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Abstract— Quadratic systems play an important role in the
modeling of a wide class of nonlinear processes (electrical,
robotic, biological, etc.). For such systems it is of mandatory
importance not only to determine whether the origin of the
state space is locally asymptotically stable, but also to ensure
that the operative range is included into the convergence
region of the equilibrium. Based on this observation, this paper
considers the following problem: given the zero equilibrium
point of a nonlinear quadratic system, assumed to be locally
asymptotically stable, and a certain polytope in the state space
containing the origin, determine whether this polytope belongs
to the region of attraction of the equilibrium. The proposed
approach is based on polyhedral Lyapunov functions, rather
than on the classical quadratic Lyapunov functions. An exam-
ple shows that our methodology may return less conservative
results than those obtainable with previous approaches.

I. INTRODUCTION

Nonlinear quadratic systems provide an appropriate tool

for modeling phenomena in a wide range of applications

both in engineering (electric power systems [1], chemical

reactors [2], and robots [3]), and in other areas such as

biology, ecology, economics and meteorology [4].

For example, in the field of biology, the study of the

behavior of quadratic systems is motivated by the fact

that the interactions between different (biochemical and

biological) species, e.g. in enzymatic reaction kinetics [5]

or in Lotka–Volterra prey predator models [6], [7], are

described by a quadratic law.

In such applications, it is relevant to determine the set of

initial conditions around an equilibrium point which lead the

systems trajectories to the equilibrium itself. This requires

to obtain an estimate of the domain of attraction (DA) of

the equilibrium.

The study of the DA of equilibrium points of nonlinear

systems has a long history in the mathematical literature

and an increasing interest in the field of systems theory.

The main results, which are settled in the Lyapunov theory

of stability, approximate the domain of attraction through a

level curve of a given Lyapunov function.

In the current literature, quadratic Lyapunov functions,

which allow to compute an ellipsoidal estimate of the DA

of nonlinear (quadratic, cubic and polynomial) systems,
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are mainly used (e.g. [8], [9], [10], [11], [12]). Quadratic

Lyapunov functions may provide conservative results, es-

pecially in the case of a priori choice of the function

itself. Some optimization procedures are proposed in order

to improve the estimate. In particular, in [9], a quadratic

Lyapunov function is computed in order to maximize the

volume of the estimated DA through the solution of a

non-convex optimization problem. In [13], [10], a convex

optimization procedure based on Linear Matrix Inequalities

(LMIs) allows to compute a sub-optimal candidate for the

quadratic Lyapunov function, by using a gradient search

algorithm. This approach is hardly treatable from the nu-

merical point of view, especially for the case of non-odd

polynomial systems (such as quadratic systems).

Since the exact determination of the whole DA of the

equilibrium point of a given quadratic system is a difficult

or even impossible task (except for very simple cases), in

the recent papers [14] and [15] an approach is proposed to

solve the more practical problem of determining whether an

assigned polytope P containing the origin of the state space

belongs to the DA of the equilibrium. Polytopes, and more

specifically boxes, naturally arise whenever the operative

range around the equilibrium point is given in terms of

admissible intervals of variation for each state variable.

In the same context of [14] and [15], it is expected

that the use of polyhedral Lyapunov functions [16], [17],

[18], [19] might lead to less conservative results. Indeed

in [14], [15], the proposed approach requires to cover the

given polytope P by an ellipse and then establish whether

the ellipse belongs to the DA; this follows from the fact

that the level curves of a quadratic function are ellipses.

Conversely, the level curves of a polyhedral function are

polytopes, and therefore they better fit the set P . To this

regard, a numerical example, provided at the end of the

paper, illustrates the goodness of the proposed approach

with respect to the previous literature.

The paper is organized as follows. In Section II the

problem we deal with in the paper is precisely stated and

some preliminary definitions and results about polytopes

are provided. Also, a novel procedure to pass from the

description of a polytope as convex hull of a finite set of

points to the description of the same polytope through a

full row rank matrix, is given. This procedure is used in

Section III to derive the main result of the paper, namely

a sufficient condition guaranteeing that a given polytope P
belongs to the DA of a given quadratic system. In Section

IV a numerical example shows the goodness of the proposed
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technique over existing methods. Finally some concluding

remarks are given in section V.

