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Abstract— In this paper, we consider the problem of pulse
synchronization of a master-slave chaotic system in the
sampled-data setting. We begin by developing a pulse-based
intermittent control system for chaos synchronization. Using the
discrete-time Lyapunov stability theory and the linear matrix
inequality (LMI) framework, we construct a state feedback
periodic pulse control law which yields global asymptotic
synchronization of the sampled-data master-slave chaotic sys-
tem for arbitrary initial conditions. Finally, we provide an
experimental validation of our results by implementing, on
a set of microcontrollers endowed with RF communication
capability, a sampled-data master-slave chaotic system based
on Chua’s circuit.

I. INTRODUCTION

Secure communication systems based on synchronization

of chaotic oscillators have been recently investigated, see for

example [1], [2], [3], [4], [5], [6]. The general idea behind

these systems is to use chaos to mask a transmitted signal,

and chaos synchronization to securely recover it in reception.

In this case, the chaotic oscillator at the transmitter acts as

a “master” by driving the chaotic oscillator at the receiver,

that consequently behaves as a “slave.”

Most experimental and theoretical research on master-

slave synchronization focuses on continuous-time analog

systems, see for example [7], [8], [9], [10], [11], [12],

[13], [14], [15], [16]. Nevertheless, in secure communication

applications noise corruption in analog signal transmission

can lead to severe drawbacks of synchronization schemes

[17], [18]. Sampled-data systems have been studied in [3],

[19], [20] to improve robustness of secure communications

based on chaotic synchronization.

In a sampled-data setting, we study master-slave syn-

chronization of chaotic oscillators that are only sporadically

coupled. This scenario seems particularly realistic for com-

munication systems. We consider the case of linear state

feedback and we assume that the feedback periodically

changes over time. Following the work of [9] for analog

systems, we refer to this synchronization scheme as global

pulse synchronization. We establish sufficient conditions for

pulse synchronization using Lyapunov stability theory and

the linear matrix inequality (LMI) framework. Specifically,

we show that global synchronization is possible even if the

oscillators are only intermittently coupled, that is, even if

most of the time they are uncoupled. In order to illustrate

the proposed approach, we specialize our results to the

synchronization of Chua’s circuits. Theoretical results are
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validated through experiments conducted on sampled-data

implementations of Chua’s oscillators. Each oscillator is

developed using a microcontroller and linear state feedback

is realized through RF communication.

The type of intermittent coupling considered in this paper

has been analyzed in the framework of consensus theory

for continuous-time systems [21], [22], and peer-to-peer syn-

chronization of analog complex networks [23], [24]. We note

that, in consensus theory, the individual systems’ dynamics

is linear while in the present case the coupled systems are

strongly nonlinear. We further observe, that results in [23],

[24] are only for local synchronization since they are based

on linearized dynamics. In this paper the inherent nonlinear

nature of the coupled systems is retained and the problem is

cast into a sampled-data setting.

The rest of the paper is organized as follows. In Section

II, we present a sampled-data representation of a continuous-

time chaotic system using the Euler approximation tech-

nique. In Section III, we formulate a global pulse syn-

chronization problem. In Section IV, we provide sufficient

conditions for global pulse synchronization. In Section V,

we apply the LMI framework to construct periodic feedback

gain matrices that yield global pulse synchronization. In

Section VI, we provide experimental validation of our results

using a microcontroller-based implementation of master-

slave Chua’s circuits. Section VII provides conclusions.

II. EULER APPROXIMATED SAMPLED-DATA CHAOTIC

SYSTEM MODEL

In this section, we develop a sampled-data representation

of a chaotic system using the Euler approximation tech-

nique. Specifically, a continuous-time chaotic system model

containing a continuous nonlinear function is discretized

using Euler’s method to obtain a corresponding sampled-

data model of the chaotic system. To begin, consider the

following continuous-time chaotic system

ẋ(t) = Acx(t) + gc(x(t)), (1)

where x(t) ∈ R
n is the continuous-time state vector, Ac ∈

R
n×n is a constant state matrix of the continuous-time

system, and gc(x) : R
n → R

n is a continuous vector

nonlinear function. Before proceeding, we assume that the

nonlinear function, gc(·) satisfies the following condition

[11]

gc(ξ) − gc(ξ̃) = Mc(ξ − ξ̃), (2)

where ξ, ξ̃ ∈ R
n and Mc ∈ R

n×n is a bounded matrix

with its components dependent on ξ and ξ̃. Next, using
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the Euler approximation method [25], the continuous-time

chaotic system (1) can be discretized to yield the following

sampled data representation

x(k + 1) = Adx(k) + gd(x(k)), (3)

where Ad
△
= hAc +I, gd

△
=hgc, h is the step size of the Euler

approximation method, and I is the n × n identity matrix.

