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Abstract— In this paper, a generalized rate dependent
Prandtl-Ishlinskii model is proposed to characterize both the
symmetric and asymmetric input-output hysteresis, as a func-
tion of the time rate of input. The model is realized upon
formulation and integration of a generalized rate dependent
play operator capable of generating minor as well as major
hysteresis loops with varying slopes of ascending and descending
input-output curves. A dynamic threshold function is proposed
to enhance the prediction of rate-dependent hysteresis nonlin-
earities. The validity of the generalized model is demonstrated
by comparing its displacement responses with the measured
symmetric and asymmetric responses obtained for piezoceramic
and magnetostrictive actuators under input frequencies of 50-
200 Hz and 10-50 Hz, respectively. The results show the
capability of the proposed model to characterize asymmetric
and symmetric rate dependent hysteresis nonlinearities in smart
actuators.1

I. INTRODUCTION

Hysteresis a nonlinear phenomenon that appears in various

systems including: ferromagnetic materials, mechanical ac-

tuators, and electronic relay circuits. Smart materials based

actuators, such as piezoceramic actuators, magnetostrictive

actuators, and shape memory alloys, invariably show hys-

teresis effects [1-4]. The non-differentiable and often un-

known hysteresis properties of actuators are known to cause

inaccuracies and oscillations in the system responses that

may lead to instability of the closed loop system [5]. A

number of physical and phenomological models, have been

developed to describe hysteresis of actuators and materials

[6-9]. The phenomological models such as Preisach model

[1], Krasnosel’skii-Pokrovskii operator [10] and Prandtl-

Ishlinskii model [2,3] have been widely applied to describe

hysteresis. These models have also been used to design

controllers for compensating hysteresis effects [10-13]. How-

ever, these models have been mostly applied to describe rate

independent hysteresis effects, assuming negligible effect of

the rate of change of input.

Smart actuators, in general, exhibit rate dependent hys-

teresis, with either symmetry or asymmetry about the input

and/or the output axis [14-16]. As an example, on the basis
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laboratory measurements, it has been shown that hysteresis

loops in magentostrictive actuators is highly asymmetric and

the output displacement is strongly rate dependent [15,16].

While the reported data for various piezoceramic actuators

under excitation of varying magnitudes and frequencies

suggest nearly rate dependent symmetric major and minor

hysteresis loops [17,18].

A dynamic density function has been proposed to predict

rate dependent hysteresis, when integrated to the classical

phenomenological operator-based hysteresis models. Mayer-

goyz [19] proposed a dynamic Preisach model by adding

the time rate of the output in the density function to predict

rate dependent hysteresis effects. A dynamical model cou-

pled with the Preisach operator was proposed by Tan and

Baras [16] in an attempt to characterize the rate dependent

hysteresis effects in a magnetostrictive actuator. However,

the application of the Preisach model may be limited for

real time inverse controller design, since the model is not

analytically invertible.

Prandtl-Ishlinskii model which is a subclass of the

Preisach model is analytically invertible. Owing the symmet-

ric nature of the classic play operator, the Prandtl-Ishlinskii

model of classical density function can characterize symmet-

ric hysteresis properties. Al Janaideh et al. [20] proposed a

rate dependent play operator and dynamic density function

to characterize rate dependent hysteresis of a piezoceramic

actuator over a wide range of excitation frequencies.

As an extension of the work in [20], in this study, a gen-

eralized rate dependent play operator is proposed to describe

the symmetry as well as asymmetry hysteresis properties as

a function of the time rate of the input. The validity of

the proposed model is demonstrated using measured data

acquired for piezoceramic and magnetostrictive actuators,

which shows symmetric and asymmetric rate dependent

hysteresis effects, respectively.

