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Abstract— Symbolic dynamic filtering (SDF) has been re-
ported in recent literature for early detection of anomalies (i.e.,
deviations from the nominal behavior) in complex dynamical
systems. In this context, instead of solely relying on physics-
based modeling that may be difficult to formulate and validate,
this paper proposes data-driven modeling and system identifi-
cation based on the concept of Symbolic Dynamics, Automata
Theory, and Information Theory. For anomaly detection in
inter-connected complex dynamical systems, with or without
closed loop control, the input excitation to an individual
component is likely to deviate from the nominal condition
as a result of deterioration of some other component(s) or
to accommodate disturbance rejection by feedback control
actions. This paper presents a formal-language-based syntactic
method of anomaly detection to account for deviations in the
pertinent input excitation. A training algorithm is formulated
to generate an automaton model of the underlying subsystem or
component from a set of input-output combinations for different
classes of inputs, where the objective is to detect (possibly
gradually evolving) anomalies under different input conditions.
The proposed method has been validated on a test apparatus
of nonlinear active electronics.

Index Terms— Anomaly Detection, Symbolic Dynamics, System
Identification, Fixed Structure Automata

I. INTRODUCTION

Nonlinearity, chaos and unpredictability are regularly ob-

served in both natural and human-engineered systems, many

of which are exceedingly complex, involving inherently non-

linear electronic, electromechanical, thermal and chemical

processes, complicated interconnections, and elaborate con-

trol systems. Health monitoring of these complex engineering

systems has evolved to be an issue of paramount importance.

However, the inherent nonlinearity and uncertainty in these

complex systems pose a challenging problem to health

monitoring, since first principle models of these systems,

if available, are routinely oversimplified, or in worst cases

may not be available at all. In the absence of models, system

identification or ’black box’ modeling with the help of input-

output pair combination has gained in importance over the

years. A branch of this system identification science has lead

to development of Nonlinear Time Series Analysis (NTSA)

techniques using Formal Languages [1].

Recent research has extensively explored the problem

of anomaly detection using symbolic dynamic filtering
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(SDF) [2]–[5]. However, since human-engineered multi-

component systems are usually interconnected physically as

well as through the use of feedback control loops, the effect

of any one component degradation may affect the input

streams to the remaining components. The major challenges

here are detection and isolation of faults in simultaneously

degrading components and estimation of the fault magni-

tude, for the purpose of prognoses without a high-fidelity

component-level model of the system. Therefore, for systems

that are composed of many interconnected components,

system identification turns out to be of significant importance

especially.

There are several nonlinear system identification tech-

niques available for such applications; an example is artificial

neural networks (ANN). However, system identification and

anomaly detection in a single component is just a small

part of the health monitoring problem in its entirety. In

the setting of the bigger problem, complex algorithms and

optimization techniques may have certain drawbacks. For ex-

ample, computationally expensive algorithms are unsuitable

for large complex engineering systems such as an aircraft

where on-board health monitoring is needed in real time.

Future generation health monitoring systems are envisioned

to utilize low power mobile computing devices to physically

access the local sensors in a network environment, perform

the component level health analysis on-board, and commu-

nicate with the central decision making console for higher

level decisions [6]. In such large-scale remote applications,

communication over wireless sensor networks and, as a

consequence, dimensionality reduction of the data sets is

essential.

The above discussion evinces that, for the purpose of effi-

cient health monitoring of complex interconnected systems,

a system-identification tool is necessary. The purpose of the

work reported in this paper is to address this issue, and

develop a robust and computationally inexpensive system

identification technique based on formal language formu-

lation, which achieves the above-mentioned objectives. A

central step in this kind of identification methodology is

discretization of the raw time-series measurements into a cor-

responding sequence of symbols. An important practical ad-

vantage of working with symbols is increased computational

efficiency [2], [3]. The proposed method is designed to be

robust with respect to sensor noise, and also simple enough

to be implemented in mobile platforms or even embedded

in the sensors themselves. Thus, it facilitates construction
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of a reliable sensor network to serve as a backbone to the

higher levels in the decision-making hierarchy of large-scale

complex systems.

