi, 1 ≤ i ≤ n, the
Hamiltonian is:

H =
m∑
j=1

λIj

n∑
i=1

wi log2(1 +
k4
j

[(xi − aj)2 + (yi − bj)2]2
)

+
n∑
i=1

λxi
v cos(ψi) +

n∑
i=1

λyi
v sin(ψi) + 1, (17)

where λxi
, λyi

, 1 ≤ i ≤ n and λIj
, 1 ≤ j ≤ m are costate

variables.
In this problem formulation, we have no control con-

straints.
The state equations, derived from (17), are:

İj =
n∑
i=1

wi log2(1 +
k4
j

((xi − aj)2 + (yi − bj)2)2
), 1 ≤ j ≤ m,

(18)
ẋi = v cos(ψi), 1 ≤ i ≤ n, (19)
ẏi = v sin(ψi), 1 ≤ i ≤ n. (20)

The costate equations are:

˙λIj
= 0, 1 ≤ j ≤ m, (21)

˙λxi =
m∑
j=1

4k4
jwi(xi − aj)λIj

((xi − aj)2 + (yi − bj)2)3∆j
, 1 ≤ i ≤ n, (22)

˙λyi
=

m∑
j=1

4k4
jwi(yi − bj)λIj

((xi − aj)2 + (yi − bj)2)3∆j
, 1 ≤ i ≤ n, (23)

where ∆j = (1 + k4
j

((xi−aj)2+(yi−bj)2)2
), 1 ≤ j ≤ m.

The first-order optimality conditions are:

0 = vλyi
cos(ψi)− vλxi

sin(ψi), 1 ≤ i ≤ n. (24)

The boundary conditions for this problem are:

Ij(0) = 0, 1 ≤ j ≤ m (25)
Ij(tf ) ≥ 1, 1 ≤ j ≤ m, (26)
λIj (tf ) = free if Ij = 1, 1 ≤ j ≤ m, (27)
λIj (tf ) = 0 if Ij > 1, 1 ≤ j ≤ m, (28)
λxi(tf ) = 0, 1 ≤ i ≤ n, (29)
λyi(tf ) = 0, 1 ≤ i ≤ n. (30)

We will refer to the flight paths that satisfy the first order
necessary conditions (18)-(24) as extremal paths. Further
simplification of these necessary conditions is provided in
Appendix A.

VI. THE DISCRETIZATION PROCEDURE

To obtain numerical approximations of optimal paths, we
discretize the problem as follows. For a chosen integer
p ≥ 1, we subdivide the interval [to, tf ] into p subinter-
vals [to, t1], [t1, t2], ..., [tp−1, tf ] of equal duration. In each
subinterval we assume that the control inputs are constant,
i.e., (ψi(t)) = (ψig ), t ∈ [tg, tg+1], where the parameters
ψig , 0 ≤ g ≤ p− 1, are unknown.

We treat the parameters ψig , 0 ≤ g ≤ p − 1, and
tf as inputs to a nonlinear optimization problem. As an
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initial choice, in all subintervals we choose ψig = 0 and
tf = to + TM where TM is a maximum duration allowed.
Constraints upon this problem are imposed from the bound-
ary conditions (25)-(30). From (6), the objective function is
the total mission time. We then numerically solve for optimal
flight paths using the MATLAB R© Optimization Toolbox
function fmincon and the ordinary differential equation solver
ode45. We will call this strategy the discretization method.

VII. ANALYTICAL PROPERTIES OF TIME-OPTIMAL
FLIGHT PATHS

A set of objects of interest is considered isolated if there is
never a location where one aircraft can simultaneously collect
information about several objects at a high rate. Objects of
interest are considered visible when an aircraft can remain
at a distance from the object and still receive information
about it at a high rate. In terms of the non-dimensional
equations (14) - (16), visibility and isolation are quantified by
the parameters w and kj . Specifically, the non-dimensional
distance rj can be defined as

1 = log
wik

4
j

r4j
, (31)

where after solving for rj ,

rj =
kj

4
√

2
1

wi − 1
, (32)

and is such that a radar located at distance rj from the jth
object of interest collects information about that object at
a rate of one bit per non-dimensional unit of time. The
jth object is visible if the distance rj is large. The set of
objects of interest is isolated if the m disks, centered at
Cartesian coordinates (aj , bj) and with radii rj , 1 ≤ j ≤ m,
respectively, do not intersect.

We can use the necessary conditions for optimality (18)-
(24) to prove the following properties of extremals.

Proposition 1: If the objects of interest are isolated, then
the optimal flight paths consist of sequences of straight lines
(far from the objects of interest) connected by short turns
(near the objects of interest).

Proof: See Appendix B.
Corollary 1: If in addition to being isolated, the objects

of interest are poorly visible, then the problem becomes a
multi-vehicle traveling salesman problem (MTSP) [21].

Proof: See Appendix B.
Proposition 2: When the visibility of all the objects of

interest approaches infinity, tf → 0 and the lengths of paths
traveled by the UAVs approach zero.

Proof: See Appendix C.
Proposition 1 implies that, in the isolated case, each

aircraft essentially ”visits” a sequence of objects of interest,
flying straight paths between them. This is the traveling
salesman problem (TSP).

We call the situation described by Proposition 2 the
Watchtower case.

