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Abstract:

This article deals with the problem of the reduction of structural vibrations with isodamping property. The proposed methodology is
based on: a contour defined in the Nichols plane and significant of the damping ratio of the closed-loop response and on a robust
control method that uses fractional order integration. The methodology is applied to an aircraft wing model made with a beam and a

tank whose different levels of fillings are considered as uncertainties.

Introduction
The reduction of structural vibration has been challenging
engineers for many years. Innumerable applications exist
where vibration control is beneficial, if not essential.
In the control of vibrations, the damping ratio is an
important data since it indicates how quickly the vibrations
decrease. When control of vibrations is at stake, it can be
useful to control this parameter. Works have already been
achieved to this end [1].
This article proposes a method in the frequency-domain to
control uncertain plants while ensuring the damping ratio of
the response. This method is based on the complex
fractional order integration [2] that is used in two goals:
(1) the definition of a contour called “iso-damping” contour
[3] whose graduation is the damping ratio in the Nichols
plane,
(i1) the definition of an open-loop transfer function [5]
whose part of the Nichols locus is an any-direction straight
line segment that can tangent a Nichols contour or an iso-
damping contour defined above.
The article falls into 4 parts. Section 1 introduces the
transfer function of a complex non-integer integrator
defining a generalized template which will be considered as
part of an open-loop Nichols locus [5]. This transfer
function is used in this section for the construction in the
Nichols plane of a network of iso-damping contours [3,4].
Section 3 describes the CRONE (the French acronym of
"Commande Robuste d'Ordre Non Entier") control based on
complex fractional order differentiation [6]. This control
methodology can be applied to SISO and MIMO plants and
also plants with lightly damped modes. The interest of the
fractional order is to define a transfer function with few
parameters and thus to simplify design and optimization of
the control system.
Section 4 presents an example of multivariable flexible
structure which is an aircraft wing model made of a free-
clamped beam with a water tank and co-localized
piezoelectric ceramics used as actuators to limit the
vibrations and as sensors to measure these vibrations. The
different levels of filling of the tank make it possible to test
the robustness of the damping ratio obtained with the
CRONE control design associated to iso-damping contours.
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I. Complex fractional integration

A. Complex fractional transfer function
The transfer function of a real fractional or non-integer
integrator of order # is given by [2]:

B(s) = (w—gj  neR. (1)

The Nichols locus of a transfer function described by this
integrator in a frequency interval [w,, @g] is a vertical
segment that will be called “vertical template” (Fig.1). The
phase placement of this segment at the crossover frequency
ar, depends on the order » and is worth -#90°.

Vertical j
tefnpllc;e Generalized ‘ﬂ("w)‘ds
template
N A
(I m(n))
0dB
-180° - -90° .
90°Ren) 0 arg £ (jo)
g B

Fig.1. Representation of the vertical template and of the
generalized template in the Nichols plane

From the extension of the description of the vertical
template, the “generalized template” - that is to say an any-
direction straight line segment in the Nichols plane - can be
obtained using the complex non-integer integration of order
n. n = a + ib where the imaginary unit i of the integration
order n is independent of the imaginary unit j of the
variable s (s=6+j@). The transfer function of a complex

non-integer integrator of order » is given by [1]:
-sign(b)

- {eon{ o) 2] [[H o

The real part a defines the phase placement of the
generalized template at ayg -Re(n)90°, and the imaginary
part b defines its angle to the vertical (Fig.1).




B. Isodamping contours

In the time domain, the dynamic performances can be
characterized by the first overshoot and the damping ratio
of a step response. In order to guaranty these performances
by using a frequency domain control methodology, it is
necessary to have an equivalent of these dynamic
performances in the frequency domain. The well-known
magnitude contour in the Nichols plane can be considered
as an iso-overshoot contour [4]. For the damping ratio, A.
Oustaloup has constructed and defined a set of contours
called “iso-damping” contours whose graduations are the
damping ratios in the Nichols plane [3]. These contours
have been constructed using an envelope technique. The
contour is then defined as the envelope tangented by a set of
segments. In the Nichols plane, each segment of the set can
be considered as the rectilinear part of an open-loop
Nichols locus that ensures the closed-loop damping ratio
corresponding to the contour. This rectilinear part around
gain crossover frequency, @, is the “generalized template”
defined above.

