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Abstract— This paper presents real-time detection of fatigue
damage in mechanical structures using ultrasonic sensing
methodology. The data-driven pattern identification method
for anomaly detection is based on the tools derived from
Statistical Mechanics and Symbolic Dynamics. The concept of
Escort Distributions has been used to identify the behavioral
patterns changes in complex systems due to gradual evolution
of anomalies. The real-time information of evolving fatigue
damage provides early warnings of forthcoming catastrophic
failures. The anomaly detection method has been experimen-
tally validated on poly-crystalline alloys using ultrasonic data
generated from a fatigue damage testing apparatus.

I. INTRODUCTION

Damage due to fatigue phenomenon is one of the most

commonly encountered sources of structural degradation in

complex electromechanical systems. Detection of fatigue

damage at an early stage is essential because the accumulated

damage could potentially cause catastrophic failures, leading

to loss of life and expensive equipment. In the current state-

of-the-art, direct measurements of fatigue damage at an early

stage (e.g., crack initiation) are not feasible due to lack of

analytical models and sensing devices. Specifically, random

distribution of flaws in identically manufactured structural

components leads to different behavioral patterns of fatigue

damage evolution. Consequently, the analysis of time series

data from the available sensors is essential for monitoring

the fatigue damage evolution in real time.

Several techniques based on various sensing devices (e.g.,

ultrasonics, acoustic emission, and eddy currents) have been

proposed in recent literature for fatigue crack monitor-

ing [1][2]. Impedance of ultrasonic signals has been shown to

be sensitive to small microstructural changes during the early

stages of fatigue damage evolution [3]. Technical literature

abounds with diverse techniques of pattern recognition [4].

Anomaly detection using symbolic dynamic filtering (SDF )

is a pattern recognition method that has been recently

developed [5] and a comparative evaluation of this novel

analytical method shows its superior performance relative

to other existing pattern recognition tools in terms of early

detection of small changes in dynamical systems [6] and

robustness to noisy environments [7].

This paper presents fatigue damage monitoring in poly-

crystalline alloys using the application of the pattern recog-
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nition tools of SDF and the concept of escort distributions

from Statistical Mechanics. To this end, the concepts have

been experimentally validated on a computer-controlled fa-

tigue damage testing apparatus that is equipped with ul-

trasonic transducers and an optical microscope. The main

contributions of this paper are listed below.

1) Ultrasonic data analysis using symbolic dynamic filter-

ing (SDF ) for real-time information extraction

2) Identification of behavioral patterns for detection of

gradually evolving anomalies based on the statistical

mechanical concept of escort distributions [8]

3) Experimental validation of the techniques on a fatigue

damage testing apparatus using polycrystalline alloys.

II. BEHAVIORAL PATTERN IDENTIFICATION

The study of dynamical systems using the techniques

of Statistical Mechanics has been a subject of immense

interest over the last few decades and has been termed as

the thermodynamic formalism of complex systems [8]. As

discussed earlier, detailed modelling of complex physical

processes often proves to be mathematically challenging and

computationally intensive especially in the presence of high

dimensional phase space. In Statistical Mechanics, similar

issue is tackled by estimating the macroscopic properties

(e.g., pressure and temperature) of the entire system from

the distribution of the elementary particles in various micro-

states. In the same fashion, the behavior of a dynamical

system can be investigated both from the microscopic and

the macroscopic points of view. From the perspective of

Statistical Mechanics, the set of time series data can be

conceptually visualized to be analogous to a thermodynamic

system, where each data point can be treated as a particle

in the Statistical Mechanical sense. The global macroscopic

behavior of the system can be estimated from the time series

data set by describing statistical distributions of these so

called data particles in different energy levels which are

defined by partitioning the data space (See Section II-A).