II. PLAY OPERATOR BASED PRANDTL-ISHLINSKII MODEL

A. Classical Prandtl-Ishlinskii model

Prandtl-Ishlinskii model is a phenomenological hysteresis

model that integrates play with a density function to char-

acterize rate independent hysteresis nonlinearities [2]. The

play operator is continuous and rate independent hysteresis

operator, relating the output and input. The play operator has

been described by the motion of a piston within a cylinder of

length 2r where the instantaneous position of center of the

piston is represented by coordinate v, and cylinder position

by w [2].
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Fig. 1. Play hysteresis operator.

For any input v(t) ∈ Cm[0, tE ], the play operator is

defined by:

Fr[v](0) = fr(v(0), 0) = w(0), (1)

Fr[v](t) = fr(v(t), Fr[v](ti));

ti < t ≤ ti+1 and 0 ≤ i ≤ N − 1

fr(v, w) = max(v − r,min(v + r, w))

where 0 = t0 < t1 < ..... < tN = tE is a partition of [0, tE ]
such that the function v is monotone on each of the sub-

intervals [ti, ti+1]. The argument of the operator is written in

square brackets to indicate the functional dependence, since

it maps a function to another function. Due to the nature of

the play operator, the above discussions are based on v(t) ∈
Cm[0, tE ] of continuous and piecewise monotone functions.

However, the play operator can be extended to space C[0, tE ]
of continuous functions [3].

The Prandtl-Ishlinskii model utilizes the play operator

Fr[v](t) to describe relationship between output yp and input

v with a positive density function p(r) and a positive constant

q, such that [3]:

yP (t) = qv(t) +

R
∫

0

p(r)Fr[v, w](t)dr (2)

The density function p(r) is identified from experimental

data. Prandtl-Ishlinskii model with the density function maps

C[to,∞) into C[to,∞). In other words, Lipschitz continuous

inputs will yield Lipschitz continuous outputs [4]. How-

ever, this hysteresis model produces rate independent and

symmetric hysteresis loops. Prandtl-Ishlinskii model can be

represented with N play operators as:

yP (t) = qv(t) +
N

∑

j=1

p(rj)Frj
[v, w](t) (3)

B. Rate dependent Prandtl-Ishlinskii model

The fundamental properties of the play operator can be

effectively applied to describe the observed rate dependent

phenomenon. Particularly, the variations in hysteresis and

output amplitude could be accurately described through

appropriate selection of the threshold r. The hysteresis of

the play is directly related to the threshold r, as evident

from the definition of the play operator. An increase in the

threshold r yields larger width of the hysteresis operator.

Figure 2 illustrates the variations in the play operator output

by considering different values of r under a harmonic input

v(t) = 10 sin(2t) and initial value F (v(0), 0) = 0. The

results clearly show that the width of the hysteresis loop

increases with an increase in threshold r. Moreover, the

peak-to-peak output of the operator decreases with increasing

r value. These properties of the play operator conform

with those reported for the responses of smart actuators

[6], and observed experimentally in this study under inputs

at different frequencies. A rate dependent hysteresis play

operator may thus be realized using a dynamic threshold

r̄ = r(v̇) as a function of the time rate of input, such that:

Fr̄(v(t)) = fr̄(v(t), Fr̄(v(ti))) (4)

for ti < t ≤ ti+1 and 0 ≤ i ≤ N − 1

where fr̄(v, w) = max(v − r̄, min(v + r̄, w));

and Fr̄(v(0)) = fr̄(v(0), 0) = w(0).

The rate dependent Prandtl-Ishlinskii model is subse-

quently derived by using the rate dependent play hysteresis

operator together with density function p(r̄) and positive

constant q as:

yP̄ (t) = qv(t) +
N

∑

j=1

p(r̄j)Fr̄j
[v, w](t) (5)

The above model can be applied to predict the rate

dependent symmetric hysteresis properties of a PZT actuator.