II. PROBLEM STATEMENT AND PRELIMINARIES

In this paper we consider quadratic systems, defined as

ẋ = Ax + B(x) , (1)

where x ∈ R
n is the system state and

B(x) =











xT B1x
xT B2x

...

xT Bnx











(2)

with Bi ∈ R
n×n, i = 1, . . . , n.

If xe 6= 0 is an equilibrium point for system (1), then

Axe + B(xe) = 0 . (3)

From (3), by letting

z = x − xe , (4)

the resulting system

ż =











A + 2











xT
e B1

xT
e B2

...

xT
e Bn





















z + B(z) + Axe + B(xe)

=











A + 2











xT
e B1

xT
e B2

...

xT
e Bn





















z + B(z) , (5)

is a quadratic one in form (1).

Since we showed above that zero equilibrium point of

the transformed system (5) corresponds to the equilibrium

x = xe of system (1), without loss of generality, we

focus on the stability properties of the zero equilibrium

point of system (1). Moreover, through a slight abuse of

terminology, with “stability properties” of system (1), it is

meant “stability properties of the zero equilibrium point” of

system (1).

Checking local asymptotic stability of system (1) is

rather simple, since it amounts to evaluate the eigenvalues

location of the linearized system ẋ = Ax. In practical

engineering applications, however, establishing the simple

local asymptotic stability is not sufficient, since it is often

required to obtain an estimate of the DA.

Our goal in this paper is to solve the following problem.

Problem 1: Assume that the matrix A in (1) is Hurwitz;

then, given a polytope P ⊂ R
n, with 0 an interior point of

P , establish whether P belongs to the DA of system (1). ♦

Remark 1: In most of the engineering applications the

operative range of a nonlinear system is assigned in terms

of the variation range of the state variables; therefore the

polytope P often reduces to a box. In any case polytopes

can approximate at will any compact region in R
n. ♦

In [14], [15] a LMIs optimization procedure is proposed

in order to solve Problem 1. Roughly speaking, such

procedure tries to cover the polytope P by an ellipsoid

whose boundary is the level curve of a quadratic Lyapunov

function. This kind of approach is obviously inherently

conservative because, depending on the shape of P , there

may be a lot of space between the covering ellipsoid and

the set P .

It is expected that an approach based on polyhedral

Lyapunov function might lead to less conservative results,

since the level curves of polyhedral functions are polytopes,

which provide a more natural fitting of the set P .

A. Some useful results about polytopes

In the following we provide some preliminary definitions

and results on linear algebra and polytopes which will be

useful to state the main result of the paper.

Definition 1 (Affine space): An affine space over a field

K is a triplet (A, V, π) composed of a nonempty set A,

a vector space V over K and an application π : (a, b) ∈
A × A → π(a, b) ∈ V such that

i) for all a ∈ A and v ∈ V , there exists a unique point

b ∈ A such that π(a, b) = v ;

ii) ∀a, b, c ∈ A, π(a, b) + π(b, c) = π(a, c) .

♦

For example, R
n can be interpreted both as a points set and

as a vector space. Indeed to a given point a ∈ R
n we can

associate the vector va ∈ R
n going from the origin to the

point a. It is simple to verify that the triplet (Rn, Rn, π) is

an affine space when

π(a, b) := va − vb . (6)

Definition 2 (Affine subspace): Let (A, V, π) be an affine

space. Let H be a subset of A and VH the set of vectors

{π(a, b) : a, b ∈ H}. Let us restrict the domain and

codomain of π to H ×H and VH , respectively, and denote

the resulting application with πH . The triplet (H, VH , πH)
is an affine subspace of (A, V, π) if a) VH is a vector

subspace of V and b) (H,VH , πH) is an affine space.

The dimension of the affine subspace (H, VH , πH) is the

dimension of the vector subspace VH . ♦

Let us consider the affine space (R2, R2, π), with π defined

as in (6), and the line L := {x ∈ R
2 : x1 +x2 = 1} ⊂ R

2.

Note that R2
L is the subspace of R2 given by the bisector of

the second and fourth quadrant. It is simple to recognize that

the triplet (L, R2
L, πL) is an affine subspace of (R2, R2, π)

of dimension one.

