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Abstract— This paper deals with the synthesis of a static
output feedback control law with H∞ performance for a three-
phase shunt active power filter used to compensate current
harmonics so that the network current remains quasi-sinusoidal
and therefore electric power quality is improved. In a previous
work, this system has been successfully driven by a state
feedback controller. However, the main goal is to reduce the
number of measured outputs. The objective of this work is the
design of an output feedback H∞ controller by non-iterative
means. This can be easily achieved by imposing a block diagonal
structure on the Lyapunov matrix in order to transform bilinear
matrix inequalities into a convex optimization problem. The
validity of the synthesized static gain is investigated through
numerical simulations.

I. INTRODUCTION

In many control applications, it is not always possible

to have a full access to the state vector, and therefore the

control design problem must be formulated as an output

feedback one. Both static and fixed-order dynamic output

feedback problems attract the attention of the industrial

community due to the simplicity of their implementation.

They allow one to avoid controller reduction approaches

which generally lack performance and stability guarantees.

However, unlike state feedback control, there is not one

unique general efficient approach that can be used to

solve output feedback problems. Each control application

has its own algorithm, and many of these algorithms are

numerically solved. The lack of tractable approaches to

design output feedback controllers is due to the non-linear

formulation of the control design problem.

The design of a static or fixed-order dynamic output

feedback controller is still an open problem. The reason

is that, unlike the state feedback problem, the synthesis

of an output feedback controller cannot be formulated

in terms of Linear Matrix Inequalities (LMIs). The

formulation of an output feedback synthesis problem

generally leads to Bilinear Matrix Inequalities (BMIs)

which are computationally less tractable than LMIs. Unlike

the LMI optimization problems for which many efficient

algorithms are available, the BMI optimization problems

are non-convex and require a very high computational effort.
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In the control literature [1], different iterative methods

have been developed in order to take into consideration the

design of output feedback controllers, and particularly to

transform BMI problems into LMI ones. These numerical

methods involve, at each step, the determination of a

solution to a LMI system obtained by fixing some variables.

Iterative algorithms have the ability to solve a wide class

of control applications. However, they are not guaranteed

to find a solution nor to converge to a global minimum.

Furthermore, they can be time consuming for high order

control problems. Alternatively, different non-iterative

design approaches have also been developed [2], [3].

Although they are conservative, they allow one to avoid

computational complexity.

In a previous work [4], [5], a shunt active filter system

used to depollute a low voltage three-phase electrical

network has been successfully driven by a state feedback

controller due to the fact that all state variables are

accessible. The goal is to reduce the number of measured

outputs and therefore an output feedback controller has to

be synthesized. In this paper, the main objective is to design

a static output feedback control law by non-iterative means

using the H∞ suboptimal control. This can be easily achieved

by imposing a block diagonal structure on the Lyapunov

matrix in order to convert the corresponding non-linear BMI

optimization problem into a convex LMI one. The structured

Lyapunov function can introduce some conservatism. On

the other hand, it can significantly decrease the complexity

of computations. The ability of the synthesized static gain

to control a three-phase shunt active filter system will be

investigated through numerical simulations.

The paper is organized as follows. The multivariable

linear model of a three-phase shunt active filter system

is given in Section II. The perturbation rejection problem

(H∞ control problem) is formulated in Section III. The

corresponding convex LMI optimization problem is obtained

in Section IV. Numerical simulations are provided in Section

V. Finally, a conclusion is given in Section VI.

Throughout the paper, the following notations are used:

• The superscripts “T ” and “′” stand for the transpose and

complex conjugate transpose respectively.

• Rm×n (Cm×n) is the set of all m × n real (complex)

matrices.

• Rn (Cn) is the set of all vectors with n real (complex)

elements.
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• In is the identity matrix of order n.

• O0m×n is the m×n zero matrix.

• For a complex number z, the complex conjugate is

denoted as z̄.

II. SHUNT ACTIVE FILTER SYSTEM

A. Description of the System

The role of a shunt active power filter is to compensate

current harmonics demanded by non-linear loads so that the

network current remains quasi-sinusoidal [6]. It is connected

in parallel to the electrical network, and composed of three

main parts (Fig. 1):

1) A pulse-width modulated voltage source inverter using

IGBTs,

2) A switching ripple LC filter used to sink high fre-

quency switching harmonics,

3) A control system used to drive the switching devices.

