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Abstract— Asymptotic cooperative stability is studied in the
paper, and explicit conditions are found for heterogeneous non-
linear systems to reach a consensus. Specifically, a new compar-
ison theorem is proposed for concluding both cooperative stabil-
ity and Lyapunov stability, and it is in terms of vector nonlinear
differential inequalities (on Lyapunov function components). It
is unique that the proposed result admits both heterogeneous
dynamics of nonlinear systems and intermittent unpredictable
changes in their associated sensing/communication network. Its
proof is done using a combination of Lyapunov argument (in
terms of the Lyapunov function components) and topology-
dependent argument (in terms of structural properties of
reducible matrices). Consequently, the proposed result does
not impose any of the following assumptions required in
the existing results: the knowledge of a successful Lyapunov
function, system dynamics being convex, nonsmooth analy-
sis, fixed or certain types of communication patterns, quasi-
monotone property on differential inequalities. If the systems
under consideration are all linear, the theorem reduces to
the necessary and sufficient condition of cooperative control-
lability obtained using the matrix-theoretical approach, and
the inequalities become equalities. For nonlinear systems, the
proposed cooperative stability conditions are straightforward to
verify. Several types of nonlinear systems are used as examples
to illustrate application potentials of the comparison theorem
in both cooperative stability analysis and cooperative control
design.

I. INTRODUCTION

In layman’s language, a group of systems are called to

be cooperative if the future behavior of a specific system

corresponds in a certain way the behaviors of those systems

in its sensing/communication range, and the corresponding

feedback control is said to be cooperative control. The

most distinctive feature of cooperative control design is that

feedbacks are intermittently available and the changes cannot

be predicted. As such, stability analysis must be done for

the general case of uncertain changes. The basic setting

of cooperative control is the consensus problem in which

dynamical systems are desired to reach a common consensus

value. To ensure convergence, certain connectivity condition

over time on the sensing/communication network among the

dynamical systems would be needed.

For linear dynamical systems, the consensus problem is

essentially solved. It is shown in [2] that, for linear first-order

integrator systems, the nearest neighboring rule [16] solves

the consensus problem provided that their communication

topology is characterized by an undirected and connected

graph. This graph-based condition is relaxed in [13], [4] so

that the changing network topologies over repeated intervals
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correspond to a directed graph either with strong connectivity

or of a spanning tree. For heterogeneous linear systems,

it is shown using a matrix-theoretical approach [11], [10]

that output-feedback cooperative control can be designed if

and only if the corresponding sensing/communication matrix

sequence is sequentially complete.

For cooperative control of nonlinear systems, there are

several results to deal with the following specific cases.

Fixed patterns of information feedback or dynamics coupling

among systems are qualitatively analyzed to study dynamical

circuit networks [1], to design decentralized control [14], and

to synchronize coupled oscillators with linear coupling [19],

[18]. For discrete systems with convex dynamics, stability

analysis is done using the combination of graph theory

and discrete set-valued Lyapunov functions for time-varying

topological patterns [7], and this result is also extended to

continuous-time coupled nonlinear systems [5]. Should the

communication pattern be time varying but bidirectional,

Lyapunov function can be found to design cooperative con-

trol for nonlinear systems [12]. In [9], cooperative control

of nonlinear systems is designed by employing state trans-

formation and by extending the matrix theoretical approach

through the use of Lyapunov function components, but

the result reported involves nonlinear transformations and

is limited to the case that sensing/communication matrix

sequence is lower triangularly complete.

In this paper, we consider the most general case that

the systems are heterogeneous and nonlinear and that their

corresponding sensing/communication matrix sequence is

sequentially complete while arbitrary otherwise. The ma-

jor challenge of applying the standard nonlinear analysis

methodologies is that successful Lyapunov function can only

be found by a backward procedure [3], [8] and hence is too

difficult to be found due to the combination of uncertain

topological changes and nonlinear dynamics. To overcome

this inherent difficulty, we choose to extend the approach of

employing Lyapunov function components [9] by establish-

ing a new comparison theorem. The theorem is proven using

a combined Lyapunov and topology-dependent argument so

that the resulting vector nonlinear differential inequalities

admit heterogeneous dynamics of nonlinear systems as well

as unknown intermittently changing sensing/communication

network and that Lyapunov function of the overall system is

not needed.

