
 
Abstract – We present robust adaptive augmentation design 

for a class of 2nd order uncertain nonlinear cascaded systems. 
These dynamics generalize the models that are often used for 
the design of inner-loop flight controllers. The proposed 
control architecture augments a baseline dynamic inversion 
controller with a direct adaptive component and a variable 
structure system, (VSS). While the adaptive augmentation is 
designed to maintain tracking performance in the presence of 
the system uncertainties, the VSS component protects the 
system trajectories from leaving allowable subset in the system 
state space. The design is applied to construct angle-of-attack 
(AOA) command tracking system for short period dynamics of 
a fixed wing aircraft. 

I. INTRODUCTION 
n this paper, we consider 2nd order uncertain dynamical 
systems in the cascaded form: 
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where ( )1 2
Tx x x=  is the system state vector, z  is the 

known bounded external signal, ( )0 0
1 2,F F  are known state-

dependent functions, 1B  is a known nonzero constant, 2
cmdx  

is the system control input, and ( )1 2,f f  are unknown, 
continuously differentiable functions that represent the 
system uncertainties. 

The control objective is bounded tracking in the presence 
of the system uncertainties ( )1 2,f f . Specifically, the 

control goal is to design the control input 2
cmdx  so that the 

system 1st state component 1x  tracks any given bounded 
time-varying command ( )1

cmdx t , in the presence of the 
system uncertainties, while keeping all the signals in the 
closed-loop system bounded, uniformly in time. 

Our interest in considering this particular class of systems 
stems from flight control related applications, where inner-
loop controllers for a fixed wing aircraft are often designed 
based on the so-called simplified models, [1–4]. The latter 
are in the form of (1.1) and represent the aircraft decoupled 
fast responses in pitch, roll, and yaw axes. The 1st control 
challenge here is to design an inner-loop controller that 
maintains vehicle tracking performance in the presence of 
uncertain aerodynamic effects, actuator failures, and 
unknown environmental disturbances. This is accomplished 
using flight proven adaptive design methods from [1, 3].  
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Moreover, an aircraft flight controller must be designed to 
keep the vehicle dynamics in a pre-specified region of the 
corresponding state space. This region if often referred to as 
the operational flight envelope. For example, an AOA 
command tracking controller must include an AOA 
protection system, whose purpose is to maintain the aircraft 
AOA within a pre-specified range, outside of which a loss-
of-control is expected. In essence, such an AOA controller 
would have to blend the two sub-systems, the AOA tracker 
and the AOA limiter, with only one or the other being active 
at any given time. Combining these 2 subsystems into a 
single inner-loop controller, while using theoretically 
justified design methods with performance and stability 
guarantees, constitutes the 2nd control challenge. To address 
the latter, we will employ the design that was originally 
developed in [7]. Furthermore, often in real-world flight 
control applications, an inner-loop system must provide 
adequate damping in the presence of high order dynamics, 
such as the system structural modes, as well as other 
unmodelled effects. Towards that end, we pose the 3rd 
control challenge which consists  of adding damping to the 
system dynamics at low frequencies only, and without 
exciting the high frequency modes. Our proposed robust 
adaptive controller addresses and solves all of the 3 control 
challenges. 

The rest of the paper is organized as follows. Section II 
presents the proposed robust adaptive control architecture. 
Online approximation of the system uncertainties is 
discussed in Section III. Sufficient conditions that guarantee 
bounded tracking and uniform ultimate boundedness of all 
signals in the corresponding closed-loop system are stated in 
Section IV. Based on these results, in Section V we perform 
AOA command tracking design, with flight envelope 
protection logic, and adaptive damping. This controller is 
constructed for short period dynamics of a fixed wing 
aircraft. The paper ends with conclusions that are given in 
Section VI. 

II. MODEL REFERENCE CONTROL ARCHITECTURE 
We will employ a model reference based control design 

framework. The reference model is chosen to be 2nd order, 
with the desired damping ratio ξ  and the natural frequency 
ω . This model is driven by a bounded possibly time-
varying reference command, 1

cmdx . 
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 (2.1) 

Differentiating the first state component in (1.1) yields: 
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 (2.2) 

or, equivalently 
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 ( ) ( )1 1 2 1 2 1 2, , , , , ,cmdx f x x z z B x d x x z z= + +  (2.3) 

Note that in (2.3), the function ( )1 2, , ,f x x z z  and the 

constant 1B  are known, while ( )1 2, , ,d x x z z  represents the 
unknown system uncertainty. 