VIII. EXAMPLES

Figure 1 presents an optimal flight path for a single UAV
exploring an area with three objects of interest. Each object
is designated by an x on the figure. The small circles have
radii rj defined in Equation (32). In this example, the UAV
does not fly over the objects of interest, but only approaches
each of them and then turns away towards the next. Thus,
the total optimal path consists of straight flights and short
turns.

Fig. 1. Optimal flight path for a single UAV

In the TSP limiting case, all of the objects of interest
have a very low visibility. Figure 2 presents the same objects
of interest as in Figure 1, but each object is barely visible.
Here the UAVs must virtually reach the target before enough
information is collected and similarities to typical TSPs exist.

Fig. 2. TSP limiting case - Optimal flight path for a single UAV

Figure 3 demonstrates a hybrid example: one object of
interest is relatively visible while two others are barely
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visible. The resulting optimal path is a gentle curve near
the visible object and a typical TSP touring path towards the
other two objects.

Fig. 3. Optimal flight path for a single UAV with varying target visibility

Figure 4 presents the same objects of interest as in Figure
1, but with two UAVs flying a cooperative exploration
mission. Here the UAVs do not approach the objects as close
as in Figure 1 and share the information collected.

Fig. 4. Optimal flight path for cooperative UAVs

IX. CONCLUSIONS

This paper has presented a new information-based formu-
lation for optimal exploration. The problem of optimal path
planning is phrased in terms of Shannon’s communication
theory, the radar equation and aircraft kinematics. This
formulation exploits the similarity between communication
and exploration. We have presented necessary conditions
for optimality with multiple objects of interest and multiple

aircraft. These necessary conditions have been solved using
a discretization technique, which highlight the qualitative
nature of extremals.

In future work, non-isotropic objects of interest and time-
varying dynamic situations will be considered as well as
larger numbers of targets and aircraft. Non-heterogenous
aircraft will also be discussed. In a time-varying dynamic
situation, the objects of interest may move and attempt
to evade identification. The framework considered may be
extended to these situations.
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APPENDIX A: SIMPLIFICATION OF THE NECESSARY
CONDITIONS

For analysis, we can simplify the necessary conditions by
expanding log(·) with a Taylor series if we assume that the
SNR are all small. This simplified Hamiltonian expression
becomes:

H =
m∑
j=1

λIj

n∑
i=1

wi1 +
k4
j

[(xi − axj )2 + (yi − ayj )2]2

+
n∑
i=1

λxiv cos(ψi) +
n∑
i=1

λyiv sin(ψi) + 1 (33)

The simplified conditions become:

0 = vλyi
cos(ψi)− vλxi

sin(ψi), 1 ≤ i ≤ n, (34)

İj =
n∑
i=1

wik
4
j

((xi − aj)2 + (yi − bj)2)2
, 1 ≤ j ≤ m, (35)

ẋi = v cos(ψi), 1 ≤ i ≤ n, (36)
ẏi = v sin(ψi), 1 ≤ i ≤ n, (37)
˙λIj

= 0, 1 ≤ j ≤ m, (38)

˙λxi
=

m∑
j=1

4k4
jwi(xi − aj)λIj

((xi − aj)2 + (yi − bj)2)3
, 1 ≤ i ≤ n,

˙λyi =
m∑
j=1

4k4
jwi(yi − bj)λIj

((xi − aj)2 + (yi − bj)2)3
, 1 ≤ i ≤ n, (39)

APPENDIX B: PROOF OF PROPOSITION 1 AND
COROLLARY 1

B.1 Proof of Proposition 1

Assume that the objects of interest are isolated, i.e., every
location in the area to be explored is either far from all the
objects of interest or close to only one of them.

Whenever a UAV is far from all objects of interest, the
right hand sides of (22) and (23) are negligible, implying
that the costates correponding to the Cartesian coordinates
of that UAV are approximately constant. Then (24) implies
that the heading angle of that UAV is also approximately
constant, implying that its flight path approximates a straight
line.

When a UAV approaches one of the objects of interest,
the above argument no longer applies and the UAV may
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turn. However, the turn will be relatively short because it
is predicated upon closeness to the object of interest. Once
the UAV leaves the vicinity of that object, it resumes an
approximately straight flight, as per the above argument.

B.2 Proof of Corollary 1

In the TSP case, the information rate of each object
approaches zero, through a low w or k or high separation
distance between the object of interest and the aircraft. If
we assume that

wk4
j

((xi−aj)2+(yi−bj)2)2
= 0, then λxi

and λyi

are constant and equal to zero as is required by their final
conditions. The optimality condition relates the ratio of λxi

and λyi
to the heading angle, ψi. Thus, the heading angle

remains constant and the aircraft flies straight.
It is optimal in this case for the aircraft to visit each object

of interest individually before switching to another target.

APPENDIX C: PROOF OF PROPOSITION 2

In the Watchtower case, each object’s information rate
approaches infinity, either through a high bandwidth, w, or
gain, k, or low separation distance between the object of
interest and the aircraft. We assume that the denominator of
(5) is never zero, that is, the aircraft is always away from
any object of interest. As k → ∞, the right hand side of
(5) also approaches infinity. For any final time of flight, no
matter how short, a kj can always be found that is large
enough that, within the alloted time, enough information can
be collected to satisfy the boundary conditions. This means
that the aircraft do not need to move to collect information in
the Watchtower case. This argument is valid for all headings.
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