In the following we will consider the affine space associ-

ated to the standard vector space R
n over the field R, and

the related affine subspaces; correspondingly, the operator

π(a, b), with a, b ∈ R
n, will always coincide with the one

defined in (6). Concerning Definition 2, without loss of

generality and for the sake of simplicity, we shall refer to

the “affine subspace H” rather than to the “affine subspace

(H,VH , πH)”.
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Definition 3 (Convex and affine hull [20]): Given a set

A ⊂ R
n the convex hull of A is defined as the subset of R

n

composed of all vectors obtained via convex combination

from the elements of A, namely

conv(A) :=

{

v ∈ R
n : v =

k
∑

i=1

λiv
(i),

k
∑

i=1

λi = 1,

λi ≥ 0, v(i) ∈ A, i = 1, . . . , k , k = 1, 2, . . .
}

;

(7)

if in (7) we eliminate the requirement that the numbers λi

are nonnegative, the resulting set is said to be the affine hull

of A. ♦

It is worth noticing that the convex hull of a set A is the

smallest convex set containing A, while the affine hull turns

out to be an affine subspace of R
n.

If we deal with a finite set, say K = {x(1), . . . , x(k)} ⊂
R

n, the convex hull of K turns out to be a polytope, whose

dimension [20] is given by the dimension of the affine hull

of K. Moreover, as stated in the next lemma, the set of

vertices of a given polytope P is a subset of K.

Lemma 1 ([20]): Given a polytope defined as the convex

hull of K = {x(1), . . . , x(k)} ⊂ R
n, the vertices of the

polytope are the points x(i) ∈ K which satisfy the following

property

x(i) /∈ conv
(

K − {x(i)}
)

.

♦

Remark 2: Note that, given a collection of symmetric

points K = {x(1), . . . , x(2l)}, x(i) = −x(l+i), i = 1, . . . , l,
if x(i) is a vertex of conv(K), then also x(l+i) = −x(i) is

a vertex of conv(K). ♦

In this paper we shall focus on polytopes symmetrical

with respect to the origin of Rn. To this regard note that,

given any symmetrical polytope P ⊂ R
n, there always

exists a full row rank matrix Q ∈ R
n×m, m ≥ n, such

that the polytope P can be alternatively defined as [21]

P = ℘(Q) := {x ∈ R
n : ‖QT x‖∞ ≤ 1} , (8)

where, given a vector v ∈ R
n, ‖v‖∞ := maxi=1,...,n |vi| is

the infinity norm of v.

Therefore a given symmetric polytope P admits two

different equivalent descriptions. As we shall see later, a

fundamental point in our approach will be the development

of an efficient algorithm to pass from the representation

of P as convex hull of its vertices to the matrix descrip-

tion (8) of P .

Definition 4 (Affinely independent points [20]): A set of

k > 0 points is affinely independent if its affine hull has

dimension (k − 1). ♦

Lemma 2 ([20]): The convex hull of any (n+1) affinely

independent points in R
n is a polytope of dimension n. ♦

Finally, the next definition generalizes for our purposes,

the concept of “points in general position” given in [20].

Definition 5 (Set of points in generic position): A set of

k ≥ n points in R
n, n ≥ 2, is said to be in generic position

if there is no n-tuple composed of such points which lies

on a common affine plane of dimension (n − 2). If n = 1
any set of points is in generic position. ♦

Remark 3: Note that, requiring that k points are in

generic position in R
n, implies that, i) they are distinct for

n = 2; ii) there is no triplet of such points which lies on a

common line for n = 3; iii) there is no quadruplet of such

points which lies on a common plane for n = 4; etc. ♦

Remark 4: The minimum number of vertices that define

a symmetric polytope in R
n of dimension n is 2n. An

example of symmetric polytope with minimum number of

vertices is the crosspolytope of dimension n

C := {x ∈ R
n :

∑

i

|xi| ≤ 1} = conv{e1,−e1, . . . , en,−en},

where ei are the unit vectors in R
n. Note that these points

are in generic position. ♦

B. Machinery

The solution to the following Problem will be useful to

derive the main result of the paper.