Consider a dynamic inversion based controller in the 
form: 

( ) ( ) ( ) ( )1 11
2 1 1 1 1 1 1

m
cmd m m m

D P I

x t x t
x B x f K x x K x x K v

s
−
⎛ ⎞⎛ ⎞−

= − − − − − − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (2.4) 

where ( ) ( ) ( ) ( )( )1 1
1 1

0

m t
mx t x t

x x d
s

τ τ τ
−

−∫ , and v  denotes an 

augmentation component, defined later in (2.7). Let 
1 1 1

me x x= −  be the tracking error signal. Substituting (2.4) 
into (2.3), results in the closed-loop tracking error 
dynamics: 
 ( )

( )1 2

1 1 1 1 1
0 , , ,

t

D P I D

D x x z z

e K e K e K e d d K f vτ τ= − − − + + −∫  (2.5) 

Introduce ( )1 2
Tx x x z z= . Then (2.5) can be written as: 

 ( ) ( )1 1 1 1
0

t

D P Ie K e K e K e d D x vτ τ= − − − + −∫  (2.6) 

At this time, control signal v  is defined to approximate / 
dominate the system uncertainties on-line. 
 ( )( ) ( ) ( )ˆ1 sc adv x D x x v wγ γ− + +  (2.7) 

where ( ) ( )1 2
ˆ ˆ , , ,D x D x x z z=  is the on-line adaptive 

approximator, adw  is the so-called adaptive damping term 

to be defined later using a rate lead-lag filter, and scv  
represents the switching component of the control law. In 
addition, ( )xγ  is the so-called modulation function. This is 
a continuous state-dependent map which allows the 
controller to smoothly transition between the switching and 
the adaptive modes of operation. Construction of the 
modulation function is performed next. 

Let Ω  represent a compact region of approximation for 
the adaptive component D̂ , and let δΩ ⊂ Ω  be its compact 
subset. The modulation function γ  is defined as: 

 0,
1,
0 1,

x
x
x

δ

δ

γ
γ

∈Ω⎧
⎪= ∉Ω⎨
⎪ < < ∈Ω−Ω⎩

 (2.8) 

It provides continuous transition from the adaptive 
component D̂  in (2.7) to the switching component scv , if 
and when the vector x  leaves the subset δΩ , but before it 
reaches the boundary of Ω . The sufficiently small 
parameter δ  defines the width of the annulus region 

δΩ −Ω . 
The main goal of the adaptive component in (2.7) is to 

cancel / dominate the uncertainty ( )D x  in (2.5) by using its 

on-line estimated value ( )D̂ x , for all x δ∈Ω . With (2.7), 
tracking error dynamics take the form: 
 ( ) ( )( ) ( )1 1 1 1

0

ˆ1

D

t

D P I sc ad

e

e K e K e K e d D D v D wτ τ γ γ== − − − − − − − − −∫
 (2.9) 

where De  is the uncertainty estimation error. Detailed 

design of the switching component scv  will be presented 
later in the paper. 

Using pole placement, baseline PID feedback gains are 
chosen to enforce the desired 2nd order dynamics (2.1), 
augmented by integrated tracking error. The feedback gains 
are: 
 ( ) 2

1 1 12 , 2 ,D P IK k K k K kξ ω ω ω ξ ω= + = + =  (2.10) 
Substituting (2.10) into (2.9) yields: 

 ( ) ( ) ( )

( ) ( )

2
1 1 1 1 1 1 1

0

2 2

1

t

D sc ad

e k e k e k e d

e v D w

ξ ω ω ω ξ ω τ τ

γ γ

= − + − + −

− − − − −

∫  (2.11) 

Regrouping the terms in (2.11) results in: 

 ( ) ( )

( ) ( )

2
1 1 1 1 1 1 1 1 1

0

2

1

t

D sc ad

e k e e k e e k e d

e v D w

ξ ω ω τ τ

γ γ

⎛ ⎞
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⎝ ⎠
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∫  (2.12) 