Isodamping contours can be defined analytically using a
polynomial equation determined by interpolation of
graphical data of each contour [3]. A contour I'y is thus
defined by:

Iy ={M(X,Y)e P, X- éofj (g)YZf.=0}
=

with f,-(§)=ia,-k§k,

)

“4)

X and Y being the coordinates expressed in degrees and in
decibels and aj the coefficients given in table 1.

ik 0 1 2 3

0 | -180.36 117.7 74316 40376
1 | -1.1538 3.8888 52999 25417
2 |-0.0057101 0.0080962 -0.0060354 0.0016158

Table 1. Values of coefficients aj

III. CRONE control

CRONE (the French acronym of "Commande Robuste
d'Ordre Non Entier") control system design [5,6,7] is a
frequency-domain based methodology using complex
fractional integration. It permits the robust control of
perturbed linear plants using the common unity feedback
configuration. It consists on determining the nominal and
optimal open-loop transfer function that guaranties the
required specifications. This methodology uses fractional
derivative orders (real or complex) as high level parameters
that make easy the design and optimization of the control-
system. While taking into account the plant right half-plane
zeros and poles, the controller is then obtained from the
ratio of the open-loop frequency response to the nominal
plant frequency response. Three Crone control generations
have been developed, successively extending the
application fields [8]. In this paper, the third generation will
be applied to a lightly damped MIMO plant.
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A. Open-loop transfer function

The open-loop transfer function (Fig.2) of the initial third
generation Crone method is based on the generalized
template described previously and takes into account:

- the accuracy specifications at low frequencies;

- the generalized template around frequency ai,;

- the plant behavior at high frequencies in accordance
with input sensitivity specifications for these frequencies.
For stable minimum-phase plants, this function is written:

B(s) = B1() B () Bn (s) - )
e B.(s), based on complex non-integer integration, is the
transfer function describing the band-limited generalized
template [1]:

1 PR RELD
a 22

1+ 1+[&J 1+
Buls)= K| —2 | Re | | — 2 . (6)

1+ 1+[&J 1+

@ o, @

q’ being defined in [3] and K being computed to get a gain
of 0 dB at @,

e [Bi(s) is the transfer function of order n; proportional-
integrator, whose corner frequency equals the low corner

frequency of B(s), so that joining fi(s) and B.(s) does not
introduce extra parameters. S(s) is defined by:

n
1
Bi(s) = (1 + ﬂj .
s

® [.(s) is the transfer function of order n, low-pass filter,
whose corner frequency equals the high corner frequency of
Bu(s), so that joining Bu(s) and S, (s) does not introduce
extra parameters. [f,(s) is defined by:

nh
N

B ()=1/1+— .

h ( “’hj

0

®)

Gain (dB)

Bs) = B(s)

proportional-integrator

Phase
0dB (degrees)

0°
B(s) = Bu(s)

generalized template

B(s) = Buls)

low-pass filter

Fig.2. Different parts of the open-loop Nichols locus

B. CRONE methodology for SISO plants

The third generation CRONE methodology for SISO plants
can be described in five points:

1 - You determine the nominal plant transfer function and
the uncertainty domains. For a given frequency, an
uncertainty domain (called “template” by the QFT users
[9]) is the smallest hull including the possible frequency
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responses of the plant. The use of the edge of the domains
makes it possible to take into account the uncertainty with
the smallest number of data. To construct this domain
securely, the simplest way is to define it convexly.

2 - You specify some parameters of the open-loop transfer
function defined for the nominal state of the plant: the gain
cross-over frequency and the rational orders »; and n,

3 - You specify the bounds of the sensibility functions that

you would like to obtain. Let A/ be the required

resonant peak of the nominal complementary sensitivity
function.