Problem 2: Given a polytope P defined as the convex

hull of 2l symmetric points K = {x
(1)
Q , . . . , x

(2l)
Q } in

generic position in R
n, x

(i)
Q = −x

(l+i)
Q , i = 1, . . . , l, with

l ≥ n, where (n+1) of them are affinely independent, find

a matrix Q such that (8) is satisfied. ♦

The following procedure solves Problem 2.

Procedure 1 (Solution to Problem 2): First of all, note

that Lemma 2 guarantees that P has dimension n. Next,

using Lemma 1, it is possible to select the 2k vertices

of P , k ≤ l, from {x
(1)
Q , . . . , x

(2l)
Q }. Let us reorder the

points such that {x
(1)
Q , . . . , x

(k)
Q , x

(l+1)
Q , . . . , x

(l+k)
Q } are the

vertices of P . Note that, given the assumption that the

set of points is in generic position, each vertex x
(i)
Q , i =

1, . . . , k, of P is the intersection of si half-planes qi,h ∈
R

n, h = 1, . . . , si, si ≥ n; such half-planes are univocally

determined by n vertices. These half-planes are columns

vectors which satisfy, for i = 1, . . . , k, the following

conditions

a)

qT
i,hx

(i)
Q = 1 ; (9)

b) there exists a (n − 1)-tuple of indexes i1 6= i2 6= · · · 6=
in−1 ∈ {1, . . . , k, l + 1, . . . , l + k} − {i} such that

qT
i,hx

(it)
Q = 1 , ∀t = 1, . . . , n − 1 (10a)

qT
i,hx

(j)
Q ≤ 1 , ∀j ∈ {1, . . . , k, l + 1, . . . , l + k}−

− {i, i1, . . . , in−1} . (10b)

Once the half-planes qi,h have been found, we can

equivalently define the polytope P as in (8), where the

matrix Q can be constructed as follows

Q =
(

q1,1 . . . q1,s1 . . . qk,1 . . . qk,sk

)

. (11)

♦
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Remark 5: It is easy to see that for all i = 1, . . . , k
and h = 1, . . . , si, there exist at least (n − 1) vertices

i1, . . . , in−1 such that one of its associate half-planes is

equal to qi,h, i.e. qi,h = qit,m,mt ∈ {1, 2, . . . , sit
}.

Therefore the matrix Q presents several repeated columns

that, without loss of generality, can be canceled in order to

lighten the computational burden. ♦

In the sequel we will make use of the following definition.

Definition 6 (Candidate set of points): A collection of

points K = {x
(1)
Q , . . . , x

(2l)
Q } ⊂ R

n, with l ≥ n, is said

to be a candidate set of points if

• the points are in generic position in R
n;

• the points are symmetric, i.e. x
(i)
Q = −x

(l+i)
Q , i =

1, . . . , l;
• (n + 1) of the points are affinely independent.

Without any loss of generality, we assume that the vertices

of the polytope defined as conv(K) are the first k points,

k ≤ l, of K and their symmetric. Finally, we denote by

qi,h, h = 1, . . . , si, the half-planes associated to the vertex

x
(i)
Q , i = 1, . . . , k, of the polytope. ♦

III. MAIN RESULT

In order to solve Problem 1, we make use of the class of

polyhedral Lyapunov functions, which are piecewise linear

functions of the following form

V (x) = ‖QT x‖∞ , (12)

where Q ∈ R
n×l is a full row rank matrix.

Given a generic system in the form ẋ = f(x) and a

Lyapunov function V (x), we recall the definition of Dini

(upper) derivative [22] of V (x) along the solutions of the

system:

V̇ (x) = lim sup
τ→0+

V (x + τ ẋ) − V (x)

τ

∣

∣

∣

∣

ẋ=f(x)

.

Such definition returns the classical derivative when V (x)
is continuously differentiable, but also enables to treat the

more general case in which the Lyapunov function is not

differentiable everywhere (as it is the case of polyhedral

functions).

For a polyhedral function (12) associated to the system

ẋ = f(x), the derivative is

V̇ (x) = max
j∈I(x)

q̃T
j f(x) , (13)

where Q̃ =
(

Q −Q
)

, q̃j denotes the j-th column of Q̃
and I(x) is the set of the indexes j such that V (x) = q̃T

j x
(see [19]).

We recall the following theorem.