Introduce the so-called  filtered tracking error: 
 ( )1 1 1 1

0

t
fe e k e dτ τ= + ∫  (2.13) 

Using (2.12) and (2.13), filtered tracking error dynamics 
can be written as: 
 ( ) ( )2

1 1 12 1f f f
D sc ade e e e v D wξ ω ω γ γ= − − − − − − −  (2.14) 

As seen from (2.14), the term 12 feξ ω  provides baseline 
damping to the error dynamics. Often, in real-world 
applications, the value of the baseline damping term is 
optimized such that maximum possible damping is achieved 
in the presence of high order dynamics, such as the system 
structural modes, as well as other unmodelled effects. In 
order to add extra damping, without exciting the high 
frequency modes, the former is introduced into the system at 
low frequencies only. Towards this end, define: 
 

1 1
f fa s ae e

s a s a
η ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 (2.15) 

and choose the adaptive damping term as:  
 ( )ˆf f

ad D Dw K k η= +  (2.16) 

where f
DK  represents the baseline damping gain, ˆ f

Dk  is the 
adaptive incremental damping gain, and 0a >  is the desired 
crossover frequency, above which the incremental damping 
must resort back to its baseline value. Relation (2.15) can be 
written in state-space form. 
 ( )1

fa eη η= − −  (2.17) 
Augmenting the error dynamics (2.14) with (2.17), the 
system extended error dynamics can be written as: 

( ) ( )( )
1 1

2
1 1

0 1 0 0
ˆ2 1 1

0 0
refreff f

f f

f f f f
D D sc D

bAe e

e e
e K e e v D k

a a
ω ξ ω γ γ η

η η

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= − − − − − + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (2.18) 

where ( )1 1

Tf f
fe e e η=  represents the extended filtered 

tracking error vector. Next, conditions must be found such 
that matrix 

refA  becomes Hurwitz. The matrix characteristic 
polynomial can be computed as follows: 
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2

3 2 2 2

1 0
det 2

0

2 2

f
ref D

f
D

I A K
a a

a a K a a

λ
λ ω λ ξ ω

λ

λ λ ξ ω λ ξ ω ω ω

−
− = +

− +

= + + + + + +

 (2.19) 

In order for the characteristic polynomial in (2.19) to have 
all its roots in the left half plane, it is sufficient to impose the 
following relations: 

 

( )( )

2

2 2

0, 2

2 2

f
D

f
D

a K
a

a a K a a

ωξω

ω ξ ω ω ξ ω

⎧
> > − −⎪

⎨
⎪ < + + +⎩

 (2.20) 

Remark 2.1 
The 1st inequality in (2.20) is already satisfied, since a  

defines the desired crossover frequency for the rate filter in 
(2.17). The 2nd condition in (2.20) places a lower bound on 
the value of the baseline rate damping gain. It is clear that 
the inequality is satisfied for any positive gain f

DK . Finally, 
the 3rd inequality follows from the previous two. 
Remark 2.2 

If the time derivative of the filtered tracking error ( )1
fe t  

is driven to become small then the original tracking error 
signal ( )1e t  will also become small. This statement directly 
follows from the definition in (2.13). In fact, the latter can 
be written as: 
 1 1 1 1

fe k e e= − +  (2.21) 

Consequently, if there exists T  such that ( )1 1
fe t ε≤  for all 

0t t T≥ + , then as t →∞  

 ( ) ( ) ( ) ( )( )1 0 1 01 1
1 1 0

1 1

1k t t T k t t Te t e e t e
k k
ε ε− − − − − −≤ + − →  (2.22) 

Remark 2.3 
If the filtered tracking error ( )1

fe t  is driven to become 

small then the original tracking error signal ( )1e t  will also 
become small. Using (2.21), yields: 
 ( ) ( ) ( ) ( )( ) ( ) ( ) ( )1 0 1

0

1 1 0 1 0 1 1 1

t
k t t k tf f f

t

e t e e t e t e t k e e dτ τ τ− − − −= − + − ∫  (2.23) 

Consequently, if there exists T  such that ( )1 1
fe t ε≤  for all 

0t T t≥ + , then as t →∞  
 ( ) ( ) ( ) ( ) ( )( )1 0 1 0

1 1 0 1 0 1 12 2k t t T k t t Tfe t e e t T e t T eε ε− − − − − −≤ + − + + − →  (2.24) 