II. FORMAL-LANGUAGE-BASED SYSTEM

IDENTIFICATION

Formal language theory has been used in the past to study

nonlinear dynamical systems [7]–[10].In general, grammat-

ical complexity of sequences generated according to some

coding have been used to characterize complexity of au-

tonomous dynamical systems. However, keeping in mind

that most systems in technological applications are not au-

tonomous but controlled dynamical systems, distinction has

to be made between the information that is generated by the

system dynamics and the one that depends on the controlling

operator. Borrowing the nomenclature from Narendra and

Thathachar [11] the external influence on automata may

be described as the‘’environment’,which interacts with the

automata. Martins et al [12] have shown how the modeling

framework for controlled dynamical systems leads, almost

uniquely, to a context-dependent grammatical formulation.

A. Problem Statement

Grammatical inference is an inductive inference problem

where the target domain is a formal language and the

representation class is a family of grammars. The learning

task is to identify a ‘correct’ grammar for the unknown target

language, given a finite number of examples of the language.

To apply grammatical inference procedures to identification

of non-autonomous dynamical systems, a dynamical system

must be considered as an entity (linguistic source) capable

of generating a specific language. The grammar G of the

language is the set of rules that specifies all the words in

the language and their relationships. In context of health

monitoring of complex systems, the aim of the Grammatical

Inference technique is to develop a grammatical description

of a dynamical system from the input/output characteristics,

in such a way, that it should be invariant with the input con-

ditions, but should be sensitive to changes in the parameters

of the actual dynamical system.

Let Di be a dynamic system indexed by i representing

different parametric conditions, D0 being the nominal or

healthy condition of the system, and i = 1, 2, ... signifying

deteriorating health conditions of the plant due to a progress-

ing anomaly. Let Uk k = 1, 2, ...,K be K different input

conditions, yi
k be the output from the i − th system Di

receiving the k − th input Uk. Let Gi be the grammatical

representation of Di. Then

Gi : Uk → yi
k ∀k ∈ {1, 2, ...,K} (1)

Let d(·, ·) be a distance function defined on the space of all

possible grammars, then the requirement is

d(Gi,G0) ≥ d(Gj ,G0) i ≥ j (2)

Instead of defining the distance d on the space of grammars

directly it may be possible to use the actual output from the

dynamical system and define a distance on the space of the

words (symbol sequences) produced by the grammars. The

decision regarding the health of the plant will be based on

the distance of the actual word output of the plant Di and

the hypothetical output of G0, both receiving Uk. So, an

equivalent way of posing the problem is, if yk
i is the actual

output of Di receiving input k, then find a grammar G0, such

that,

d(yk
i , ŷk

0 ) ≥ d(yk
j , ŷk

0 ) i ≥ j,∀k (3)

d(yk
0 , ŷk

0 ) = 0 ∀k (4)

where ŷk
0 is the output from G0 receiving input k. The

proposed solution is by using a Fixed Structure Automata

which is described in detail in the next section.

B. Theoretical Background of the Methodology

yu

��

Nominal System

Symbol Generator Symbol Generator

Fixed Structure
Automata

Under Training

Fig. 1. Training Scheme

Formally, the Fixed Structure Automata can be defined as

a quintuple

G = {Q, Λ, Σ, δ, γ} (5)

where,

1) Q is the finite set of states of the automaton, i.e. Q =
{q1, q2, ..., qf}.

2) Λ = {λ1, λ2, ..., λm}, is the set of input alphabets. The

input symbols to the Fixed Structure Automata have a

one-to-one correspondence to the quantized values of

input to the dynamical system.

3) Σ = {σ1, σ2, ..., σn} is the set of output alphabets,

where the output symbols are one-to-one with the

quantized values of output from the dynamical system.