B. Single Phase Modeling

Fig. 2 shows the electrical circuit of one single phase of

a shunt active filter system. The corresponding state model

is given by

ẋ = Ax+Buu+Bww (1)

• State vector: x =
[
inet iinv vCa f

]T ∈R3

• Control input: u = uinv ∈R

• Perturbation vector: w =
[
iload vnet

]T ∈R2

A=








− rnet
Lnet

0 − 1
Lnet

0 0 − 1
La f

1
Ca f

1
Ca f

0








,Bw=







0 1
Lnet

0 0

1
Ca f

0







,Bu=







0

1
La f

0







C. Three-Phase Modeling

Using (1), one can easily obtain the state model of a three-

phase shunt active filter system in the three-phase domain

(a,b,c) [4]. Apply the Concordia transformation in order

Network

rnet

Shunt active
filter

Non-linear load

PCC

Control circuit

Lnet

Ca f

PWM pulses

La f

Voltage source inverter

vnet

Fig. 1. Shunt active filter configuration

to map the state model from this domain into a two-phase

orthogonal stationary frame (α,β ),

Tcon =

√

2

3

(
1 − 1

2
− 1

2

0
√

3
2

−
√

3
2

)

(2)

followed by the Park transformation in order to introduce the

constant angular velocity θ̇ of the rotating orthogonal frame,

Tpark =

(
cosθ sinθ

−sinθ cosθ

)

(3)

followed by a complex linear transformation in order to

obtain a mathematically decoupled model in a complex frame

(cd,qi),

Tc =
1√
2

(
1 − j

− j 1

)

; j =
√
−1 (4)

The resulting multivariable linear state model of a three-

phase shunt active filter system in the frame (cd,qi) is
[

ẋcd

ẋqi

]

=

(

A+ jθ̇ I3 O0

O0 A− jθ̇ I3

)[

xcd

xqi

]

+

(

Bu O0

O0 Bu

)[

ucd

uqi

]

+

(

Bw O0

O0 Bw

)[

wcd

wqi

]

(5)

For more details concerning the transition from the frame

(a,b,c) to (cd,qi), the reader is referred to [4], [7].

III. PERTURBATION REJECTION PROBLEM

In order to guarantee a suitable harmonic compensation

by the active filter system, the three main objectives of the

controller to be synthesized are:

1) To decrease the Total Harmonic Distortion (THD) of

the network current,

2) To eliminate the fundamental component of the inverter

current,

3) To damp resonances caused by the network impedance

and the switching ripple filter.

The design of a static output feedback control law with

H∞ performance requires the formulation of the active

filter system as a perturbation rejection problem (Fig. 3).

According to the defined control objectives, the controlled

outputs to be minimized are the fundamental inverter current

and the harmonics of the network current. Their extraction

requires first order complex-valued low pass filters, and an

orthogonal frame rotating at an angular velocity θ̇ equal to

vCa f

Ca f

La f
iinv

uinv

+

-

iload

rnetLnet

inet iCa f

+

-

PCC

vnet

+

-

Fig. 2. Single phase equivalent circuit
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Fig. 3. Perturbation rejection problem

the fundamental system frequency so that the fundamental

component of any signal is shifted to the dc component (i.e.

zero frequency).

The state model of the low pass filter used to pass the

fundamental inverter current in the frame (cd,qi) is

[
ẋ f1cd

ẋ f1qi

]

=

(

a1 0

0 ā1

)[
x f1cd

x f1qi

]

+

(

b1 0

0 b̄1

)[

iinvcd

iinvqi

]

[
zinv fcd

zinv fqi

]

=

(

c1 0

0 c̄1

)[
x f1cd

x f1qi

]

+

(

d1 0

0 d̄1

)[

iinvcd

iinvqi

]

(6)

The state model of the low pass filter used to pass the

fundamental network current is
[

ẋ f2cd

ẋ f2qi

]

=

(

a2 0

0 ā2

)[
x f2cd

x f2qi

]

+

(

b2 0

0 b̄2

)[

inetcd

inetqi

]

[
znet fcd

znet fqi

]

=

(

c2 0

0 c̄2

)[
x f2cd

x f2qi

]

+

(

d2 0

0 d̄2

)[

inetcd

inetqi

]

(7)

The variables in models (6) and (7) are selected such that

1) the phases of the filters are equal to 0◦ at the zero

frequency (i.e. dc components are isolated without any

harmful phase shift),

2) only dc components pass through the filters.

Fig. 4 shows the frequency responses of the low pass filters in

the frame (cd,qi). Combining models (5), (6) and (7) yields

the state space model of the open loop system,

Ẋ = AcX+Bucua +Bwcwa

z = Czc X

y = CcX (8)

Let x f =
[
x f1 x f2

]T ∈R2

• State vector (n = 10):

X =
[

xT
cd xT

fcd
xT

qi xT
fqi

]T

∈Rn

• Input vector (nu = 2): ua =
[
ucd uqi

]T ∈Rnu

• Perturbation vector (nw = 4): wa =
[
wT

cd wT
qi

]T ∈Rnw

• Controlled output vector (nz = 4):

z =
[

zinv fcd
znethcd

zinv fqi
znethqi

]T

∈Rnz

• The measured output vector y only contains the inverter

current (iinv), the voltage at the point of common

coupling (vCa f
), and the state variable (x f1) (y ∈ Rny ;

ny = 6).