In other words, if ( )1 1
fe t ε≤  then as t →∞  the following 

asymptotic relation takes place: 
 ( ) ( )1 12 o 1e t ε≤ +  (2.25) 

III. ON-LINE UNCERTAINTY APPROXIMATION 

On-line approximation of the uncertain function ( )D x  in 
(2.5) is performed on a compact x –region Ω , and using 
linear-in-parameters artificial neural network (NN), with 
radial basis functions (RBF) in its inner-layer, [6]. The on-
line function approximation is: 
 ( ) ( )ˆˆ T

D DD x xθ= Φ  (3.1) 

where D̂θ  is the on-line estimated vector of parameters and 

( )D xΦ  represents fixed RBF regressor vector of the 
corresponding dimension. It is assumed that the uncertainty 
can be approximated by an RBF NN, within a prescribed 
tolerance, and on the compact x –region Ω : 

 ( ) ( ) ( ) ( )T

D D DD x x xθ ε∗= Φ +  (3.2) 

In (3.2), Dθ
∗  is the true unknown constant parameter and dε  

is the unknown bounded approximation error: 
 ( ) max

D Dxε ε≤  (3.3) 
Subtracting (3.2) from (3.1), the on-line function 
approximation error can be expressed in terms of the on-
line parameter estimation error: 
 ( )ˆˆ

D

T
T

D D D D D D D De D D
θ

θ θ ε θ ε∗

Δ

− = − Φ − = Δ Φ −  (3.4) 

Substituting (3.4) into (2.18), closed-loop filtered tracking 
error dynamics can be derived. 
 ( )( ) ( )( )ˆ1 T f

f ref f ref D D D sc De A e b v D kγ θ ε γ η= − − Δ Φ − + − +  (3.5) 

IV. PARAMETER ADAPTATION AND CLOSED-LOOP SYSTEM 
DYNAMICS 

Choose a symmetric positive-definite matrix 0Q >  and 
solve the following algebraic Lyapunov equation: 
 T

ref refP A A P Q+ = −  (4.1) 
Since refA  is Hurwitz, the Lyapunov equation has a unique 
positive-definite symmetric solution P . Use the latter to 
form a Lyapunov function candidate: 
 ( ) ( )2

1 1 ˆ, T T f
f D f f D D D D DV e e P e kθ θ θ γ− −Δ = + Δ Γ Δ +  (4.2) 

where symmetric positive-definite matrix DΓ  and positive 
scalar Dγ  will be used to define the rates of adaptation. 
Differentiating (4.2) along the trajectories of the system 
(3.5) trajectories, yields: 

( ) ( )
( )1 1

2 1

ˆ ˆ ˆˆ2 2 2 2

T T T
f f f ref D D D

T f T f f T
f ref D D D D D D D sc f ref

V e Q e e Pb

e P b k k k v D e Pb

γ θ ε

η θ θ γ γ− −

= − + − −Δ Φ +

− + Δ Γ + − −
(4.3) 

Regrouping the terms further yields: 

 ( ) ( )

( )( ) ( )1 1

ˆ2 1 2

ˆ ˆˆˆ ˆ2 1 2

T T T
f f f ref D sc f ref

T T T f
D D f ref D D D f ref D D

V e Q e e P b D v e Pb

e Pb k e Pb k

γ ε γ

θ γ θ η γ− −

= − + − + −

+ Δ −Φ − + Γ + − +
 (4.4) 

In order to make the time derivative V  in (4.4) to be 
negative outside of a compact ( )ˆ, , f

D De kθΔ –subset of Ω , 

choose the following parameter adaptation laws: 

 
( )

( )

( )

ˆ ˆProj , 1

ˆ ˆProj ,

f

f

T
D D D D f ref

e t

f f T
D D D f ref

e t

e Pb

k k e Pb

θ θ γ

γ η

⎧ ⎛ ⎞
⎪ ⎜ ⎟= Γ Φ −⎪ ⎜ ⎟⎜ ⎟⎪⎪ ⎝ ⎠
⎨

⎛ ⎞⎪
⎜ ⎟⎪ = ⎜ ⎟⎪ ⎜ ⎟⎪ ⎝ ⎠⎩

 (4.5) 