4) δ : Q × Λ → Q is the state transition function

which maps the current state into the next state on

receiving the input λ. The transition function can also

be stochastic in which case,

δ : Q× Λ → Pr{Q} (6)

5) γ : Q → Σ is the output generation function which

determines the output symbol from the current state.

In its full generality, γ can be stochastic as well, i.e.

γ : Q → Pr{Σ} (7)

Time series sensor data (possibly multi-dimensional) are

obtained from the input and output data streams of the

dynamical system D0 under nominal condition. Let U =
{u1, u2, ...} denote the discretized input data sequence,

where uk ∈ Λ. Similarly let Y = {y1, y2, ...}, yk ∈
Σ denote the discretized output sequence. A D-Markov

2793



� �

00 00 01 11 10 00 00 01 11

� � �� � ��

Fig. 2. State Progression for the example Problem

machine is next constructed, with states defined by symbol

blocks of length D from Y . There are many interesting

issues associated with this process of construction of a D-

Markov machine from time series data. Different methods of

partitioning, the effects of the depth D on the performance of

the machine, issues regarding stopping rule for appropriate

data length, and various pre-processing techniques have been

studied in details and have been reported in recent literature.

The reader is referred to references [2] and [3] for an in-

depth description of the procedure.

The transition function used in the current methodology

has been designed to be stochastic. δ : Q × Λ → Pr{Q}
gives the probability distribution of transition from state

qi to {q1, q2, .., qf} on receiving an input λj . A grammar

constructed in this way has the advantage over the context

sensitive grammar described in [12] in that, the number of

production rules may become inconveniently large in case of

a context sensitive grammar.

However, the function γ : Q → Σ, which maps the

current state qi to the current output symbol σi is com-

pletely deterministic. This is really an artifact of the state

construction procedure [2]. For example, if the depth of the

D-Markov process is selected as 2, then qn = ynyn−1. States,

constructed in this manner has two interesting aspects. The

first, as mentioned, is that it leads to a very natural way

of selecting the output generating function γ. Therefore,

effectively the Fixed Structure Automata can be considered

as a quadruple instead of a quintuple. Another more impor-

tant aspect is, this structure is very similar to the classical

structure of dynamical systems and thus quite intuitive. For

example for a 2nd order system at an instant n the next

output yn+1 depends on the current and the past output yn

and yn−1 respectively and on the current input un.

yn+1 = f(yn, yn−1, un) (8)

This corresponds to the Fixed Structure Automata of depth

2 where the state transition can be written as

σn+1σn = δ(σnσn−1, λn) (9)

This completes the structure of the automaton which is

trained to model a component of a complex system.

C. Training Scheme

The training scheme shown in Fig. 1 explains the identifi-

cation of the state transition function δ from the input-output

symbol sequences obtained from experiment on the system

while it is under nominal condition.

It is assumed that inputs and outputs are time-

synchronized. The state transition function δ can be expanded

into two dimensional matrices δλi , indexed by the input

variable alphabets. That means

δ = {δλ1 , δλ2 , ..., δλm} (10)

where δλi : qj × λi → Pr{Q} maps the current state

and input to the probability distribution over all possible

states. The algorithm for estimating the matrices δλi is

straightforward and is illustrated next with a simple example.

Suppose, a dynamical system is characterized as following:

Λ = {α, β} Σ = {0, 1}

U = ααβααβααβ...

Y = 000110001100011...

(11)

With depth D = 2

Q = {00, 01, 10, 11} (12)

The state progression is shown in Fig. 2. Hence in this

case, δ = {δα, δβ}, where the state transition matrices

corresponding to α and β are given in Tables I and II

respectively.