It is worth noting that the existing comparison theorem on

vector differential inequalities [17] for concluding asymptotic

stability requires the so-called quasi-monotone property. The

proposed comparison theorem does not require such an as-

sumption, which enriches the comparison theory. Compared
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to the existing results on consensus of nonlinear systems,

the proposed theorem does not require that system dynamics

be convex, does not involve any use of nonsmooth analysis,

does not require any state transformation, and does not limit

sensing/communication network to any specific patterns.

And, it provides a general set of nonlinear inequalities that

can be easily checked. Several examples are used to illustrate

its applications in both analysis and design.

II. PROBLEM STATEMENT

Consider the following nonlinear heterogeneous systems:

żµ = fµ(zµ) + gµ(zµ)uµ, wµ = hµ(zµ), (1)

where µ = 1, · · · , q; zµ ∈ ℜnµ , uµ ∈ ℜm and wµ ∈ ℜm

are the state, the control, the output of the µth system; and

n = n1 + · · · + nq .

The distinctive feature in the design of cooperative control

ui is that feedback from the sensing/communication network

keeps changing intermittently and the changes are not known

apriori. In the general case of a dynamically changing

environment, information exchanges among the systems are

captured by sensing/communication matrix S(t), where

S(t) =











1 s12(t) · · · s1q(t)
s21(t) 1 · · · s2q(t)

...
...

...
...

sq1(t) sq2(t) · · · 1











(2)

sii ≡ 1, sij(t) = 1 if output wj(t) from the jth dynamical

system is known to the ith system at time t, and sij(t) = 0
if otherwise. Over time, binary changes of S(t) occur at an

infinite sequence of time instants, denoted by {tk : k ∈ ℵ},

and S(t) is piecewise constant as S(t) = S(tk) for all t ∈

[tk, tk+1), where ℵ
△
= {0, 1, · · · ,∞}.

Time sequence {tk : k ∈ ℵ} and the values of S(tk) may

not be known apriori and should be treated as uncertainties

and handled in cooperative control design. At time t, the

ith system gets whatever feedback information received and

hence the binary values of sij(t) (for j = 1, · · · , q) become

known. Accordingly, the following nonlinear control can be

implemented:

ui = Ui(si1(t)w1(t), · · · , siq(t)wq(t)), (3)

in which sij(t) are necessarily included. In case that only

the relative feedback information available, the cooperative

control must be of form

ui = Ui(si1(t)[w1(t) − wi(t)], · · · , siq(t)[wq(t) − wi(t)]).
(4)

The fundamental problem studied in this paper is to ana-

lytically determine a set of stability conditions for systems

(1) under cooperative control (3) or (4). The stability of

our interest is whether systems (1) are cooperative in the

sense that all their state variables reach the same value of

consensus. In what follows, systems in (1) are said to be

cooperatively stable if, for every ǫ > 0, there exist non-empty

set Ω0 and constants δ > 0 and c ∈ ℜ such that zµ(t0) ∈ Ω0

and ‖zµ(t0)−c1‖ ≤ δ imply ‖zµ(t)−c1‖ ≤ ǫ for all t ≥ t0

and for all µ, where 1 is the column vector of 1s. The systems

are said to be asymptotically cooperatively stable if they are

cooperatively stable and if limt→∞ zµ(t) = c1. ∗

To ensure that the states remain bounded, Lyapunov sta-

bility is also of interest. If the systems are all asymptotically

stable as zµ → 0, the consensus at the origin is reached.

Since asymptotic stability can be viewed as a special case

of asymptotic cooperative stability and since existing results

are available to check asymptotic stability, we will study in

this paper the general cooperative stability problem in which

limit c is not fixed.

III. STABILITY RESULT OF LINEAR COOPERATIVE

SYSTEMS

For heterogeneous linear systems under linear cooperative

control, the cooperative system becomes [11]:

ẋ = [−I + D(t)]x, x(0) given, t ≥ 0, (5)

where x = [ zT
1 · · · zT

q ]T , and D(t) is the matrix combining

sensing/communication matrix S(t) with the dynamics of

individual systems as well as linear cooperative control laws.