In (4.5), Proj  denotes the Projection Operator, which forces 
the adaptive parameters to evolve in a pre-specified compact 

( )ˆ, f
D Dkθ –region, [8]. Furthermore, it is easy to see that 
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 ( ) 12 1 22 1 23
T f f

f f refe t e Pb p e p e p η= + +  (4.6) 
Similar to [7], the switching component of the controller is 
defined as: 
 ( ) ( )12 1 2 2 1 23sgn sgn f f

sc sc f scv K e t K p e p e p η= = + +  (4.7) 

where scK  is a sufficiently large positive constant gain. 
Substituting (4.5), (4.6) and (4.7) into (4.4), yields 

( )( ) ( ) ( )( )2 sgn 2 1T
f f sc f f f DV e Q e D K e t e t e tγ γ ε= − + − + −  (4.8) 

Recall that the modulation function γ  is defined as in (2.8). 
Consider three distinct cases. 

Case a). If x ∉Ω  then 1γ =  and choosing 
 maxscK D≥  (4.9) 
relation (4.8) becomes: 

 
( )( ) ( )

( )( ) ( )

( ) ( ) ( )2 2

min max min

0

2 sgn

2 sgn

2

T
f f sc f f

T
f f f sc f

T
f sc f ref f

V e Q e D K e t e t

e Q e D e t K e t

Q e D K e Pb Q eλ λ
<

= − + −

= − + −

≤ − + − ≤ −

 (4.10) 

Consequently, the tracking error will decay until the system 
state enters the region of approximation Ω . 

Case b). If x δ∈Ω  then according to (2.8) 0γ = , and 
therefore 
 ( ) 2 max

min2 2T T
f f f ref D f f ref DV e Q e e P b Q e e P bε λ ε= − + ≤ − +  (4.11) 

where ( )min Qλ  is the minimum eigenvalue of Q , 

( )max maxD Dx
xε ε

∈Ω
. Also note that because of the Projection 

Operator, norms of the parameter estimation errors will stay 
uniformly bounded, that is: 
 ( ) ( ) ( )max max

ˆ ˆf f
D Dt k t kθ θΔ ≤ Δ < ∞ ∧ ≤ < ∞  (4.12) 

where ( )max max
ˆ, f

Dkθ⎡ ⎤Δ⎢ ⎥⎣ ⎦
 are the parameter bounds. 

Using (4.11), Uniform Ultimate Boundedness (UUB) [5] 
of the closed-loop system trajectories can now be 
established. Towards that end, define the following compact 
subset in the fe – region: 

 
( )

max

min

2 ref D
r f

P b
S e r

Q

ε

λ

⎧ ⎫⎪ ⎪≤⎨ ⎬
⎪ ⎪⎩ ⎭

 (4.13) 

Define minimal level set { }T
b f fe P e bΩ = ≤  that contains 

rS . Since 

 ( ) ( )2 2

min max
T

f f f fP e e P e P eλ λ≤ ≤  (4.14) 
then choosing 
 ( ) 2

maxb P rλ=  (4.15) 

implies that for all fe r≤  

 ( ) ( )2 2
max max

T
f f fe P e P e P r bλ λ≤ ≤ =  (4.16) 

Hence, the set rS  is contained in the level set bΩ . 
Suppose that all initial values of the filtered tracking error 
( )0fe t  start in a compact set { }R fS e R≤ . Let 

{ }T
B f fe P e BΩ = ≤  be the maximal level set which belongs 

to RS . In order to maintain closed-loop system stability, a 
specific relation between the boundaries for the sets bΩ , 

BΩ , rS , and RS  must be imposed. These sets will be used 
to prove that the closed-loop system trajectories are UUB. 
Graphical representation of the four sets is given in Figure 
3.1. 

 
 

Figure 3.1: UUB Sets 
Choose: 
 ( ) 2

minB P Rλ=  (4.17) 

Then if T
f fe P e B≤  then using (4.14) yields: 

 ( ) ( )2 2
min min

T
f f fP e e P e B P Rλ λ≤ ≤ =  (4.18) 

Consequently fe R≤ , that is the filtered tracking error is 

in RS . Because of (4.11) and (4.13), the time derivative V  
is negative outside of rS . Consequently, the filtered 
tracking error fe  will enter level set bΩ  in finite time, and 
will remain in the set from then on. Consequently, the 
closed-loop system trajectories are UUB. 