TABLE I

STATE TRANSITION

PROBABILITIES FOR δα

00 01 10 11

00 0.5 0.5 0 0

01 0 0 0 1

10 1 0 0 0

11 0 0 1 0

TABLE II

STATE TRANSITION

PROBABILITIES FOR δβ

00 01 10 11

00 0.5 0.5 0 0

01 0 0 0 1

10 1 0 0 0

11 0 0 1 0

The training algorithm has to make sure that the probabil-

ity values of δi converge. The convergence depends on the

length of the input-output symbol sequences. The next step of

training algorithm is to generate the grammar Gk for different

input-output combinations. For highly nonlinear systems it

goes without saying, that the response of the dynamical

system to input sequences from the entire range of possible

input sequences cannot be covered by a single representative

grammar. Instead, the space of possible input sequences has

to be partitioned into a finite number of disjoint equivalence

classes, such that, their union spans the entire range of

possible inputs, i.e. if the set of all possible input sequences

is denoted by U , and the different equivalence classes are

denoted by ΔU i, then

U =

R⋃

i=1

ΔU i (13)

In the training phase, it has to be ensured that the gram-

mar G is trained with sufficient input data belonging to a

particular equivalence class. This is the so-called coverage
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problem. Suppose the grammar is trained with K input data

sets {U1,U2, ...,UK} where Uk ∈ ΔUj ∀k = 1, ...,K

and for some j ∈ {1, ..., R}. Let the identified grammar in

each case be denoted as Gk. Then the problem reduces to

finding a grammar G = F
(
Gk

)
which is optimal with respect

to the actual input being fed to the system.

D. Anomaly Detection Scheme

Figure 3 gives a schematic representation of the anomaly

detection philosophy being adopted for the present problem.

Input and output time series data from the actual plant is

discretized to form symbol sequences and is fed to the

trained fixed structure automaton. The discretization should

be performed using the same partitioning as was done during

the training phase.

Before describing the actual anomaly detection methodol-

ogy, it should be noted that, the FSA uses the output from

the actual system in addition to the input, and hence cannot

serve as an independent ”system identification” procedure in

the classical sense of the term. The automata can serve as

a system emulator only when the state transition function δ

is fully deterministic, i.e. given the current state qj and the

current input symbol λi,

δλi(qj , qk) = 1 for one and only one k (14)

It can be shown that by a proper redefinition of partitioning

and depth used for the construction of states, any stochastic

automaton can be converted to a deterministic finite state

automata [11]. But that transformation inevitably leads to

state explosion and uneconomical growth in the computa-

tional complexity.

Instead, in the current scheme, the state transition proba-

bility vectors πλi
qj

, which are the rows of the state transition

matrix δ, serve as feature vectors, and are used for the

purpose of anomaly detection. An extremely convenient fea-

ture of using state transition probabilities as feature vectors,

and using stochastic methods to define distances between

nominal and off-nominal behavior of plants is that this

technique is very robust to noise. Also phase differences,

which might be an important issue in case of point by point

comparison, are easily handled with this technique, since

steady state long term behavior is considered for forming

the probability vectors.

u yActual
System

Symbol Generator Symbol Generator

Fixed Structure
Automata (Trained
by nominal system)

�

�

p~

p

Fig. 3. General Anomaly Detection Scheme

In the present study, a novel intuitive Pseudo-Learning

Technique of utilizing the stochastic state transition function

δ is proposed, for the purpose of Anomaly Detection. In

this method, the actual state transitions inside the fixed-

structure automaton during the anomaly detection phase

occur according to the output symbol sequence obtained from

the actual system, but at each instance of state transition,

i.e. at every instant the trained automaton produces a State

Transition Probability vector πn [11], which is characteristic

of the nominal system.

For example, let the dynamic system described in Eq. (11)

depart from its nominal condition, and produce an output

given by

Y = 111001110011100... (15)

So, the output states are as shown in Fig. 4. The output

probability vectors πn are the instantaneous predicted state

transition probabilities of the nominal system, also shown in

the figure.