For instance, if ni = 1 and the average protocol is used,

dij(t) =
sij(t)

si1(t) + · · · + siq(t)
.

In example 2 to be presented later, nq > 1 and the corre-

sponding matrix D(t) is provided. A nonnegative and piece-

wise constant matrix such as D(t) (or S(t)) has a canonical

form E\ in the following lower-triangular expression [6]:

T T DT =











E11 0 · · · 0
E21 E22 · · · 0

...
...

. . .
...

Ep1 Ep2 · · · Epp











△
= E\, (6)

where T is a permutation matrix, 1 ≤ p ≤ n, Eii ∈ ℜri×ri

are square and irreducible, and r1 + · · · + rp = n. The

structure reveals connectivity or grouping properties of the

systems. If p = 1, D(t) is said to be irreducible, and it is

known that the corresponding graph is strongly connected.

On the other hand, matrix D(t) is said to be reducible if

p > 1 in (6), which is the more general case. For any p ≥ 1,

matrix D(t) is said to be lower triangularly complete and the

corresponding graph has at least one globally reachable node

if, in (6) and for every i > 1, there exists at least one j < i

such that Eij 6= 0. Physically, matrix D(t) being irreducible

means all the systems are connected together as one group;

and matrix D(t) being lower triangularly complete means

that those systems corresponding to block E11 act as the

instantaneous leaders and the rest of systems follow the

leaders.

Asymptotic cooperative stability of system (5) is deter-

mined by cumulative connectivity property of the network.

∗In many of existing literature, systems in (1) and with n1 = · · · = nq

are said to reach a consensus if limt→∞ zµ(t) = c′ for all µ and for
c′ ∈ ℜn1 . In that case, the concept of cooperative stability can be applied
to zµj for fixed j and for all µ = 1, · · · , q.
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Mathematically, cumulative connectivity over consecutive

time intervals is described by the following binary product:

for any given subsequence {k′
v : v ∈ ℵ} of ℵ,

S[tk′
v

,tk′
v+1

]
△
= S(tk′

v+1
)
∧

S(tk′
v+1

−1)
∧

· · ·
∧

S(tk′
v
), (7)

where
∧

denotes the operation of generating a binary product

of two binary matrices. Then, sensor/communication matrix

sequence {S(tk), k ∈ ℵ} of (2) is said to be sequentially

complete if an infinitely-long subsequence {k′
v : v ∈ ℵ}

exists such that S[tk′
v

,tk′
v+1

]
is lower triangularly complete. In

other words, sequence {S(tk), k ∈ ℵ} of (2) is sequentially

complete if S[tk,∞] is lower triangularly complete for all

tk. Again, this regularity condition on infinite number of

switchings is equivalent to the connectivity condition that,

staring from any tk, the union of all the future graphs has at

least one globally reachable node.

It can be easily shown by counter examples that, if S(t)
is not sequentially complete, cooperative asymptotic stability

cannot be achieved. It is also shown in [11] that, if the

systems are all controllable, matrix D(t) is non-negative,

piecewise constant and row-stochastic and has the same

sequential completeness property as matrix S(t) by first

mapping the systems into a canonical form and then properly

choosing linear cooperative laws. This leads us to make the

following assumptions without loss of any generality.

Assumption 1: Sequence {S(tk), k ∈ ℵ} is sequentially

complete.

Assumption 2: Matrix D(t) is non-negative, piecewise

constant and row-stochastic; and, whenever its element

dij(t) 6= 0, it is uniformly bounded from below by a

positive constant. Furthermore, the sequence {D(tk), k ∈ ℵ}
is sequentially complete if sequence {S(tk), k ∈ ℵ} is

sequentially complete.

Since S(t) is not known apriori in control design, neither

is D(t). The following theorem on asymptotic cooperative

stability summarizes the results in [11]. Note that system (5)

has equilibrium points of c1 for all c ∈ ℜ. Its Lyapunov

stability can be shown using Lyapunov function V (x) =
xT x, but the cooperative stability problem of system (5)

is not trivial or similar to the standard asymptotic stability

problem.