Case c). If x δ∈Ω −Ω  then both the adaptive and the 
switching components of the controller are active. In this 
case, using (4.8) one gets 

 
( )( ) ( ) ( )( )

( ) ( ) ( )

( ) ( )

2 max
min max

2 max
min

2 sgn 2 1

2 1

2 1

T
f f sl f f f D

T
f sl D f ref

f f ref D

V e Q e D K e t e t e t

Q e D K e Pb

Q e e P b

γ γ ε

λ γ γ ε

λ γ ε

= − + − + −

⎡ ⎤≤ − + − + −⎣ ⎦

≤ − + −

 (4.19) 

Since by definition 0 1γ≤ ≤  

 ( ) ( )

( )

2 max
min

2 max
min

2 1

2

f f ref D

f f ref D

V Q e e Pb

Q e e Pb

λ γ ε

λ ε

≤ − + −

≤ − +
 (4.20) 

Similar to Case b), one can show that the system trajectories 
will enter the sub-region δΩ  in finite time, after which the 
Case c) conditions take place. 

The three cases prove UUB of the closed-loop system 
trajectories. Moreover, due to the use of the Projection 
Operator in (4.5), all the estimated parameters ( )ˆ tθ  are 
bounded. Hence the tracking problem is solved. 
The corresponding total explicit model following control 
signal can be written using relations (2.4), (2.7), (2.16), 
(3.1), and (4.7). 

 
( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

1 11
2 1 1 1 1 1 1

Baseline Dynamic Inversion Controller

1
1

ModulationAdaptive Augmentation
Function

ˆ1

m
cmd m m m

D P I

T
D D

x t x t
x B x f x K x x K x x K

s

x B t x x Bγ θ γ

−

−

⎛ ⎞⎛ ⎞−
= − − − − − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

− − Φ − ( )

( )

1
1 12 1 2 2 1

Switching Component

1
1

Additional Rate Damping

sgn

ˆ

f f
sc

f f
D D

K p e p e

B K k η

−

−

+

− +

 (4.21) 

Remark 4.1 
Using (2.15), the damping term in (2.16) can be written 

as: 
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( ) ( )
( ) ( ) ( )

( )

( )1 1
1 1 1 1 1

= Lead-Lag Filter

1
ˆ ˆ

1 1

f f m f f m
D D D D

G s

s
s k ks aw K k x x K k k x x

s a s s
a

⎛ ⎞
+⎜ ⎟+ ⎝ ⎠= + − = + −

+ ⎛ ⎞+⎜ ⎟
⎝ ⎠

(4.22) 

If the adaptation rate Dγ  in (4.5) is set to zero then the 
extra damping term becomes part of the baseline controller. 
Thus, the total control command can be reformulated as: 

 

( ) ( ) ( )

( )( ) ( ) ( )

PID Controller
Lead-Lag

1
2 1 1 1 1

Baseline Dynamic Inversion Controller

1
1

Adaptive Augmentation

ˆ1

cmd m f mI
D P D

T
D D

K
x B x f x K s K K G s x x
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x B t xγ θ

−

−

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
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⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

− − Φ ( ) ( )

( )( )

1
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f f
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f m
D

x B K p e p e

B k G s x x

γ −

−

− +

− −

 (4.23) 

From (4.23), it follows that the total control signal is 
comprised of the five major terms: a) baseline dynamic 
inversion controller, b) adaptive augmentation, c) switching 
component, d) modulation function, and e) adaptive 
damping. 

V. DESIGN EXAMPLE: ANGLE OF ATTACK TRACKING 
In this section, we apply the developed robust adaptive 

design methodology to construct AOA command tracking 
system for a fixed wing aircraft, whose short period 
dynamics, with lift and pitching moment uncertainties, can 
be written in the cascaded form (1.1), [1, 4]. 