The pattern identification of a quasi-stationary process is

recognized as a two-time-scale problem. The Fast-time scale

refers to the local behavior of the system and is defined as the

time scale over which the dynamical behavior of the system

is assumed to remain invariant, i.e., the process has stationary

dynamics. From the perspective of Statistical Mechanics,

the system stays in equilibrium on the same energy hyper-

surface in its phase space. In other words, even though,
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Fig. 1. Concept of phase space partitioning for symbol sequence generation

individual particles migrate from one microstate to the other,

the probability densities and hence, the macroscopic proper-

ties, characteristic of that particular system behavior remain

constant over the fast time scale. The Slow-Time Scale, on the

other hand, refers to the long-term behavior of the system,

where the patterns of the process dynamics might deviate

from those under the nominal conditions. It is assumed that

any observable non-stationary behavior pattern is associated

with changes occurring on the slow time scale. In Statistical

Mechanical analogy, the system traverses from one energy

hyper-surface to another in between two slow time epochs.

In general, a long time span in the fast time scale is a

tiny (i.e., several orders of magnitude smaller) interval in the

slow time scale. For example, evolution of fatigue damage in

structural materials (causing a detectable change in the dy-

namics of the system) occurs on the slow time scale (possibly

in the order of hours or months); fatigue damage behavior

is essentially invariant on the fast time scale (approximately

in the order of seconds or minutes). Nevertheless, the notion

of fast and slow time scales is dependent on the specific

application and operating environment.

A. A Brief Review of Symbolic Dynamic Filtering

In symbolic dynamic filtering (SDF ) procedure [5], a data

sequence is converted to a symbol sequence by partitioning a

compact region of the phase space of the dynamical system,

over which the trajectory evolves, into finitely many discrete

blocks (Fig. 1). Each block is labelled as a symbol, where

the symbol set Σ is called the alphabet that consists of |Σ|
different symbols. (Note: |Σ| ≥ 2.) As the system evolves in

time, it travels through or touches various blocks in its phase

space and the corresponding symbol σ ∈ Σ is assigned to it,

thus converting the data sequence into a symbol sequence.

A crucial step in SDF is partitioning of the phase

space for symbol sequence generation. Several partitioning

techniques have been reported in literature for symbol gen-

eration [9], primarily based on symbolic false neighbors.

These techniques may become cumbersome and extremely

computation-intensive if the dimension of the phase space

is large. Therefore, as an alternative, symbol sequences can

be generated from the measured time series data of avail-

able sensors [10]. Figure 2 presents an illustrative example

of partitioning the time series data, to generate a symbol

sequence. The appropriate signal conditioning method using

the wavelet transform can be applied to the time series data

before partitioning. Since wavelet transform are particularly

effective with noisy data from high-dimensional dynamical
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Fig. 2. Illustration of data partitioning for symbol sequence generation

systems, this paper has adopted a wavelet-based partitioning

approach [5] [7].

The partitioning is done such that the regions with more

information are partitioned finer and those with sparse

information are partitioned coarser. This is achieved by

maximizing the Shannon entropy, which is defined as S =
−

∑|Σ|
i=1

pi log(pi) where pi is the probability of the ith

state and summation is taken over all possible states. Each

partition region is identified as a state qj ∈ Q. Uniform prob-

ability distribution of states is a consequence of maximum

entropy that makes the partition coarser in regions of low

data density and finer in regions of high data density.

Once the partitioning is done with alphabet size |Σ| at the

nominal condition (time epoch t0), it is kept constant for all

(slow time) epochs {t1, t2, ....tk....}, i.e. the structure of the

partition is fixed at the nominal condition. The probability

of transitions from state qj to state qk belonging to the set

Q of states under a transition δ : Q × Σ → Q is defined as

πjk = P (σ ∈ Σ | δ(qj , σ) → qk) ;
∑

k

πjk = 1; (1)

Thus, the irreducible stochastic matrix Π ≡ [πij ] describes

all transition probabilities between states. The time series

data under the nominal condition is set as the reference point.

The state transition matrix Π
0 at t0 is generated to obtain the

state probability vector p0 whose elements are the stationary

probabilities of the state vector, where p0 is the left eigenvec-

tor of Π
0 corresponding to the (unique) unity eigenvalue [5].

Subsequently, state probability vectors p1, p2, . . . pk.... are

obtained at slow-time epochs t1, t2, . . . tk.... based on the

respective time series data.