Theorem 1: [11] Given a collection of controllable linear

systems and their sensing/communication network, neighbor-

ing feedback control laws can be chosen to yield closed-loop

linear system (5) such that assumption 2 holds. Furthermore,

system (5) is asymptotically cooperatively stable if and only

if assumption 1 holds.

Proof of theorem 1 is done by using the general ma-

trix sequence solution of linear time-varying but piecewise-

constant systems and by studying its convergence. Hence,

the proof itself cannot be extended to nonlinear systems.

Nonetheless, the result contained in theorem 1 has wider

implications. Specifically, consider the two functions of x2
i

and (xµ − xk)2 for any i, µ, k ∈ {1, · · · , n}. While the

quantities are not Lyapunov functions, they can be viewed

as Lyapunov function components and used to reveal or

conclude stability properties. It follows from (5) that

d

dt
x2

i = −2x2
i + 2

n
∑

l=1

dil(t)xixl, (8)

and that

d

dt
(xµ − xk)2

= −2(xµ − xk)2 + 2
n

∑

l=1

(xµ − xk)[dµl(t) − dkl(t)]xl. (9)

According to theorem 1, x2
i are uniformly bounded, and

(xµ − xk)2 converges to zero. A natural question arising

is whether Lyapunov stability and asymptotic cooperative

stability can be directly concluded from equalities (8) and

(9). Though not trivial, the answer to this question should

be affirmative since the equalities are equivalent to dynamics

of system (5). A more interesting and important question

is whether the same stability results can be concluded for

nonlinear systems based on inequalities similar to the above

equalities. The affirmative answer to this question is the

subject of our next section.

IV. COMPARISON THEOREM FOR NONLINEAR

COOPERATIVE SYSTEMS

In what follows, a scalar function α(s) is said to be strictly

monotone increasing (or decreasing) if α(s1) < α(s2) (or

α(s1) > α(s2)) for any s1 < s2; and the function α(s) is

said to be strictly increasing (or decreasing) over an interval

[s1, s2] if α(s1) < α(s2) (or α(s1) > α(s2)) and if, for any

[s′1, s
′
2] ⊂ [s1, s2], α(s′1) ≤ α(s′2) (or α(s′1) ≥ α(s′2)). Then,

we have the following theorem on stability and cooperative

stability of nonlinear cooperative systems. Comparing (8)

and (11) as well as (9) and (12), we know that, as a new

addition to the comparison theory [17], the theorem can be

referred to as comparison theorem for cooperative control.

Definition: Scalar function E : ℜ → ℜ+ is said to be

a Lyapunov function component if E(s) is differentiable

and positive definite with respect to s and it is also strictly

monotone increasing and radially-unbounded with respect to

|s|.
Theorem 2: Consider the closed-loop networked-

connected nonlinear system

ẏ = F(y, D(t)), y ∈ ℜn, (10)

which corresponds to system (10) under neighboring feed-

back control laws (3) or (4). Suppose that, through the

cooperative control design, assumption 2 holds and the

following two inequalities are satisfied along trajectories of

system (10):

(i) For Lyapunov function components Vi(·) with i =
1, · · · , n,

d

dt
Vi(yi) ≤ −ξi(|yi|) − 2|ηi(yi)|

2

+2

n
∑

l=1

dil(t)ηi(yi)ηi(yl), (11)
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where ξi(·) ≥ 0, and ηi(·) are function with ηi(0) = 0.

(ii) For any pair of indices (µ, k) and for Lyapunov function

component Lµ,k(·),
d

dt
Lµ,k(yµ − yk)

≤ −ξ′µ,k(|yµ − yk|) − 2|η′
µ,k(yµ) − η′

µ,k(yk)|2 + 2

n
∑

l=1

[η′
µ,k(yµ) − η′

µ,k(yk)][dµl(t) − dkl(t)]η
′
µ,k(yl), (12)

where ξ′µ,k(·) ≥ 0, and η′
µ,k(·) are strictly monotone

increasing function satisfying η′
µ,k(0) = 0.

Then, system (10) is Lyapunov stable and, under assumption

1, it is also asymptotically cooperatively stable.