4 - Using the nominal plant locus and the uncertainty
domains in the Nichols chart, you optimize the parameters a
and b and the frequencies @ and @, in order to obtain the
optimal open-loop Nichols locus. An open-loop Nichols
locus is defined as optimal if it tangents the M,

’nom
magnitude contour and if it minimizes the variations of M,
for the other parametric states. By minimizing the cost

function J = (M

value of resonant peaks M,, the optimal open-loop Nichols
locus positions the uncertainty domains correctly, so that
they overlap the low stability margin areas as little as
possible (Figure 3: case (c) is the best configuration). The
minimization of J is carried out under a set of shaping
constraints on the four usual sensitivity functions.

5 - The last point is the synthesis of the controller. While
taking into account the plant right half-plane zeros and
poles, the controller is deduced by the frequency-domain
system identification of the ratio of f,,n(j@) to the nominal
plant function transfer G,.,(j@). The resulting controller
C(s) is a rational transfer function.

\ \‘ .
(0 dB, -180°) a (0dB, -180°)
D,

I I
@ ®

2 . .
-M, ) where M, is the maximal
nom Fiax

rmax

Fig.3. Optimal open-loop Nichols locus to position the
uncertainty domains

C. CRONE methodology for MIMO plants

Principle:

The CRONE methodology for MIMO plants consists in
finding a diagonal open-loop transfer matrix:

By = diaglp, ],

whose 7 elements are fractional order transfer functions.
It is parametered to satisfy the four following objectives:
- perfect decoupling for the nominal plant,

- accuracy specifications at low frequencies,

- required nominal stability margins of the closed loops
(behaviors around the required cut-off frequencies),
- specifications on the #n control -efforts
frequencies.

®

at high
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After an optimization of the diagonal open-loop transfer
matrix , (9), the fractional controller is computed from
the relation (20) and synthesized by frequency-domain
identification.

C(s)=G," ()B(s)

Optimized solution
Let Gy, be the nominal plant transfer matrix such that

Go($)=[ g;(s) lijen and let B be:

(10)

. . n;
ﬁ’ozGOK:dzag[ﬂol]zdzag{—} , (11
d; |
t lieN
where  g;(s)is a strictly proper transfer function,

N= {1,..., n} s |30, = % the element of the iy, column and row.

1

As mentioned above the aim of CRONE control for MIMO
plants is to find a decoupling controller for the nominal
plant. G, being not diagonal, the problem is to find a
decoupling and stabilizing controller C [10]. This controller
exists if and only if the following hypotheses are true:

- H: [Go(s)r1 exist, (12)
- Hy: Z,[Gy(9)]n P, [Gy(9)] =0, (13)
where Z,[G,(s)] and P,[G,(s)] indicate the positive real

part zero and pole sets.
The controller C(s) is:

aﬂ%umyq
g - s
|G0| di ieN

C=G;'B, = (14)

with  adj(Go($))=[G’()I'=[Gi"(s)], Go'(s) being the
cofactor corresponding to element g;(s) and |Gy
corresponding to determinant of Gy(s).
Thus each term of the matrix C is written:
G, -
¢ =—Py Vi,je N. (15)
y |G0| i

The nominal sensitivity and the complementary sensitivity
transfer function matrices are:

So (S) = [1 + BO(S)]_1 = diag[SOi (S)]lgign 5 (16)
To(s) = [1 +Bo(s)] By (s) = diag[Ty, (s))cic, » (17)
with 7;,(s)= Po, Soils)= S (18)

———— and .
(1+By, (5)) (I+Bo, ()
For plants other than the nominal, the closed-loop transfer

matrices 7(s) and S(s) are no longer diagonal. Each
diagonal element 7;(s) and S;(s)could be interpreted as

closed loop transfer functions coming from a scalar open-
loop transfer function B;(s) called equivalent open-loop
transfer function:

B.i(s)= T;(s) _ 1-8;(s) ]
1=T;(s) Sii ()
For each nominal open-loop Po(s), many generalized
templates can border the same required magnitude-contour

(19)



or iso-damping contour in the Nichols plane. The optimal
one minimizes the robustness cost function:

J= Z( pmax, pm... ) or J = Z(

Where M p is the resonant peak and ﬁf the damping ratio,

2
) . (20)

while respecting the following set of inequalities for e R
dzqﬁwwwMGdsgjw,

sup|CS ](01<CS (@),

and i, jeN: itéf|7"i]-(j
sup|S jwj <S5,
G

sup[SG, (jo) <SG, (@), (21)
G

where G is the set of all perturbed plants.