B. Escort Distributions for Pattern Identification

In Statistical Mechanics, the equilibrium probability distri-

bution of the energy states, called the Generalized Canonical

Distribution, is estimated by maximizing the entropy of the

system given a macroscopic parameter, such as the energy

< E > [8]. This distribution is obtained using the method of

unbiased guess of the probabilities for a given value of the

macroscopic parameter. Let E be a random variable which

takes a value Ej in the energy state j and let Pj be the equi-

librium probability of that state. The objective is to estimate

the equilibrium probability vector P given a macroscopic
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parameter < E > with the following constraints:

< E >=

|Σ|∑

j=1

PjEj , and (2)

|Σ|∑

j=1

Pj = 1. (3)

The method of Lagrange multipliers is used [8] for maxi-

mization of entropy S = −
∑

Pj ln(Pj) while the constraints

given by Eqs. (2) and (3) are satisfied. Therefore, the

following relations can be derived

|Σ|∑

j=1

EjδPj = 0 (4)

|Σ|∑

j=1

δPj = 0 and (5)

|Σ|∑

j=1

(
lnPj − Ψ + βEj

)
δPj = 0 (6)

where Ψ and β are the Lagrange multipliers. Since δPj’s

are arbitrary each of the terms in the summation in Eq.

(6) must be zero [8]. Therefore, the equilibrium probability

distribution, i.e., the Generalized Canonical Distribution [8],

is obtained from Eq. (6) as follows:

Pj = exp(Ψ − βEj), j = 1, ...|Σ|. (7)

Using Eq. (3),

Pj =
exp(−βEj)∑|Σ|
i=1

exp(−βEj)
, j = 1, ...|Σ|. (8)

where the parameter β is identified as the inverse of

the temperature of the system and the partition function

Z(β)=exp(−Ψ) appears as the normalizing factor

Z(β) =

|Σ|∑

i=1

exp(−βEi). (9)

As described earlier in Section II-A, the time series data

is partitioned to generate the symbol sequences and the

state probabilities are obtained for each partition state. The

objective now is to assign the equilibrium distribution, i.e.,

the generalized canonical distribution (using Eq. (8)), to

the partition states that are analogous to the Statistical

Mechanical energy states as shown in Fig. 2. For dynamical

systems, as shown in ref [8], the energy states Ej’s are

related to the state visit probabilities pj’s by:

Ej = − ln pj , j = 1, ...|Σ|, (10)

where pj is observed probability (obtained from partitioning

the experimental data using SDF as described in Section II-

A) of the ith energy state. The rational for the above

substitution are given below:

• Since − ln pj ≥ 0, this implies 0 ≤ Ej ≤ ∞

• The partition levels that have low frequency of visit

(i.e., regions with low information content) have corre-

sponding high energies (less reachable) and the partition

levels that have high frequency of visit (i.e., regions

with high information content) have corresponding low

energies (more reachable) in the Statistical Mechanical

sense. For e.g., if state j is never visited, i.e., pj = 0,

then it corresponds to infinite energy state that is never

reached by a particle.

Using Eq. (10) in Eq. (8) we get,

Pj =
(pj)

β

∑|Σ|
j=1

(pi)β
, j = 1, ...|Σ|. (11)

which provide the Generalized Canonical distribution P, also

called the escort distribution of p of order β. The escort dis-

tribution P has the ability to scan the structure of the original

probability distribution p. The order β that is analogous to

the inverse temperature, affects the relative importance of

how the microstates j enter into the escort distribution. The

escort distribution P reveals more information of the system

than the original probability distribution p.

Since β ∼ 1/T , where T is the effective temperature,

scanning the probability distribution p at different values of

β, as shown in Eq. (11), can be interpreted as analogous

to a change of temperature in a thermodynamic system.

(Note: the analogy presented here is only constructive and

not exact). When β → 0, the temperature T tends to ∞
in a thermodynamic sense, which means that the system

becomes random and the uncertainty in the system becomes

very high such that all the energy states become equally

excited. This leads to equal escort probability (Pj = 1/|Σ|,
j=1,...,|Σ|) of each energy state and due to the maximum

uncertainty, the information content obtained from the system

is minimized. As the value of β is increased, the temperature

T of the system decreases; consequently, the uncertainty

is reduced and more information is revealed. Therefore, at

lower temperature T or higher value of β many new facets

of the system are revealed. As such, the parameter β of

the escort distribution P can scan the structure of the state

probability vector p and can reveal information during early

stages of fatigue damage evolution.