 ( )
( ) ( ),

grav

q IC cmd

L Q q L

q M M q M q M q
αα α α

α α

⎧ = − + + + Δ⎪
⎨

= + + + + Δ⎪⎩
 (5.1) 

where α  is the aircraft AOA, q  is the angular pitch rate, 

Lα  is the known lift curve slope, gravQ  is the known gravity 

term, ( )L αΔ  is the lift force uncertainty, ( )M α  is the 
known pitching moment, qM  is the known constant pitch 
damping, ICM  is the known pitching moment increment 
due to inertial cross-coupling effects, cmdq  is the 
commanded pitch acceleration (control input), and finally 

( ),M qαΔ  represents the pitching moment uncertainty. 
The AOA desired / reference model dynamics is chosen 

in the form of (2.1): 
 2

2 22m cmds s
ωα α
ξ ω ω

⎡ ⎤
= ⎢ ⎥+ +⎣ ⎦

 (5.2) 

Note, that in addition to the known quantities in (5.1), the 
system dynamics contain uncertainties in the aircraft lift 
force ( )L αΔ  and in the pitching moment ( ),M qαΔ . 
According to (4.22), the rate damping term is chosen as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
Baseline Adaptive

ˆ
ˆ

1

f f
D D m f m f m

D D

K k a aw q q K q q k t q q
s s a s a
a

+
= − = − + −

+ +⎛ ⎞+⎜ ⎟
⎝ ⎠

 (5.3) 

The baseline portion bl
cmdq  of the total pitch acceleration 

command cmdq , with the damping term included, can now 
be written as:  

( ) ( ) ( ) ( )22 mbl f
cmd m q IC D m

q qaq q M M q M K q q
s a s

α ξ ω ω
⎡ ⎤ −

= − − − + + − +⎢ ⎥
+⎢ ⎥⎣ ⎦

 (5.4) 

where m m m gravq L Qαα α+ −  is the reference model pitch 
rate signal. The pitch rate error can be written in terms of 
the AOA tracking error as:  
 ( )( )m mq q s Lα α α− = + −  (5.5) 
In order to perform adaptive / switching augmentation 
design, we compare (5.1) with the generic cascaded 
dynamics (1.1). 
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⎪ = Δ = Δ⎪⎩

 (5.6) 

In this case, baseline PID feedback gains are: 
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1

2
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2
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K K k

K K k

α

α

α

ξ ω
ω ω ξ

ω
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⎪

= +⎨
⎪
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 (5.7) 

and the integrator pole 1k  is: 

 1k Lα=  (5.8) 
Using (2.13), the filtered tracking error signal, gives 

 ( ) ( )
( )1

1 1
f m

m

s Ls k q q
e e

s s s
α α α

++ −
= = − =  (5.9) 

Hence, the filtered tracking vector is: 
 

( ) ( ) ( )1 1 1

T T

f f f m
f m m

q qa ae e e e q q q q
s a s s a

⎛ ⎞ ⎛ ⎞−
= = − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 (5.10) 

The regressor vector DΦ  is chosen to depend on AOA only. 
Then parameter adaptation laws are written based on (4.5). 

 ( ) ( ) ( ) ( )

( ) ( )

0
ˆ ˆProj , 1 1

0

0
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0
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D D D D m m
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γ η
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⎨
⎛ ⎞⎛ ⎞⎪ ⎛ ⎞−⎜ ⎟⎜ ⎟⎪ = − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎪ +⎝ ⎠ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎝ ⎠⎩

 (5.11) 

where 0TP P= >  is the unique positive definite symmetric 
solution of the algebraic Lyapunov equation (4.1) with the 
Hurwitz reference model matrix refA  as specified in (2.18). 

In summary, using (2.16) and (3.1), adaptive pitch 
acceleration command takes the form: 
 ( ) ( ) ( ) ( ) ( )ˆˆad T f

cmd D D D m
aq t k t q q

s a
θ α= Φ + −

+
 (5.12) 

Also relation (4.7) defines the switching component of the 
pitch acceleration command: 
 ( )12 1 2 2 1 23sgnsc f f

cmd slq K p e p e p η= + +  (5.13) 

Note that the switching gain scK  needs to be chosen to 
dominate the system uncertainty: 
 ( ) ( )1 1

1 1 2
1

,
F f

D f z B f L L M q
x z α α α

∂ ∂
= + + = − Δ + Δ
∂ ∂

 (5.14) 