As the uncertainties are taken into account by the least
conservative method, a non-linear optimization method
must be used to find the optimal values of the independent
parameters of the fractional open-loop.

D. Extension to resonant plants
Let Gy be the nominal plant transfer matrix such that

Go(s)=[ g;(s) lijen with g;(s)= 8o, (8) - hy (s) and  /;(s)
the transfer including the resonant modes of the plant.
Let Py be the inverse of Gy such that Py(s)=[ p; (s) lijen

with  p, (s) = po, () m, (s)

including the resonant modes of the inverse of the plants.
The aim of this section is to show that the resonant modes
of the plant and of the inverse of the plant must be included
in the open-loop transfer function By to ensure that all
closed-loop transfer functions are damped enough [Nelson
Gruel et al., 2007].

The first transfer matrix to consider is the input-disturbance
sensitivity, T7,C". Using:

and my(s) the transfer

ToC! = SyGy =| 180 My (S)} 22)
d;(s)+n;(s)

this transfer function is resonant-free if

d(s)=d,(s)/h(s), Vje N. 23)

that is to say if d,(s) contains the resonant modes 4, (s),

c?i (s) being then the part of the denominator d,(s)without

the resonant modes .
The denominator of the i open-loop transfer function must
satisfy all the following equations:

d;(s) di(s) d,(s)
d,(s)= (s)= pond (5) = 24
O e
d(s) .
and therefore: d;(s) = W Vie N, (25)

where transfer functlons Hi(s) have in common the lightly
damped modes of the i row of G,
The second transfer matrix to consider is input sensitivity
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CS. Using:

4 {po,f(s)’my(s)'n/‘(s):|
C,S=G;'T=|

d;(s)+n;(s)

(26)
this transfer function is resonant-free if

n;(s)=n;(s)/m;(s), Vie N. 27
that is to say if n,(s) contains the resonant modes m; (s),
fz_,. (s) being then the part of the numerator »;(s) without

the resonant modes.
The numerator of the /™ open-loop transfer function must
satisfy all the following equations:

7, (s) _ny(s) AG)
n,(s)= . (5) n(s)= ) s () = —mnj © (28)
and therefore: n,(s) = v ((S)) Vje N, (29)

where transfer functlons Mj(s) have in common some lightly
damped modes of the /" column of G,

Adding some lightly damped modes on the open-loop
transfer functions causes resonant frequencies to appear on
sensitivity and complementary sensitivity transfer functions.
To attenuate their effect, transfer function Qy(s) is included
in fy(s) around each resonant frequency such that:

0,(s) :[[SJ +28S+1]/[[S,J +28'S,+1], (30)
, , w, o,

where ¢ and &are the damping factors and «; and ©; are
frequencies close to the resonant frequency.

IV. Robust control of a lightly damped
plant with isodamping property

A. Description of the plant

The plant under study is an aircraft wing model (see figure
4). It is made of a beam and a tank. This structure has the
same resonant frequencies as a real air wing. The problem
is to control the vibrations which depend on the level of
filling of the tank. Moreover, sloshing phenomena may
appear, that makes the problem more complex. Two sets of
piezoelectric ceramics are used as actuators in order to fight
against bending and twisting vibrations. Two others
piezoelectric ceramics are glued at the clamp of the beam to
measure the vibrations and are used as sensors.

Two sensors
(signals yb and yh)

Fig.4. Model of the structure (beam with the tank)

In order to design the control system, the plant is described
by a 2x2 MIMO model. The two inputs are the two
actuators voltage and the two outputs are the sensors
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voltage. The first three modes are taken into account for the
design of the control and thus the plant is described by the

matrix of transfer functions given by:
G(s) Gpp(s

G(S){ 1) lz()} 31)
Gri(s) Gyl(s)

with . . .