It may be noted, that this technique conforms to the

classical notion about dynamical systems because of the

method of construction of the states. For a discrete time 2nd

order system it can be written that

yn = f(yn−1, yn−2, un) (16)

where y and u are output and input respectively. In the

present scenario, since the current state contains information

about the output in the last two instants, the pattern vector πn,

produced by the trained automaton, is characteristic of the

nominal behavior of the plant given the past history of input

and output. The current (possibly off-nominal) condition of

the plant is characterized by another state probability vector

π̃n. This is defined for the actual system output at an instant

n, for which only one element of the vector will be 1, rest are

zeros. The next step is to use the sequences of instantaneous

State Probability vectors {πn} and {π̃n} obtained at each

time instant, to construct an anomaly measure. Under the

assumption of ergodicity of the system, a pattern can be

generated from frequency count of the state visits over a wide

time window in case of symbolic time series analysis [2]. The

equivalent process in the present case would be calculation of

mean State Probability vectors p and p̃ from the collections

{π1,π2, ...,πn} and {π̃1, π̃2, ..., π̃n} respectively over time

instants 1,2,...,n. A suitable distance function d(·, ·) is chosen

for measuring the distance between the vectors p and p̃.

Anomaly measure μ is defined as the distance

μ = d(p, p̃)

In the Learning Automata literature, learning [11] is done

by continuous feedback from environment to the automaton

at each time instant. Here also similar feedback technique is

taken but not for learning or changing the structure or internal

functions of the finite state machine, but only to provide

actual history of past outputs to the nominal automaton based

model. Thus the technique can be called a Pseudo-Learning

Technique.

III. ACTIVE ELECTRONIC SYSTEM TEST APPARATUS

The proposed concept of anomaly detection is validated

on a test apparatus of an active electronic system [13] that
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Fig. 4. Anomaly Detection for the example Problem

simulates a second-order forced differential equation, namely

the Duffing equation with cubic nonlinearity.

d2x(t)

dt2
+ β

dx

dt
+ x(t) + x3(t) = A cos(ωt) (17)

The dissipation parameter β is the slowly varying parameter

in this experiment. β = 0.1 represents the nominal condition.

The parameter β was slowly varied over time from 0.1 to

0.29 by increments of 0.02. With amplitude A = 22.0 and

ω = 5.0, a sharp change in the behavior is noticed around

β = 0.29, possibly due to bifurcation. Figure 5 depicts

the phase plots for select values of β for different forcing

conditions, which will be explained in detail in the next

subsection. One of the objectives, apart from estimation of

parameter β, is to detect the onset of this change in behavior

as early as possible without largely getting affected by the

different forcing conditions.

A. Sensitivity to Input Conditions

The Duffing equation, being an externally stimulated non-

linear differential equation is extremely well suited to study

the effects of input variation on the system trajectory. In order

to study the relative effect of input and system parameter

variation, the Duffing Equation is excited by a series of

sinusoidals. Figure 5 illustrates the phase space trajectory

for three different input frequencies, namely ω = 1.33, 1.67
and 5.0. For each value of ω, the trajectories corresponding

to three values of β are displayed, namely β = 1.0, 1.77 and

3.5. It may be observed that changing the input frequency,

even by a slight amount, (from 1.33 to 1.67) brings about

a radical change in the phase space trajectory. Hence, it is

imperative to partition the input space into equivalent classes,

(for example, into different ranges of frequency) and train

the pseudo-identification algorithm for each class of inputs.

The challenging task is to give an accurate estimate of the

parameter β when the input varies within any particular

equivalence class.

IV. RESULTS AND DISCUSSION

The first step in the forward problem is selection of the

wavelet basis. Wavelet ‘db1’ [14] is chosen as the wavelet

basis. The next step is selection of scales. Following the

procedure described in [3], the scales are selected to be

370.99, and 125.61. The wavelet coefficients are obtained

at these scales and stacked to form the scale series. The

alphabet size is chosen to be |Σ| = 8. The maximum entropy

partition is obtained with scale series data corresponding

to the nominal condition at β = 0.1. The scale series is

then converted to symbols based on the partition. With the

selection of Depth D = 1, the number of states in the D-

Markov machine becomes |Σ|D = 8.