In other words, 
 ( ) ( )

min max
min max

maxmax ,sc
q q q

K M q L L Dαα α α
α α

≤ ≤
≤ ≤

≥ Δ − Δ  (5.15) 

In (5.15), the subset ( ) ( )min max min maxq qα α ×  represents 
the aircraft operational AOA / pitch rate envelope. 
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For simplicity, let’s assume that the pitching moment 
uncertainty depends on AOA only, that is ( )M M αΔ = Δ . 
Then the switching mode gain must be chosen such that 
 ( ) ( )

min max
maxmaxscK M L L Dαα α α

α α
≤ ≤

≥ Δ − Δ  (5.16) 

Let ( )min max
bp bpα αΩ =  denote AOA approximation region, 

where min min
bpα α≥  and max max

bpα α≤  are the AOA minimum 
and maximum break points, correspondingly. Piece-wise 
linear modulation function ( )γ α  can be easily written to 
satisfy (2.8): 
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min min

min max
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max max
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1,

,
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,
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bp bp
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α α δ

α α
α δ α α

δ
γ α α α α

α α
α α α δ

δ
α α δ

⎧ ≤ −
⎪

−⎪ − < ≤⎪
⎪

= < <⎨
⎪ −⎪ < < +
⎪
⎪ ≥ +⎩

 (5.17) 

Figure 5.1 shows a sketch of the modulation function. 

Figure 5.1: Piece-wise linear modulation function 
Remark 5.1 

A multi-dimensional modulation function ( )xγ can be 
created as follows. Suppose that 0x  is a center point of the 

sphere { }0R x x RΩ = − ≤ . Also suppose that the set RΩ  
represents the approximation region for RBF-s. Let 0δ >  
be a small positive constant and define 

{ }0R x x Rδ δ−Ω = − ≤ − . The modulation function is 
defined as: 
 

( )
0,
0 1,
1,

R

R R

R

x
x x

x

δ

δγ γ
−

−

∈Ω⎧
⎪= ≤ ≤ ∈Ω −Ω⎨
⎪ ∉Ω⎩

 (5.18) 

Formally, the modulation function can be written as: 

 ( ) 0max 0, min 1, 1
x x R

xγ
δ

⎡ ⎤⎡ − − ⎤
= +⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦⎣ ⎦
 (5.19) 

In order to see that (5.19) implies (5.18) it is sufficient to 
simply sketch ( )xγ  versus 0x x− . Figure 5.2 shows the 
data. 

 
Figure 5.2: Multi-dimensional modulation function 

 
Using (5.19) yields three relations that formally prove the 
validity of the modulation function choice. 
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Remark 5.2 
Suppose that ( )x α α=  and ( )0 0 0x α= . Choose L1–

weighted norm with the weights set to maxα  and maxα . Set 
1R = , 0.1δ =  and write the corresponding 2–dimensional 

modulation function. 

 ( )
0

max max

1
, max 0, min 1, 1

0.1

α α α
α α

γ α α

⎡ ⎤⎡ − ⎤
+ −⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥= +
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
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In this case 
 0 0

1 0.9
max max max max

1 , 0.9
α α α α α α
α α α α

⎧ − ⎫ ⎧ − ⎫⎪ ⎪ ⎪ ⎪Ω = + ≤ Ω = + ≤⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

 

In summary, total pitch acceleration command consists of 
the five terms: a) the baseline dynamic inversion command 

bl
cmdq , b) the adaptive augmentation ad

cmdq , c) the switching 
component sc

cmdq , d) the AOA modulation function ( )γ α , 

and e) the adaptive damping term D
cmdq . 

 ( )( ) ( )1bl ad sc D
cmd cmd cmd cmd cmdq q q q qγ α γ α= − − − +   

VI. CONCLUSIONS 
Motivated by flight control applications, in this paper we 

presented robust adaptive control design augmentation of a 
baseline dynamic inversion controller. In order to protect the 
system trajectories from leaving an allowable subset in the 
system state space, a VSS component was added. Also, a 
frequency-dependent adaptive damping term was 
incorporated into the system. The proposed design was 
applied to construct AOA command tracking system for 
short period dynamics of a fixed wing aircraft. 
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