G,(s)= Z + 2 + i +R,
§2 ) £.8 | §2 ) £.,8 | §2 ) £, |
4241 —+ +1 422+
a),z,l w,,x wiz w,,z wiz (1)’,3

and the numerical data of the following tables .

Empty Half-full Full tank
tank tank
ki 0,015 0,006 0,01
1° mode of ®yy; (rad/s) 7,22 5,1 4,59
flexion €11 0,0061 0,0062 0,0045
kin2 0,01 0,002 0,005
2° mode of 112 (rad/s) 53,78 41,2 34,34
flexion €12 0,012 0,046 0,006
ki3 0,01 0,005 0,001
1°mode of ;3 (rad/s) 134,5 96,6 21,6
twisting €113 0,012 0,01 0,015
static term Ry 0,12 0,14 0,085
Table 3. Values for Gyy(s)
Empty tank Half-full Full tank
tank
k21 0,032 0,004 0,015
1°mode of  (,,, (rad/s) 7,22 5,1 4,59
flexion €101 0,0087 0,0039 0,0041
kiz 0,008 0,002 0,004
2°mode of ()5, (rad/s) 53,78 41,2 34,84
flexion i 0,01 0,0046 0,006
kios 0,004 0,0012 0,001
1° mode of  (,,; (rad/s) 134,5 96,6 21,6
twisting €23 0,011 0,0032 0,007
static term Ry, 0,02 0,018 0,02
Table 4. Values for G,(s)
Empty tank Half-full Full tank
tank
koiy 0,014 0,005 0,03
1°mode of @, (rad/s) 7,22 5,1 4,59
flexion &1 0,0061 0,0039 0,0068
kai2 0,0065 0,002 0,004
2°mode of  (,), (rad/s) 53,78 41,2 34,84
flexion &0 0,012 0,0046 0,0069
ko13 0,004 0,001 0
1°mode of ;3 (rad/s) 134,5 96,6 21,6
twisting 13 0,012 0,0039 X
static term Ry, 0,015 0,012 0,085
Table 5. Values for G,;(s)
Empty Half-full Full tank
tank tank
koot 0,02 0,004 0,007
1°mode of  y, (rad/s) 7,22 5,1 4,59
flexion €1 0,0087 0,0052 0,0034
koo 0,009 0,0022 0,005
2° mode of W (rad/s) 53,78 41,2 34,84
flexion € 0,0129 0,0046 0,0056
kaos 0,006 0,0011 0,03
1°mode of ;3 (rad/s) 134,5 96,6 21,6
twisting €3 0,0126 0,0026 0,067
static term R, 0,1 0,1 0,085

Table 6. Values for G,,(s)
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B. CRONE control
The plant being a 2x2 MIMO system, the open-loop
transfer function matrix is written as:

_ B (s) 0
ﬁ(S)_{ 0 ﬂoz(s):|

whose two diagonal terms are defined by CRONE open-
loop transfer functions of third generation (equ. 6).
The nominal plant corresponds to the empty tank. The
objectives are to increase the damping ratio of the closed-
loop plant such as to obtain a value of 0.1 and to guaranty
the iso-damping property for the plant whatever the filling
of the tank. So the iso-damping contour that each open-loop
transfer function should tangent is of value 0.1. For each of
the open-loop transfer function, the following configuration
has been chosen:

- gain cross-over frequency equal to 3 rad/s,

- order n=-1 in order to limit the gain of the controllers in
low frequencies and order n, = 4 in order to limit the
amplification of the noise in high frequencies,

- minimum of the complementary sensibility function T
for the frequencies below the gain-cross over
frequency:-5dB,

- maximum of the function CS: 50dB.