Now using the unidirectional coupling technique, we char-

acterize a chaotic slave system for (3) as follows

x̃(k + 1) = Adx̃(k) + gd(x̃(k)) + K(k)(x(k) − x̃(k)), (4)

where K : Z → R
n×n, with Z denoting the set of

nonnegative integers, is a feedback gain matrix that is to be

designed to synchronize the slave system (4) to the master

system (3).

III. PULSE SYNCHRONIZATION PROBLEM FOR

SAMPLED-DATA CHAOTIC SYSTEM

In order to characterize the pulse synchronization problem

for the sampled-data master-slave chaotic system, we define

the error between the states of the master and slave systems,

(3) and (4), respectively, as follows

e(k)△

=x(k) − x̃(k). (5)

Remark 1 Recall the definition gd
△
=hgc and that gc satisfies

(2), then it follows that gd(·) satisfies the following condition

gd(ξ) − gd(ξ̃) = Md(ξ − ξ̃), (6)

where Md
△
= hMc is a bounded matrix with its components

dependent on ξ and ξ̃.

The dynamics of the error state e(k) is readily obtained

from the master system dynamics (3) and the slave system

dynamics (4) and is given by the following nonlinear nonau-

tonomous system

e(k + 1) = (Ad + Md − K(k))e(k), (7)

where (6) has been used.

For pulse synchronization of the sampled-data master-

slave chaotic system, we consider the case where K(k)
is a periodic gain such that K(mN + i) = K(i), for

i = 0, 1, . . ., p − 1, K(mN + i) = K(i) = 0n×n, for

i = p, p + 1, . . . , p + q − 1, N △
=p + q is the number of

samples in a complete cycle, m ∈ Z, and p, q ∈ Z+, with

Z+ denoting the set of positive integers. That is, over a period

N , the periodic control gain K(k) is non-zero for the first

p samples and zero for the next q samples. In this case, the

error system (7) yields

e(k + 1) = A(k)e(k), (8)

where

A(k) = Ad + Md − Kk, k = mN, . . . , mN + p − 1, (9)

A(k) = Ad + Md, k = mN + p, . . . , mN + p + q − 1,(10)

and Kk = K(k) is used for notational convenience.

Finally, the problem of pulse synchronizing the dynamics

of sampled-data slave system (4) to the dynamics of sampled-

date master system (3) necessitates that the states of the error

system dynamics given in (8) asymptotically converge to zero

for any initial condition, i.e.,

lim
k→∞

e(k) = 0. (11)

IV. SUFFICIENT CONDITIONS FOR PULSE

SYNCHRONIZATION OF SAMPLED-DATA CHAOTIC

SYSTEM

In this section, using quadratic Lyapunov functions and

Lyapunov stability analysis, we provide sufficient conditions

for pulse synchronization of the sampled-data master-slave

chaotic system. Before proceeding, we restrict matrix Md

to the form Md =

ℓ
∑

i=1

γiM̂i where for i = 1, . . . , ℓ, γi is

a bounded scalar with its components dependent on ξ and

ξ̃ and M̂i is a constant structure matrix that captures the

structure of Md. Moreover, let δi, i = 1, . . . , ℓ, be given

scalars such that γiγj ≤ δiδj , i, j = 1, . . . , ℓ for ξ, ξ̃ ∈
R

n. Finally, for notational convenience, let P
n denote n × n

positive definite matrices.

Theorem 1. Let p matrices Kk : Z → R
n×n, k = 0, . . . , p−

1, be given and suppose there exist N matrices Pk ∈ P
n such

that

2ÃT
k Pk+1Ãk + 2

ℓ
∑

i=1

ℓ
∑

j=1

δiδjM̂
T
i Pk+1M̂j − Pk < 0,

k = 0, . . . , p− 1, (12)

2AT
d Pk+1Ad + 2

ℓ
∑

i=1

ℓ
∑

j=1

δiδjM̂
T
i Pk+1M̂j − Pk < 0,

k = p, . . . , p + q − 1, (13)

where Ãk
△
= Ad − Kk . In this case

V (e(k), k)
△
= eT (k)Pke(k), (14)

is a periodic quadratic Lyapunov function, with Pk+N =
Pk, k ∈ Z, that guarantees that the system dynamics (8)

satisfy (11), thus yielding global asymptotic synchronization

of the sampled-data master-slave chaotic system.