Theorem 1 ([23]): A given closed set E ⊂ R
n, with 0 an

interior point of E , is an estimate of the DA of system (1)

if

i) E is an invariant set for system (1);

ii) there exists a Lyapunov function V (x) such that

a) V (x) is positive definite on E ;

b) V̇ (x) is negative definite on E .

♦

Now we are ready to state the main result of the paper,

which is a sufficient condition to guarantee a positive

answer to the question posed by Problem 1. Essentially, the

proof is based on the construction of a polyhedral Lyapunov

function which satisfies the hypotheses of Theorem 1,

where E turns out to be a polytope whose boundary is a

level curve of the polyhedral function itself. This guarantees

that E is an invariant set. Note that a key point in the proof

is the assumption that the system under consideration is

quadratic; therefore the technique cannot be extended to

higher order systems (cubic or, more generally, polynomial).

Theorem 2: The polytope P , with 0 ∈ P , belongs to the

DA of system (1) if there exist a candidate set of points in

the sense of Definition 6 such that

conv(K) ⊇ P (14)

and the following condition holds for all i = 1, . . . , k, h =
1, . . . , si, j = 1, . . . , k, l + 1, . . . , l + k,

qT
i,h













A +













x
(j)T
Q B1

x
(j)T
Q B2

...

x
(j)T
Q Bn

























x
(i)
Q < 0. (15)

Proof: Let K = {x
(1)
Q , . . . , x

(2l)
Q } such that E :=

conv(K) ⊇ P . By using Procedure 1, determine the half-

planes qi,h associated to the 2k vertices, k ≤ l, and

construct the Q matrix as

Q =
(

q1,1 . . . q1,s1 . . . qk,1 . . . qk,sk

)

,

such that E = ℘(Q).
Let us consider the candidate polyhedral Lyapunov func-

tion

V (x) = ‖QT x‖∞ . (16)

We denote by V̇ the Dini derivative of V along the solutions

of system (1); in view of (13) we obtain

V̇ (x) = max
j∈I(x)

q̃T
j











A +











xT B1

xT B2

...

xT Bn





















x , (17)

where Q̃ =
(

Q −Q
)

and I(x) is the set of the indexes j
such that V (x) = q̃T

j x.

For p ∈ E , let us define

AM (p) := A +











pT B1

pT B2

...

pT Bn











;

note that AM (p) is an affine function of p.
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We have, for all x ∈ E ,

V̇ (x) ≤ max
p∈E

max
j∈I(x)

q̃T
j AM (p)x

= max
j∈I(x)

max
p∈E

q̃T
j AM (p)x

= max
j∈I(x)

max
p∈vert(E)

q̃T
j AM (p)x

= max
p∈vert(E)

max
j∈I(x)

q̃T
j AM (p)x , (18)

where vert(E) denotes the set of the vertices of E and we

have used the fact that q̃T
j AM (p)x is an affine function of p.

Now, it is simple to recognize that, for a given p, the sign

behavior for x ∈ E of the function maxj∈I(x) q̃T
j AM (p)x

can be inferred by the sign behavior on the boundary of

the polytope E ; moreover the maximum value of the linear

function

q̃T
j AM (p)x

on the j-th face of E is attained at the vertices of the

face itself. Hence, from (18) we have that V̇ (x) is negative

definite for all x ∈ E if

max
p∈vertE

max
j∈I(x

(i)
Q

)

q̃T
j AM (p)x

(i)
Q < 0 , (19)

for all i = 1, . . . , k, l + 1, . . . , l + k. The symmetry of the

polytope implies that (19) is equivalent to

max
p∈vert(E)

max
j∈I(x

(i)
Q

)

qT
j AM (p)x

(i)
Q < 0 ,

for all i = 1, . . . , k.

Finally, for a given i, the set {qj , j ∈ I(x
(i)
Q )} is equal

to the set {qi,h , h = 1, . . . , si}; therefore we can conclude

that V̇ (x) is negative definite if

max
p∈vert(E)

qT
i,h AM (p) x

(i)
Q < 0 , (20)

for all i = 1, . . . , k, and h = 1, . . . , si, which is equivalent

to (15).