(⋆) denotes the complex conjugate of the upper non-zero

block (1,1).

Ac =












A+ jθ̇ I3 O0 O0
...

b1Cinv a1 0
... O05×5

b2Cnet 0 a2

...

· · · · · · · · · · · · · · ·
O05×5

... ⋆












,Buc =









Bu

... O05×1

O02×1

...

· · · · · · · · ·
O05×1

... ⋆









,

Bwc =









Bw

... O05×2

O02×2

...

· · · · · · · · ·
O05×2

... ⋆









,Cinv =
(
0 1 0

)
,Cnet =

(
1 0 0

)
,

Czc =









d1Cinv c1 0
... O02×5

Cnet −d2Cnet 0 −c2

...

· · · · · · · · · · · · · · ·
O02×5

... ⋆









IV. STATIC OUTPUT FEEDBACK CONTROL WITH

H∞ PERFORMANCE

The static output feedback control law to be synthesized

is given by

ua = Kcy (9)
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Fig. 4. Low pass filters frequency responses
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where Kc is a static complex-valued gain whose structure in

the frame (cd,qi) is

Kc =

(
K11 O0

O0 K̄11

)

∈ C
nu×ny ; K11 ∈ C

nu
2 × ny

2 (10)

Its equivalent structure in the frame (α,β ) is

Kαβ =

(
Re(K11) Im(K11)

−Im(K11) Re(K11)

)

∈R
nu×ny (11)

Re and Im denote the real and imaginary parts respectively.

From (8) and (9), the state space model of the closed loop

system is given by

Ẋ = (Ac +BucKcCc)
︸ ︷︷ ︸

Acl

X+ Bwc
︸︷︷︸

Bcl

wa

z = Czc
︸︷︷︸

Ccl

X (12)

In this case, the perturbation rejection problem with H∞

performance consists of finding a controller Kc such that the

H∞ norm of the closed loop system is minimized (or it is less

than a prespecified positive bound γ). Using the Bounded

Real Lemma [8], this is equivalent to finding a static gain

Kc ∈ Cnu×ny and a symmetric positive definite matrix Q ∈
Cn×n such that the following inequality is satisfied







AclQ+QA
′
cl Bcl QC

′
cl

B
′
cl −γInw O0

CclQ O0 −γInz







< 0 (13)

This matrix inequality is bilinear due to the fact that the state

variables are not fully accessible (i.e. the output matrix Cc is

not an identity one). In order to solve the problem by non-

iterative means, the BMI (13) is transformed into a convex

LMI by

1) Imposing a block diagonal structure on the Lyapunov

matrix Q,

Q =

(
Q11 O0

O0 Q22

)

(14)

where Q11 ∈ Cny×ny and Q22 ∈ C(n−ny)×(n−ny) are two

symmetric positive definite matrices.

2) Representing the open loop system (8) by a new state

space realization such that the resulting output matrix

will be equal to
(
Iny O0ny×(n−ny)

)
. Let X̃ ∈Rn be the

new state vector. It is related to the old state vector X

via a non-singular state transformation matrix T ,

X = T X̃; T ∈R
n×n (15)

The new state space realization of the closed loop system is

˙̃X = (Ã+ B̃uKcC̃)
︸ ︷︷ ︸

Acl

X̃+ B̃w
︸︷︷︸

Bcl

wa

z = C̃z
︸︷︷︸

Ccl

X̃ (16)

where Ã = T−1AcT , B̃u = T−1Buc , B̃w = T−1Bwc , C̃ = CcT ,

and C̃z = Czc T .

The non-singular matrix T must be selected such that the

new output matrix C̃ is equal to

CcT =
(
Iny O0ny×(n−ny)

)
(17)

The resulting LMI system is given by

Q > 0






ÃQ+QÃ
′
+ B̃uYC̃ +C̃

′
Y

′
B̃

′
u B̃w QC̃

′
z

B̃
′
w −γInw O0

C̃zQ O0 −γInz







< 0 (18)

where Y = KcQ11 ∈ Cnu×ny and Q is a symmetric block

diagonal matrix defined in (14).

This system involves complex-valued constant and variable

matrices. It should be transformed into a real one by

decomposing all matrix variables and coefficients into real

and imaginary parts. For example, the decomposition of the

constant matrix Ã is given by Ã1 + jÃ2.