Let’s now take into account the lightly damped modes of

the plant. There are no lightly damped modes on the rows

of the plant but there are some lightly damped modes in the
columns of the inverse matrix of the plant coming from the

(32)

determinant of the matrix since: G = Com'(G) (33)
det(G)

Therefore, it is necessary to introduce in the open-loop
transfer functions fy;(s) and fy(s) the resonances of the
modes at 7,09 rad/s, 8,12 rad/s and 57,11 rad/s.
Finally, a filter has been added in the open-loop transfer
functions. It aims at shaping the open-loop Nichols locus by
decreasing the gain and increasing the phase locally around
the first resonance so that the uncertainties domains do not
penetrate in the contours. The expression of the filter is the
same for the two open-loop transfer functions and is
written:

s¢ K s¢ s
B.(s) (72 +0.2 S +1J/£92 +2 5 +1J
The results of the optimisation lead to the following optimal
parameters:

e For ,301(5): a=0.0037, b’=3.05; q= 5; Y, = 0.4dB;
o=1.4 rad/s ; »,=3.3 rad/s,
e For fn(s): a=2.99, b’=1.81; q’=
o=1.3 rad/s ; ®,=3.3 rad/s,

(34

5; Y, = 0.71dB;

The Nichols loci with the uncertainties domains are given in
the Figure 5 for the two open-loop transfer functions /) (s)

and [ (s).

The matrix of the controller is computed from the relation:

C, C
C(s) =G, (5)B(s) = { . g Cm :

(35)



The four terms of this matrix are synthesized by
identification in the frequency domain and the Bode
diagrams are given in the figure 6.

open-loop 1 open-loop 2
50 | | | | I
] W :
g A
% qﬁ\?ﬂ |
= | | |
R :
[ | | [
[ | | | | | |
-150———'——i‘——‘L—— B0 - - - -k
| | | | |
| | | | | |
- L L L g L L L
20040 360 180 0 180 %840 360 -180 0 180
phase(deg) phase(deg)

Fig.5. Nichols loci for ﬂm(s) and ﬁoz(s)

Bo Diagram

@)

Magniude

Phase (dsg)

Culs) Cuals)

Wagniuds (8)

Phase (ag)

Fig.6. Bode diagrams of the terms of the controller
C. Results
The figure 7 (a) shows the free response to a perturbation if
there is no control and in the case of an empty tank. This
figure gives the signal from the two sensors. It shows that it
takes more than 200s to go back to balance. The figure 7
(b) (c) (d) shows the response to the same perturbation as
previously with the CRONE controller and in three cases
(empty tank, half-full tank and full tank). This figure gives
the signal from the two sensors and the voltage of the two
actuators.
Several observations can be drawn from these graphs:
= The voltages of the actuators are on their maximum
level, even in saturation for the first oscillations since the
D-Space card will limit the values of u, and u, at 1V
(which corresponds to 130V on the actuator).
= [t takes now less than 25s to go back to balance.
= The CRONE controller guaranties the robustness of the
damping ratio of the response. The table 7 gives the value
of this ratio for the three cases and the two sensors.

Sensor yh Sensor yb
Empty tank 0,11 0,11
Half-full tank 0,1 0,1
Full tank 0,12 0,12

Table 7. Values of the damping ratio for the 3
configurations of the tank with the CRONE controller
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(a) Empty tank - No control [ (b) Empty tank s
L
]
“ “ 0 20 40 0 20 40
t(s)
w(c) half-full tank  w u Full tank w
|
| | I
0 20 40 0 20 40 0 20 40 0 20 40
t(s) 1(s)

Fig.7. Response to a perturbation

Conclusion

This article presents fractional robust control with iso-
damping property. The plant under study is an aircraft wing
model with a water tank. It is a multivariable plant with
lighted damped modes. The proposed methodology is
CRONE control. Results show that the vibrations are better
damped with the CRONE control and that the time to go
back to balance is divided by a factor 10. The tests on the
plant with various levels of filling of the tank made it
possible to highlight the properties of robustness of the
damping ratio. The wuse of multivariable CRONE
methodology and of iso-damping contours to carry out the
control of a flexible structure with iso-damping property is
thus clearly relevant.
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