Proof. To show that the error system dynamics (8) are

globally asymptotically convergent, we begin by computing

the Lyapunov difference as follows

∆V (e(k), k)=eT (k + 1)Pk+1e(k + 1)−eT (k)Pke(k), (15)

which along the error dynamics (8) yields

∆V (e(k), k) = eT (k)(AT (k)Pk+1A(k) − Pk)e(k). (16)

Since V (e(k), k) of (14) is a positive definite candidate Lya-

punov function, global asymptotic stability for the error sys-

tem dynamics (8) is ensured by requiring that ∆V (e(k), k)
in (16) is negative definite, i.e.,

AT (k)Pk+1A(k) − Pk < 0, k = 0, . . . , p + q − 1. (17)
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Using (9) and (10) in (17) produces

(Ãk + Md)
T Pk+1(Ãk + Md) − Pk < 0, k = 0, . . . , p− 1,

(18)

(Ad+Md)T Pk+1(Ad+Md)−Pk < 0, k = p, . . . , p+q−1.

(19)

We now provide sufficient conditions for (18) and (19)

to hold. First, for k = 0, . . . , p − 1, using (Ãk −
Md)T Pk+1(Ãk − Md) ≥ 0, we obtain

ÃT
k Pk+1Ãk + MT

d Pk+1Ãk + ÃT
k Pk+1Md + MT

d Pk+1Md

−Pk ≤ 2ÃT
k Pk+1Ãk + 2MT

d Pk+1Md − Pk. (20)

Similarly, for k = p, . . . , p + q − 1, using (Ad −
Md)T Pk+1(Ad − Md) ≥ 0, we obtain

AT
d Pk+1Ad + MT

d Pk+1Ad + AT
d Pk+1Md + MT

d Pk+1Md

−Pk ≤ 2AT
d Pk+1Ad + 2MT

d Pk+1Md − Pk. (21)

Next, using Md =
ℓ

∑

i=1

γiM̂i and bound γiγj ≤ δiδj , the

right hand sides of (20) and (21) can be further bounded as

follows

2ÃT
k Pk+1Ãk + 2MT

d Pk+1Md − Pk ≤ 2ÃT
k Pk+1Ãk

+2

ℓ
∑

i=1

ℓ
∑

j=1

δiδjM̂
T
i Pk+1M̂j − Pk, (22)

2AT
d Pk+1Ad + 2MT

d Pk+1Md − Pk ≤ 2AT
d Pk+1Ad

+2

ℓ
∑

i=1

ℓ
∑

j=1

δiδjM̂
T
i Pk+1M̂j − Pk. (23)

It now follows that (12) and (13) provide sufficient conditions

for (18) and (19), respectively, which in turn provide a

sufficient condition for the global asymptotic stability for

the error system dynamics (8).

Remark 2 Note that by selecting a periodic Lyapunov func-

tion, we are able to guarantee that the Lyapunov difference

is decreasing even when the master-slave chaotic system is

decoupled.

V. LMI-BASED PERIODIC CONTROLLER SYNTHESIS FOR

PULSE SYNCHRONIZATION OF SAMPLED-DATA CHAOTIC

SYSTEM

In this section, we transform the sufficient condition

(12) into an LMI condition which when solved along with

the LMI condition (13) yields the periodic controller gain

matrices Kk of (9) to facilitate the global asymptotic pulse

synchronization of the sampled-data master-slave chaotic

system.

Theorem 2. Suppose there exist N matrices Pk ∈ P
n and

p matrices Gk ∈ R
n×n satisfying







−
ℓ

∑

i=1

ℓ
∑

j=1

δiδjM̂
T
i Pk+1M̂j + 1

2
Pk AT

d
Pk+1 − GT

k

Pk+1Ad − Gk Pk+1






> 0,

k = 0, . . . , p − 1, (24)

and (13). In addition, for k = 0, . . . , p − 1, let Kk : Z →
R

n×n be given by

Kk = P−1

k+1
Gk. (25)

Then Pk and Kk satisfy (12) and (13), yielding the global

asymptotic stability for the error system dynamics (8).