C. Damage Evolution and Anomaly Detection

The anomalies (i.e., deviations of the evolving patterns

from the nominal pattern) are characterized by a scalar-

valued function, called Anomaly Measure ψ that is quasi-

static in the fast time scale and is monotonically non-

decreasing in the slow time scale. The escort probability vec-

tor at any time epoch corresponds to a singleton point on the

unity-radius hypersphere. During fatigue damage evolution,

the tip of the escort probability vector moves on the surface

of this hypersphere. The initial starting point is the escort

probability vector P
0 with uniform distribution obtained

with maximum entropy partitioning [7]. As the damage

progresses, the escort distribution changes; eventually when

a very large crack is formed, complete attenuation of the

ultrasonic time series data occurs and consequently the tip
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of the escort probability vector reaches a point where all

states have zero probabilities of occurrence except one which

has a probability one (i.e., a delta-distribution P
f ); this state

corresponds to the partition region where all data points are

clustered due to complete attenuation of the signal. In the

context of an irreversible process such as fatigue damage,

the anomaly measure is based on the following assumptions:

• Assumption #1: The damage evolution is an irreversible

process (i.e., with zero probability of self healing) and

implies the following conditions.

ψ(t) ≥ 0; ψ(t + δ) − ψ(t) ≥ 0 ∀t ≥ t0 ∀δ > 0 (12)

• Assumption #2: The damage accumulation between two

time epochs is a path function, i.e., dependent on the

path traversed to the target state from the initial state.

At the initial stages of fatigue damage, there can be mul-

tiple short cracks oriented in different directions. Therefore,

crack length alone does not provide complete information

on fatigue damage evolution. Since ultrasonic signals are

highly sensitive to small micro-structural changes, signal

distortion is a good index of anomaly growth. As such,

the following distance function is used between the escort

probability vectors at two time epochs:

d(Pk,Pl) ≡

√
(Pk − Pl)

T
(Pk − Pl) (13)

The algorithm for computation of the anomaly mea-

sure ψ compensates for spurious measurement and com-

putation noise in terms of the sup norm ‖ e ‖∞≡
max(|e1|, · · · , |em|) of the error in the state probability

vector (i.e., the maximum error in the elements of the state

probability vector). The algorithm is presented below.

i) ψ0 = 0; δψ1 = 0; P̃ = P
0; p̃ = p0 k = 1;

ii) if ||pk − p̃||∞ > ǫ then δψk = d(Pk, P̃); p̃ ← pk

and P̃ ← P
k;

iii) ψk = ψk−1 + δψk;

iv) k ← k + 1; δψk = 0; go to step (ii).

The real positive parameter ǫ, associated with robustness

of the anomaly measure for measurement and computation

noise, is identified by performing an experiment with a

sample with no notch. Since there is no notch there is

practically no stress augmentation and relatively no fatigue

damage. As such, the parameter ǫ is estimated as:

ǫ ≈ max
l∈{1,..N}

(||pl+1 − pl||∞) (14)

from N consecutive observations with N ≫ 1. The algo-

rithm works in the following fashion: the reference point P̃

is initialized to the starting point P
0 and anomaly measure

ψ0 is set to 0. At any slow time epoch tk if the state

probability vector moves such that the distance moved in

any particular direction (i.e. the sup norm || • ||∞) is greater

than ǫ as specified in step (ii), then the anomaly measure is

incremented by δψk = d(Pk, P̃) and the reference point is

shifted to the current point P
k. The procedure is repeated at

all slow time epochs.