Using the above partition, symbol sequences are generated

from all other scale series data sets. The anomaly detection

procedure described in section II-B is applied next. The angle

measure, the 1-norm and the 2-norm are calculated. The

profile of the angle measure, the 1-Norm and the 2-norm

for one experiment, is shown in Fig. 6.

Next, a series of K data is generated for the purpose of

training by providing the nominal system a series of input

with different frequency contents. However, it is ensured that

all the training inputs are within the same equivalence class

for which the automata is being trained. After the training

is completed, a set of grammars Gk, is obtained, where k ∈
{1, ...,K}. For the purpose of anomaly detection the last step

is to formulate a new grammar G = F(Gk). The method

for finding the optimum grammar is still under investigation

and has been reported in the future work section. At present,

results are provided with

G =
1

K

K∑

k=1

Gk (18)

The system is excited with sinusoidal inputs with frequencies

between 4.9 and 5.1 radians in steps of 0.5 radians. The

trained automata is then used for anomaly detection when the
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ẏ

−5 0 5
−10

−5 

0 

5 

10 

position y

ω=1.33;β=0.35

v
el

o
ci

ty
ẏ
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ẏ

−5 0 5
−10 

−5 

0 

5 

10 

position y

ω=5;β=0.35

v
el

o
ci

ty
ẏ

Fig. 5. Duffing System Phase Plots
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system is supplied with a sinusoidal input having frequency

ω = 5.05 radians. As expected (see Fig. 7), there is some

‘residual anomaly’, in the sense that the plots indicate some

anomaly even when the system is healthy, that is β = 0.1.
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Fig. 6. A Typical Plot of Deviation Measure for the Duffing System
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Fig. 7. Plots of Deviation Measure for the Duffing System when excited
by an unknown input

The remedy for this problem is to calculate the anomaly

measures predicted by the calculated grammar G by running

it on the nominal plant output against different training inputs

and subtract the upper bound of this ”residue anomaly” from

the actual anomaly measure obtained during monitoring the

system. This provides a conservative estimate of anomaly in

the system, which may be used for health prediction.

V. SUMMARY, CONCLUSIONS AND FUTURE WORK

In this paper, some of the critical and practical is-

sues regarding the problem of health monitoring of multi-

component human-engineered systems have been discussed,

and a syntactic method has been proposed. The two primary

features of this proposed concept are: (i) Symbolic identifi-

cation and (ii) Pseudo-learning technique.

The reported work is a step toward building a real-

time data-driven tool for estimation of parametric conditions

in nonlinear dynamical systems. There are many potential

applications of this tool, such as real time anomaly detection

and early prognosis of failures in human-engineered systems.

However, further theoretical and experimental research is

necessary before its application in industry. For example,

efficacy of an health monitoring technique can be measured

by:

• Quality of the anomaly measure curve,

• Ability to capture the features of a nominal system at

all points in an equivalence class of inputs,

• Ability to detect and predict significant changes, when

the system is even slightly off-nominal.

All these attributes depend, to a great extent, on the

method of partitioning the space of time series data. In the

present work, a marginal maximum entropy partitioning [15]

for multi-dimensional sensor information has been applied.

Here, the shape of the cells were chosen as hypercubes, and

the data sets were partitioned along each axis separately,

using the principle of maximum entropy.

While there are many other research issues that need to be

addressed, the following research topics are being currently

pursued.

• Development of a multi-dimensional partitioning for

a MIMO system, which should be computationally

inexpensive.

• Constructing an optimal grammar G from the set of

grammars obtained in the identification part of the prob-

lem. The optimization should be capable of resolving

the issue of Residual anomaly.
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