Proof. We begin by rewriting (12) as follows

−

ℓ
∑

i=1

ℓ
∑

j=1

δiδjM̂
T
i Pk+1M̂j +

1

2
Pk

−(Ad − Kk)T Pk+1P
−1

k+1
Pk+1(Ad − Kk) > 0. (26)

Now, using Gk = Pk+1Kk from (25), (26) becomes

−

ℓ
∑

i=1

ℓ
∑

j=1

δiδjM̂
T
i Pk+1M̂j +

1

2
Pk

−(AT
d Pk+1 − GT

k )P−1

k+1
(Pk+1Ad − Gk) > 0. (27)

Finally, by an application of the Schur Complement [26],

it follows that (27) is equivalent to (24). Thus, it follows

that the existence of N matrices Pk ∈ P
n and p matrices

Gk ∈ R
n×n satisfying (24) and (13) and of p matrices Kk :

Z → R
n×n satisfying (25) is equivalent to the existence of N

matrices Pk ∈ P
n and p matrices Kk : Z → R

n×n satisfying

(12) and (13). This proves that the existence of N matrices

Pk ∈ P
n and p matrices Gk ∈ R

n×n satisfying (24) and (13)

and of p matrices Kk : Z → R
n×n satisfying (25) yields the

global asymptotic stability for the error system dynamics (8).

Remark 3 Suppose for a given problem (24) and (13) are

feasible with p = p∗ and q = q∗, respectively. Then the

corresponding matrices Kk, k = 0, . . . , p∗ − 1, obtained

from (25) render the error system dynamics (8) globally

asymptotically stable for all q ≤ q∗.

VI. ILLUSTRATIVE SYNCHRONIZATION EXAMPLE USING

CHUA’S SYSTEM

In this section, we illustrate the result of Section V by

designing and implementing a periodic feedback control gain

Kk for the chaotic slave system dynamics (4). We do so by

considering the sampled-data implementation of a master-

slave Chua’s circuit pair.

A. Continuous-time Chua’s System

The continuous-time Chua’s system is characterized by (1)

with n = 3,

Ac =





−α α 0
1 −1 1
0 −β 0



 , (28)

gc(x) =





−αf(x1)
0
0



 , (29)

where α, β are given positive scalars, x1 denotes the first

component of vector x, f(·) is a piecewise linear function

characterized as
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f(x1) = bx1 +
1

2
(a − b)(|x1 + 1| − |x1 − 1|), (30)

and a and b are given negative constants. Referring to [11],

the nonlinear function f(·) can be expressed as

f(ξ1) − f(ξ̃1) = γ1(ξ1 − ξ̃1), (31)

where γ1 is dependent on ξ1 and ξ̃1, and is bounded by

constants a and b as follows a ≤ γ1 ≤ b < 0.

B. Euler Approximated Sampled-Data Chua’s System

Euler approximated sampled-data representations of the

master and slave Chua’s circuits are given by (3) and (4),

respectively, with

Ad =





−hα + 1 hα 0
h −h + 1 h

0 −hβ 1



 , (32)

gd(x) =





−hαf(x1)
0
0



 . (33)

Note that for gd given in (33), Md of (6) is given by Md =
γ1M̂1 where

M̂1 =





−hα 0 0
0 0 0
0 0 0



 . (34)

Next, select the step size for the Euler discretization tech-

nique as h = 0.005. Then, the sampled-data system (3)

with Ad and gd(x) given by (32) and (33), respectively,

can be shown to be chaotic by showing that its largest

Lyapunov exponent is positive [27]. Following the proce-

dure of [27], which eliminates the dependence of Lyapunov

exponent computation on initial condition, error magnitude,

error direction, and number of iteration, the largest Lyapunov

exponent is determined to be ≈0.4.

C. Numerical Parameters

The following numerical values for the various system

parameters are adopted from [11]: α = 9.78, β = 14.97, a =
−1.31, and b = −0.75. Finally, to simplify the experimental

demonstration of pulse synchronization for the sampled-

data master-slave chaotic system, we restrict Pk and Gk in

(24) and (13) to be diagonal, which in turn yields diagonal

gain matrices Kk in (25). Using this procedure, for the

given problem data with p = 1, LMIs (24) and (13) were

determined to be feasible up to q = 22 and the following

control gain matrix was obtained

K1 = diag(0.9511, 0.9950, 1.000). (35)

Similarly, for the given problem data with p = 3, LMIs (24)

and (13) were determined to be feasible up to q = 50 and

the following control gain matrices were obtained

K1 = diag(0.9509, 0.9948, 0.9998),

K2 = diag(0.9304, 1.0020, 0.9779),

K3 = diag(0.9723, 0.9875, 1.0227). (36)

D. Experimental Setup

For an experimental validation of the results of this paper,

the following sequence of operations are performed.

First, the sampled-data representation of the master Chua’s

system (i.e., (3) with Ad and gd given by (32) and (33),

respectively) is implemented on a microcontroller (MC1).

Moreover, at each sampling instant k = 0, 1, . . ., the cor-

responding state x(k) is transmitted by MC1, using an RF

transceiver, to a second microcontroller (MC2).