Fig. 3. Special-purpose fatigue test apparatus

D. Summary of the Steps Followed

• Time series data acquisition from appropriate sensor(s)

at time epoch t0, i.e., the nominal condition, when the

system is assumed to be in the healthy state (i.e., zero

anomaly measure)

• Generation of the maximum entropy partition based on

the nominal data set after signal conditioning for noise

removal using wavelets [7]. The partitioning is fixed for

subsequent time epochs t1, t2, ...tk...
• Calculation of the state probability vector p0 using

SDF (See Section II-A) and the corresponding escort

probability vector P
0 for different orders β (See Sec-

tion II-B) at time epoch t0. P0 is a uniform distribution

because of maximum entropy partitioning [7]

• Collection of time series data at slow time epochs

t1, t2, ...tk... and calculation of the corresponding escort

probability vectors P
1,P2, ...Pk, ...

• Computation of Anomaly Measures ψ1, ψ2, ..., ψk, ..., at

time epochs t1, t2, ...tk... (See Section II-C).

III. DESCRIPTION OF THE EXPERIMENTAL APPARATUS

The experimental apparatus, shown in Fig. 3, is a special-

purpose uniaxial fatigue testing machine, which is operated

under load control or strain control at speeds up to 12.5 Hz. A

typical specimen, made of 7075-T6 aluminum alloy, is shown

in Fig. 4. The specimen is 3mm thick and 50mm wide with

a slot on one side of 1.58mm diameter and 4.57mm length.

The notch is made to increase the stress concentration factor

in that region and it guarantees crack propagation at notch

end. The sensors for damage detection are:

1) Travelling Optical Microscope: The travelling optical

microscope (Fig. 3) provides direct measurements of the

surface crack. The resolution of the microscope is about 2

microns at a working distance of 10 to 35 cm.

2) Ultrasonic Flaw Detector: The ultrasonic flaw detector

functions by emitting high frequency (5MHz sine wave)

ultrasonic pulses that travel through the specimen and return

back through the receiver transducers. The signal is sent

through the region of crack propagation and received on the

other side. Since material characteristics (e.g., voids, disloca-

tions and short cracks) influence the ultrasonic impedance, a
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Fig. 4. Cracked specimen with a side notch

Fig. 5. Ultrasonic flaw detection scheme

small fault in the specimen is likely to change the signature

of the signal at the receiver end.

The fatigue tests were conducted at a constant amplitude

sinusoidal load for low-cycle fatigue, where the maximum

and minimum loads were kept constant at 87MPa and

4.85MPa, respectively. A significant amount of internal dam-

age caused by multiple small cracks, dislocations and mi-

crostructural defects alters the ultrasonic impedance, which

results in signal distortion and attenuation at the receiver

end. The crack propagation stage starts when this internal

damage eventually develops into a single large crack. The

slow time epochs for data analysis were chosen to be 1000

load cycles (i.e., ∼80 sec) apart. At the onset of each slow

time epoch, the ultrasonic data points were collected on

the fast time scale of 50 cycles (i.e., ∼4 sec at 12.5Hz

frequency), which produced a string of 30,000 data points.

It is assumed that during this period, the system remained in

a stationary condition and no major changes occurred in the

fatigue crack behavior. The sets of time series data collected

in this manner at different slow-time epochs were analyzed

to calculate the anomaly measures at those slow time epochs.

IV. RESULTS AND DISCUSSION

The six plots in Fig. 6 show two-dimensional images of

the specimen surface and the corresponding escort proba-

bility distributions of energy states (|Σ|=6), at six different

slow time epochs, approximately 1, 10, 18, 23, 32 and 45

kilocycles, exhibiting gradual evolution of fatigue damage.

For each time epoch, i.e., each plot in Fig. 6, the escort

distribution is shown for different values of β= 0, 0.5, 1, 2, 5

and 10 and the top figure exhibits the image of the specimen

surface as seen by the microscope. The plot (a) of Fig. 6

shows the image at the nominal condition (∼1 kilocycles).

The maximum entropy principle used for partitioning has

lead to a uniform probability distribution in the energy

states as seen in the histograms for all values of order β.

The anomaly measure at this point is taken to be zero.