Alternatively, the generalized play operator could be utilized

to realize asymmetric a dynamic Prandtl-Ishlinskii model

with asymmetric input-output relationships.
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Fig. 2. Influence of threshold r on the output of the play operator, v(t) =
10 sin(2t).
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III. GENERALIZED PLAY OPERATOR BASED

PRANDTL-ISHLINSKII HYSTERESIS MODEL

The generalized play operator, as shown in Fig. 3, is a

nonlinear play operator. As the input v increases, the output

w of the operator increases along the curve γl. A decreasing

input v causes the output w to decrease along the curve γr,

as shown in Fig. 3. The minor loops of the input v and the

output w are bounded by the limiting curves γl and γr, which

are continuous functions with γl ≤ γr. For a given input v(t),
Lipschitz-continuity of the generalized play operator can be

ensured if the functions γl and γr are Lipschitz continuous

[2].

Fig. 3. Generalized play operator.

Analytically, the generalized play operator for any input

v(t) ∈ Cm[0, tE ] is defined by [3]:

Fγ [v](0) = fγ (v(0), 0) = w(0); (6)

Fγ [v](t) = fγ (v(t), Fγ [v](ti)) ;

for ti < t ≤ ti+1 and 0 ≤ i ≤ N − 1

where, fγ(v, w) = max (γl(v) − r,min(γr(v) + r, w))

The generalized Prandtl-Ishlinskii model is subsequently

formulated using the generalized play operator Fγ [v](t) as:

yPγ
(t) = qv(t) +

N
∑

j=1

p(rj)Fγj
[v, w](t) (7)

In a similar manner, the generalized play hysteresis oper-

ator can be modified using the dynamic threshold r̄ = r(v̇)
and integrated in the generalized play operator. By this

modification, the symmetry property of the rate dependent

play hysteresis operator is relaxed. The generalized rate

dependent play operator could be expressed as:

Fγ̄ [v](0) = fγ̄ (γ(v(0), 0) = w(0), (8)

Fγ̄ [v](t) = fγ̄ (γ(v(t)), Fγ̄ [v](ti)) ,

for ti < t ≤ ti+1 and 0 ≤ i ≤ N − 1

fγ̄(v, w) = max (γl(v) − r̄, min(γr(v) + r̄, w))

By integrating the generalized rate dependent play oper-

ator and the density function together, the generalized rate

dependent Prandtl-Ishlinskii model can be expressed as:

yP̄γ
(t) = qv(t) +

N
∑

j=1

p(r̄j)Fγ̄j
[v, w](t) (9)

IV. SIMULATION RESULTS

Reported experimental results for different actuators have

established that hysteresis is rate dependent symmetric or

asymmetric. It has been shown that hysteresis in magne-

tostrictive actuators is highly asymmetric and the output

displacement is strongly rate dependent beyond certain fre-

quencies [12]. Alternatively, the data reported for various

piezoceramic actuators under excitation of varying magni-

tudes and frequencies suggest nearly symmetric major as

well as minor hysteresis loops.

As shown in the previous section, the output of the rate

dependent Prandtl-Ishlinskii model is directly relates to rate

dependent play operator. While the output of the generalized

Prandtl-Ishlinskii model depends on the generalized rate

dependent play operator. The Prandtl-Ishlinskii model is ana-

lyzed using rate dependent play operator and generalized rate

dependent play operator. In order to illustrate its influence

on the outputs under inputs at varying rates, the simulations

are performed under four different input frequencies (1, 2, 3

and 4 Hz) for the two rate dependent play operators to study

the influence on the output of the Prandtl-Ishlinskii models.

A dynamic threshold of the following form is chosen:

r̄ = ε1 + ε2 |v̇| + ε3

√

|v̇| (10)

An input signal of the form: v(t) = 3 + 10 sin(2πft) +
5 sin(3πft) is considered to evaluate minor as well as

major hysteresis loops. The chosen simulation parameters

are: tE=6/f , N=301, ∆t=0.02/f , w0 = 0, and q=0.457. The

parameters for the proposed threshold, described in (12), are

taken as: ε1 = 1.4, ε2 = 0.0545 and ε3 = 1.0601. To

relax the effect of the density function, a constant density

function p(r̄) = 0.01 in this simulation is selected for the two

rate dependent Prandtl-Ishlinskii models. The generalized

rate dependent play operator functions are selected as:γr =
3.4v − 1 and γl = 6v + 1.233.