The resulting convex optimization problem subject to two

real-valued LMIs can be formulated as

Minimize γ subject to
(

Q1 Q2

−Q2 Q1

)

> 0 (19)
















M B̃w1
ET

... N B̃w2
−FT

B̃T
w1

−γInw O0
... −B̃T

w2
O0 O0

E O0 −γInz

... F O0 O0
· · · · · · · · · · · · · · · · · · · · ·
−N −B̃w2

FT
... M B̃w1

ET

B̃T
w2

O0 O0
... B̃T

w1
−γInw O0

−F O0 O0
... E O0 −γInz
















< 0

(20)

where E = C̃z1
Q1 −C̃z2

Q2, F = C̃z1
Q2 +C̃z2

Q1,

M = Ã1Q1 + Q1ÃT
1 − Ã2Q2 + Q2ÃT

2 + B̃u1
Y1C̃1 + C̃T

1 Y T
1 B̃T

u1
−

B̃u1
Y2C̃2 − C̃T

2 Y T
2 B̃T

u1
− B̃u2

Y1C̃2 − C̃T
2 Y T

1 B̃T
u2

− B̃u2
Y2C̃1 −

C̃T
1 Y T

2 B̃T
u2

,

N = Ã1Q2 + Q2ÃT
1 + Ã2Q1 −Q1ÃT

2 + B̃u1
Y1C̃2 − C̃T

2 W T
1 B̃T

u1
+

B̃u1
Y2C̃1 − C̃T

1 Y T
2 B̃T

u1
+ B̃u2

Y1C̃1 − C̃T
1 Y T

1 B̃T
u2

− B̃u2
Y2C̃2 +

C̃T
2 Y T

2 B̃T
u2

.

There are four matrix variables to be determined: Q1, Q2,

Y1 and Y2. Q1 is a symmetric block diagonal matrix, while

Q2 is a skew symmetric block diagonal one. From the LMI

Control Toolbox in MATLAB [9], a LMI solver is used in

order to compute the matrix variables Q and Y . Therefore,
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the resulting complex-valued static output feedback gain is

given by

Kc = Y Q−1
11 (21)

Fig. 5 shows the magnitude responses of
(

Inet
Iload

)

with

and without control in the complex frame (cd,qi). The

closed loop magnitude response is that of a low pass filter

which only passes the cd component (i.e. the fundamental

component of the load current). Fig. 6 shows the magnitude

responses of
(

Iinv
Iload

)

with and without control. The closed

loop magnitude response is that of a band pass filter

which only passes the harmonics of the load current. These

figures also show the ability of the controller to damp LC

resonances.

The conservatism of this non-iterative algorithm can be

assessed by comparing the H∞ performance γ of the output

feedback problem to that obtained from a state feedback

problem . The upper bound γ of the H∞ norm of the closed

loop active filtering system is equal to 1 in the case of a

state feedback controller, and 57 in the case of an output

feedback controller. The difference is due to the conservatism

introduced by the structured Lyapunov matrix.

V. SIMULATION RESULTS

This section shows the validity and efficiency of the syn-

thesized output feedback control law with H∞ performance.

Consider a power source whose line voltage is 400Vrms

and frequency is 50Hz. A load current composed of a

fundamental component and harmonics of rank 6k ± 1 (k

= 1,2,3,4) with decreasing energy is applied to the system

in which the inverter is considered as a simple gain. The

harmonic spectrum of the generated load current is shown

in Fig. 7. Fig. 8 shows the resulting quasi-sinusoidal network

current. Its THD has decreased from 29.04% to 4.87% after

compensation. The fundamental component of the inverter

Input: load current − Output: network current
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Fig. 5. Open and closed loop behavior of
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Fig. 6. Open and closed loop behavior of
(

Iinv
Iload

)

current is approximately equal to zero as shown in the

harmonic spectrum of Fig. 9. The THD of the voltage at

PCC has decreased from 14.53% to 1.65% after filtering

(Fig. 10). The above results show the ability of the output

feedback controller to provide the desired control objectives.
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Fig. 7. Harmonic spectrum of the generated load current

VI. CONCLUSION

In this paper, a three-phase shunt active filtering system

has been successfully driven by an output feedback controller

using only the inverter current and voltage at the point of

common coupling as measured outputs. Therefore, there is

no need for network current sensors. The design of the

static output feedback control law with H∞ performance has

been performed using a non-iterative algorithm, by imposing
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a block diagonal structure on the Lyapunov matrix. This

method can introduce some conservatism, but it decreases

the complexity of computations. Simulation results have

shown the validity of the output feedback control for a three-

phase shunt active filter. Future work will include numerical

simulations using a real voltage source inverter, and the real-

time implementation of the control algorithm in order to

drive a laboratory prototype of an active filtering system.
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Fig. 8. Harmonic spectrum of the resulting network current
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Fig. 9. Harmonic spectrum of the inverter current
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