Therefore the hypotheses of the theorem guarantee the

existence of a positive definite polyhedral Lyapunov func-

tion V (x) = ‖QT x‖∞ with a negative definite derivative

on E . This, together with the fact that the polytope E is

an invariant set (the boundary of E is a level curve of

the Lyapunov function V (x)), allows to apply Theorem 1

which guarantees that E is an estimate of the DA. The proof

follows from the inclusion (14), since E = conv(K).
Remark 6: A possible choice of the candidate set of

points in Theorem 2 is vert(P) since (14) is clearly

verified. ♦

In order to find a candidate set of points satisfying the

conditions of Theorem 2, the following procedure can be

used.

Procedure 2 (Implementation of Theorem 2): The pro-

cedure we propose to find a candidate set of points sat-

isfying the conditions of Theorem 2 is the following.

1) Fix a number l ≥ n. Let K0 = {x
(i)
Q }i=1,...,2l be a

candidate set of points, in the sense of Definition 6,

whose convex hull is a regular polytope of 2l vertices

which contains P .

2) Find a candidate set of points K solving the problem

min
K

max
j=1,...,k

l+1,...,l+k

fj(K) (21)

with initial condition K0, where

fj(K) = max
i=1,...,k

max
h=1,...,si

qT
i,h











A +











x(j)T B1

x(j)T B2

...

x(j)T Bn





















x
(i)
Q .

3) Let M = minK maxj fj(K). If M < 0 then

Kopt = arg M, (22)

and go to 4), else set

K0 = K ∪
{

x
(l+1)
Q ,−x

(l+1)
Q

}

, x
(l+1)
Q ∈ R

n (23)

l = l + 1 (24)

and go to 2).

4) Kopt is the candidate set of points satisfying the

conditions of Theorem 2 .

♦

Remark 7: To solve problem (21), we have made use

of the Matlab Optimization Toolbox routine fminimax [24],

with variables x
(i)
Q , i = 1, . . . , l. ♦

Remark 8: The choice of x
(l+1)
Q in step 3) is done putting

such point on one of the faces of ℘(Q). In particular, if

maxj fj(K) is obtained in correspondence of the vertex

x
(t)
Q and the vertex j⋆ ∈ vert(P), the point is put in the

middle of the face defined by the half-plane qt,h where

qT
t,h











A +











x(j⋆)T B1

x(j⋆)T B2

...

x(j⋆)T Bn





















x
(t)
Q

reaches the maximum value. In this way, since at each step

the algorithm begins from the solution found in the previous

step, the value M decreases (or, at least, does not increase)

at each step. ♦

IV. EXAMPLE

In order the compare the results proposed in this paper

with the previous literature on the same topic, we consider

the numerical example proposed in [14]
{

ẋ1 = −50x1 − 16x2 + 13.8x1x2

ẋ2 = 13x1 − 9x2 + 5.5x1x2 .
(25)

The polytope P is the box defined as follows

P := [−1.2, 1.2] × [−2.8, 2.8] .

Note that the box P is larger than the box considered

in [14]; moreover, the approach of [14] does not allow to

establish whether P belongs to the DA of system (25) (the
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Fig. 1. Trend of the parameter M in Procedure 2 when applied to the
example.
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Fig. 2. Polyhedral Lyapunov function for the example. The box P (dashed
line) and the level curve of the polyhedral Lyapunov function found by
the procedure (solid line).

problem stated in [14] is found unfeasible when tested using

the Matlab LMI Toolbox).

Conversely, by using the approach proposed in this paper,

we are able to conclude that P belongs to the DA of

system (25).

We started Procedure 2 with l = 2 and the candidate set

of points vert(P). Fig. 1 shows the trend of M each time

step 3) of Procedure 2 is reached, for different values of l.
Fig. 2 shows the last polytope ℘(Q) of 20 vertices (l = 10)

whose vertices satisfy the conditions of Theorem 2.

V. CONCLUSION

In this paper we have proposed a novel method to

investigate the region of attraction of equilibrium points

of quadratic systems. Given an asymptotically stable equi-

librium point, the problem tackled in the present work

is to ascertain whether a certain polytope, representing

the admissible variations from the equilibrium, belongs to

the DA. The proposed approach is based on the use of

polyhedral Lyapunov functions, rather than on the classical

quadratic Lyapunov functions. An example shows that our

method may improve the results available in the literature.
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