Plots (b) and (c) at ∼10 and ∼18 kilocycles respectively,

do not yet have any indication of surface crack but the

escort distribution histograms of different orders β exhibit

deviations from the uniform probability distribution. This

is an evidence that the analytical measurements, based on

ultrasonic sensor data, produce damage information during

the crack initiation stage. The image in plot (d) of Fig. 6

at ∼23 kilocycles exhibits the first noticeable appearance

of a small surface crack, this may be considered as the

boundary of the crack initiation and the propagation phases.

The corresponding histograms in (d) show further deviation

from the uniform distribution of plot (a). The image in plate

(e) at ∼32 kilocycles exhibits a fully developed crack in

its propagation phase. The corresponding histograms show

significant variation from those in earlier stages, from (a) to

(d). The image in plate (f) at ∼45 kilocycles exhibits a large

crack or a broken specimen. The corresponding histogram

resembles a delta distribution indicating complete attenuation

of the ultrasonic data.

In all the histogram plots in Fig. 6 at different time epochs,

the escort probabilities of all energy states are equal for β =
0, irrespective of the system health. This indicates that for

β = 0, i.e., T → ∞, the system attains a maximum entropy

state resulting in no information retrieval. In all plots when

β is increased from β = 0, more information is revealed

which is of significant importance especially during the

crack initiation. Therefore, higher order escort distribution

yield a better picture of the system with distinct probability

distributions. For higher order β, the higher probability states

become more prominent and lower probability states become

less significant resulting in more sensitivity to small change

detection. In all plots of Fig. 6, as β is increased from 0 to

10, the difference in escort probabilities of different states

become more noticeable.

Figure 7 shows the profile of Anomaly Measure represent-

ing fatigue damage evolution at different slow time epochs.

The anomaly measure profiles are plotted for different values

of β= 0, 0.5, 1, 5, 10 and 20. In the region around ∼ 20−23
kilocycles, a rapid change in the slope of anomaly measure

profiles is observed for all β that indicates the onset of

crack propagation phase (as shown by the vertical line in

Fig. 7), after which, the growth of anomaly measure is very

fast till complete breakage of the specimen. At β = 0, the

profile is zero yielding no information. For β = 0.5 and 1,

the anomaly measure profiles capture the crack propagation

phase when the slope of anomaly measure profile is very

high; however, the crack initiation phase is not detected

significantly, i.e., the anomaly measure profile is incapable

of issuing early warning. As β is increased, the anomaly

measure curve shows a more sensitive response to crack

growth, specially in the initiation phase in terms of both the

amplitude and the slope of the anomaly measure. For β > 1
the anomaly measure profiles show significant deviations

from the nominal condition even during early stages of crack

initiation. In the crack propagation region, the profiles of

all β (except β = 0) are sensitive in predicting damage;

however, in the crack initiation stage the anomaly measure

profiles derived from higher order escort distributions play

a significant role in detecting early damage. Increasing β
at very high values at β > 10 would be advantageous in

the initial stages for early detection; however it would make

4290



Fig. 6. Fatigue damage evolution and corresponding information from escort distributions of different order β=0,0.5,1,2, 5 and 10; a) nominal condition
at ∼1 kilocycles, b) microstructural damaged condition at ∼10 kilocycles, c) microstructural damaged condition at ∼18 kilocycles, d) appearance of a
surface crack at ∼23 kilocycles, e) crack propagation condition with fully developed crack at ∼32 kilocycles, and f) broken condition at ∼45 kilocycles
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Fig. 7. Anomaly measure profiles for fatigue damage evolution
derived from escort distributions of order β=0, 0.5, 1, 2, 5 and 10.

the system very sensitive resulting in a sharp jump in the

anomaly measure profile for small changes which is not

required from the perspective of continuous monitoring of

fatigue damage evolution.

V. CONCLUSIONS

This paper has presented fatigue damage detection using

the ultrasonic data before the onset of widespread damage

caused by rapid crack propagation. The real-time data analy-

sis method is based on the concepts of symbolic dynamic

filtering and escort distributions derived from Statistical

Mechanics. Statistical pattern changes in escort distributions

of the observed time series data sequences at different

slow time epochs capture the gradual evolution of fatigue

damage in poly-crystalline alloys. The concepts have been

experimentally validated on a fatigue damage test apparatus.
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