Figures 4 and 5 illustrate the simulation results at different

excitation frequencies of Prandtl-Ishlinskii model of rate

dependent play operator and generalized rate dependent PI

model of generalized rate dependent play operator, respec-

tively. The results show that as the frequency of the input

increases, the hysteresis increases, and the amplitude of the

output decreases for major and minor hysteresis loops in

both models. The results strongly show that the hysteresis

loops of the generalized rate dependent Prandtl-Ishlinskii

model of the generalized rate dependent play operator are

asymmetric while the hysteresis loops of the rate dependent

Prandtl-Ishlinskii model are symmetric. The results clearly

demonstrate that the generalized rate dependent play operator

relaxes the symmetry of the rate dependent Prandtl-Ishlinskii

model output.
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Fig. 4. Simulation results attained from the rate dependent Prandtl-
Ishlinskii model of rate dependent play operator at different excitation
frequencies.
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Fig. 5. Simulation results attained from the generalized rate dependent
Prandtl-Ishlinskii model of rate dependent play operator at different excita-
tion frequencies.

V. PARAMETER IDENTIFICATION

Experimental results of rate dependent asymmetric and

symmetric hysteresis loops are used to identify the parame-

ters of the generalized Prandtl-Ishlinskii model. In this paper,

experimental results of magnetostrictive and piezoceramic

actuators are used to show the capability of the model

to characterize rate dependent symmetric and asymmetric

hysteresis loops. On the basis of the observed hysteresis of

magnetostrictive actuator, the generalized play operator is

proposed as:

fγ̄(v, w) = max (a1v + b1 − r̄, min(a2v + b2 + r̄, w))
(11)

where a1 > 0, a2 > 0, b1, and b2 are constants. The dynamic

threshold is expressed as:

r̄ = α

z
∏

l=1

ln (βl + λl |v̇(t)|
εl) (12)

where α, λl, βl ≥ 1 and εl ≥ 1 are positive constants. The

order of the rate dependent threshold is determined by the

positive integer z. This hysteresis operator can be applied

to characterize the rate dependent asymmetric hysteresis

effects of smart actuators. In this paper, a second order

dynamic threshold is proposed (z = 2) to characterize rate

dependent hysteresis. The density function of the generalized

rate dependent Prandtl-Ishlinskii model is chosen as:

p(r̄) = ρe−τr̄ (13)

where ρ > 0 and τ are constants. The density function and

the functions γl = a1v + b1 and γr = a2v + b2 of the

generalized play operator are not unique, they depend upon

the nature of hysteresis of particular material or actuator.

The model parameters are identified through minimization

of the error sum function given by:

J =

n1
∑

i=1

n2
∑

j=1

n3
∑

k=1

(

yP̄γ
− ym

)2

(14)

where yP̄γ
is the displacement response of the generalized

Prandtl-Ishlinskii model corresponding to a particular ex-

citation frequency, and ym is the measured displacement

under the same excitation frequency. The error function

is constructed through summation of squared errors over

a range of input frequencies and amplitudes, denoted by

j (j = 1 . . . n2) and k (k = 1 . . . n3), respectively. The index

i (i = 1 . . . n1) refers to the number of data points considered

to compute the error function J for one complete hysteresis

loop. For the magnetostrictive actuator, one level of input

current amplitude of 0.8 A with a bias of 0.1 A (n3 =
1) could be considered, since the data was available only

under this excitation. Four different excitation frequencies

(n2 = 3), namely, 10, 20, and 50 Hz were considered,

while a total of 60 data points (n1 = 60) were available

for each hysteresis loop. For the piezoceramic actuator, the

input voltage amplitude was limited to 40 V (n3 = 1), while

a total of four different frequencies of 50, 100, and 200

Hz(n2 = 3) were considered with a total of 50 data points

(n1 = 50) for each hysteresis loop. The error minimization

is performed using the MATLAB constrained optimization

toolbox. The generalized rate dependent Prandtl-Ishlinskii

model parameters which identified through the solution of

the minimization problem are shown in Table 1.