Second, the sampled-data representation of the slave

Chua’s system (i.e., (4) with Ad, gd, and K given by (32),

(33), and (35), respectively) is implemented on MC2. Note

that as stated above, MC2 receives, using an RF transceiver,

the state x(k) of the master Chua’s system and uses it

as indicated in (4). Finally, for post-processing, at each

sampling instant k = 0, 1, . . ., MC2 communicates master

and slave states x(k) and x̃(k), respectively, using serial

communication, to Matlab running on a Personal Computer

(PC). Specifically, using the serial communication capabil-

ities of the Propeller microcontroller and Matlab (see, e.g.,

[28], [29] for serial interfacing of various microcontrollers

and Matlab), x(k)and x̃(k) are imported into Matlab for

a graphical representation of pulse synchronization of the

sampled-data chaotic systems.

In this paper, for MC1 and MC2, we used Parallax’s Pro-

peller demo boards [30] that are based on a 32-bit processor.

The Propeller demo board consists of a P8X32A-Q44 Pro-

peller microcontroller chip, an EEPROM, and eight digital

I/O pins. The P8X32A-Q44 Propeller chip has eight 32-

bit processors, thus allowing multi-processing. The Propeller

chip can be programmed using a low-level assembly pro-

gramming language or a high-level programming language

Spin, used in this paper. Finally, the Propeller chip is operated

with a voltage level of 3.3VDC and can communicate with

a PC serially via a USB connection. For RF communication

from MC1 to MC2, we used two 912MHz RF transceivers

[31], which have both transmitter and receiver functionalities

on the module. The RF transceivers communicate eight bits

of data at 9600 baud rate. Note that at each sampling instant

k, MC1 executing the sampled-data representation of the

master Chua’s circuit needs to transmit the corresponding

three-dimensional state vector x(k). Since, MC1 is based

on a 32-bit processor, each component of x(k) is encoded

using 32 bits. Thus, for the purposes of RF transmission,

MC1 divides each component of x(k) into four sets of eight-

bit data. Analogously, as MC2 receives four sets of eight-

bit data, it combines them to produce the original 32-bit

representation of the state data transmitted by MC1.

Figure 1 shows the pair of Propeller demoboards (MC1

and MC2), with RF transceivers installed on-board, that

are used to experimentally illustrate the synchronization of

sampled-data master-slave Chua’s system. Figure 2 shows the

chaotic behavior produced by (3) running on MC1. Finally,

Figures 3-a, 3-b, and 4 show that control gains (35) and

(36) yield pulse synchronization of the master-slave system

(i.e., (3) running on MC1 and (4) running on MC2) for
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p = 1, q = 22 and p = 3, q = 50, respectively. Moreover,

Figures 3-c, 3-d, and 5 show that the master-slave system

lacks synchronization for p = 1, q = 1500 and p = 3,

q = 2000, with control gains (35) and (36), respectively.

VII. CONCLUSIONS

In this paper, we developed sufficient conditions for

pulse synchronization of a sampled-data master-slave chaotic

system using the discrete-time Lyapunov stability theory.

In addition, using the LMI framework, we constructed a

periodic state feedback control law for pulse synchronization

of the coupled chaotic system. We validated our results by

performing pulse synchronization of a pair of Chua’s circuits

implemented on a pair of microcontrollers.
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Fig. 1. Propeller demo board and 912 MHz radio frequency transceiver

for the sampled-data master-slave Chua’s circuits
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Fig. 2. Plots of the double scroll attractors of the sampled-data master

Chua’s circuit: (a) x1 v/s x2, (b) x1 v/s x3, and (c) x2 v/s x3
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Fig. 3. Plots of the errors (ei

△
= xi − x̃i, i = 1,2, 3) of the sampled-data

master-slave Chua’s circuits: (a) p = 1, q = 22, (b) p = 3, q = 50, (c)

p = 1, q = 1500, and (d) p = 3, q = 2000
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Fig. 4. Plots of the states of the sampled-data master Chua’s circuit v/s

the states of the sampled-data slave Chua’s circuit (x i v/s x̃i, i = 1,2,3)
showing synchronization of the master-slave Chua’s circuits: (a), (b), (c)

with p = 1, q = 22 and (d), (e), (f) with p = 3, q = 50
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Fig. 5. Plots of the states of the sampled-data master Chua’s circuit v/s

the states of the sampled-data slave Chua’s circuit (x i v/s x̃i, i = 1,2,3)
showing lack of synchronization of the master-slave Chua’s circuits: (a),

(b), (c) with p = 1, q = 1500 and (d), (e), (f) with p = 3, q = 2000
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