VI. MODEL VALIDATION

Figure 6 illustrates comparison of results attained from

the generalized Prandtl-Ishlinskii model of asymmetric rate

dependent play operator with measured data of magne-

tostrictive actuator at three different frequencies (10, 20,

and 50 Hz). The results show the capability of the model

to characterize rate dependent asymmetric hysteresis loops

of the actuator. The results show that the hysteresis of

the measured and model results show increasing hysteresis

and decreasing output amplitude with increasing excitation

frequency of the input voltage. Figure 7 shows comparison

of between the time series of the measured and predicted

displacement of the model at different excitation frequencies.

The time series of the error under excitation frequencies are

shown in Fig. 8. The results suggest peak error of the rate

dependent model near 5 µm. In other words, the error of

the rate dependent model is approximately unaffected as the

excitation frequency of the input current increases.
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Fig. 6. Comparisons of measured responses of magnetostrictive actuator
with the results derived from the generalized rate dependent rate-dependent
model under sinusoidal waveform inputs at 10 to 50 Hz different excitation
frequencies ( —measured ;—model).

To show the capability of the model to characterize rate

dependent symmetric hysteresis, a comparison between the

results of generalized Prandtl-Ishlinskii model and the mea-

sured data of piezoceramic actuator at different excitation

frequencies of 50, 100, and 200 Hz are carried out in Fig.

9. Time series of displacement responses of the generalized

rate dependent Prandtl-Ishlinskii model are further compared

with the measured data obtained in Fig. 10. Figure 11 shows

the time-series of the model and measured responses. The

results suggest very good agreements between the predicted

and measured displacement responses irrespective of the

excitation frequency, while the peak displacement error, as

shown in Fig. 11 is approximately 5 µm.

Parameters Magnetostrictive actuator Piezoceramic actuator

α 4.203 2.493

β1 1.199 1.090

β2 1.201 1.020

λ1 0.0474 21 × 10−4

λ2 0.0036 1.0387 × 10−4

ρ 0.0055 0.0050

τ - 0.08714 - 0.0173

a1 20.1916 0.7614

a2 22.0611 0.7223

b1 5.3072 1.0882

b2 2.4484 1.3315

q 2.6251 0.1028

TABLE I

IDENTIFIED PARAMETERS OF THE GENERALIZED RATE DEPENDENT

PRANDTL-ISHLINSKII MODEL.

VII. CONCLUSIONS

A generalized rate dependent play operator is proposed

for formulating the Prandtl-Ishlinskii model capable of pre-

dicting symmetric and asymmetric rate dependent hysteresis

nonlinearities. A dynamic threshold function is further pro-

posed and integrated to the model to characterize asymmetric

and symmetric rate dependent hysteresis properties. By way

of an example, it is shown that the generalized play operator

permits for relaxation of the slopes of the major as well as
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Fig. 7. Time series of measured and predicted displacement of magne-
tostrictive responses at different excitation frequencies ( · · ·measured ;—
model).
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Fig. 8. Time series of error in measured and model displacement of
magnetostrictive actuator responses at different excitation frequencies.
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Fig. 10. Time series of measured and model displacement of piezoceramic
actuator responses at different excitation frequencies( · · ·measured; —
model)
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Fig. 11. Time series of error in measured and model displacement of
piezoceramic actuator responses at different excitation frequencies.

minor hysteresis loops, and can thus characterize symmetric

as well asymmetric input-output relations. The effectiveness

of the models is demonstrated by comparing the model

responses with the measured symmetric and asymmetric

hysteresis loops of the piezoceramic and magnetostrictive

actuators, respectively, under different excitation frequencies.

From the results, it can be concluded that the Prandtl-

Ishlinskii model comprising the generalized rate dependent

play operator together with a density function can effectively

predict the symmetric as well as asymmetric hysteresis

properties of the smart actuators and materials under different

rates of inputs.
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