Proof of theorem 2 is included in the appendix. In essence,

inequality (11) renders Lyapunov stability and, under as-

sumption 1, inequality (12) ensures asymptotic cooperative

stability. Several comments are worth noting here. First,

local stability results can be concluded using theorem 2 if

inequalities (11) and (12) are satisfied locally in a com-

pact set containing the origin. Second, theorem 2 includes

theorem 1 as the special case of ηi(s) = η′
µ,k(s) = s,

ξi(·) = ξ′µ,k(·) = 0, and Vi(s) = Lµ,k(s) = s2. Third, while

Lyapunov function components Vi(·) and Lµ,k(·) can always

be chosen, it is usually too difficult to find or assume a differ-

entiable Lyapunov function because of nonlinear dynamics

and of time-varying sensing/communication topology whose

changes are sequentially complete but otherwise unknown

apriori. Fourth, despite the unpredictable changes in S(t)
and hence in D(t), the two inequalities in theorem 2 can be

checked, and they can also be used to guide a cooperative

control design. Fifth, no assumption is made about convexity

of the solutions of nonlinear systems, and stability proof

is done using the new and topology-dependent Lyapunov

argument. The right hand sides of (11) and (12) are not

negative semi-definite in general, nonetheless asymptotic

cooperative stability is concluded in general for the overall

system. And, there is no need to use nonsmooth analysis.

Sixth, the existing comparison theorem on vector differential

inequalities (theorem 1.5.1 on page 22 of [17]) requires

the so-called quasi-monotone property, such a property does

not hold for cooperative systems, nor is it required by

theorem 2. Finally, it has been shown in theorem 1 that

S(t) being sequentially complete is necessary for concluding

cooperative stability, while the two inequalities in theorem 2

can be relaxed. One such relaxation is given by the following

corollary, and its proof is analogous and hence is left to the

readers.

Corollary 1: Theorem 2 holds if inequality (11) is re-

placed by either

d

dt
Vi(yi) ≤ −ξi(|yi|)+2ηi(yi)

n
∑

l=1

dil(t)[βi,l(yl)−βi,l(yi)],

(13)

or

d

dt
Vi(yi) ≤ −ξi(|yi|)+2ηi(yi)

n
∑

l=1

dil(t)βi,l(yl − yi), (14)

and/or if inequality (12) is replaced by either
d

dt
Lµ,k(yµ − yk)

≤ −ξ′µ,k(|yµ − yk|) + 2[η′
µ,k(yµ) − η′

µ,k(yk)]

n
∑

l=1

dµl(t)

×[β′
µ,k,l(yl) − β′

µ,k,l(yµ)] − 2[η′
µ,k(yµ) − η′

µ,k(yk)]

×

n
∑

l=1

dkl(t)[β
′′
µ,k,l(yl) − β′′

µ,k,l(yk)], (15)

or
d

dt
Lµ,k(yµ − yk)

≤ −ξ′µ,k(|yµ − yk|) + 2η′
µ,k(yµ − yk)

n
∑

l=1

[dµl(t)β
′
µ,k,l(yl − yµ) − dkl(t)β

′′
µ,k,l(yl − yk)], (16)

where βi,l(·), β′
µ,k,l(·), and β′′

µ,k,l(·) are also scalar functions

that are strictly monotone increasing functions and pass

through the origin.

Compared to those in theorem 2, the inequalities in

corollary 1 are more general and also easier to be used. In

particular, corollary 1 includes theorem 2 as the special case

that βi,l(s) = ηi(s) and β′
µ,k,l(s) = β′′

µ,k,l(s) = η′
µ,k(s).

Using theorem 2 and corollary 1, systematical designs of co-

operative control can be done for several classes of nonlinear

systems, but the details are beyond the scope of this paper.

In what follows, several examples are included to illustrate

applications of theorem 2 and corollary 1, and matrix se-

quence of S(t) is assumed to be sequentially complete. Due

to space limitation, simulation results of these examples are

not included but will be presented at the conference.

Example 1: Consider the following version of Kuramoto

model [15]:

θ̇µ =

q
∑

j=1

eµj(t) sin(θj − θµ),

where µ = 1, · · · , q, and

eµj(t) =
sµj(t)

∑q
i=1 sµi(t)

. (17)

It is easy to check that matrix D(t) = E(t) = [eµj ] ∈ ℜq×q

satisfies assumption 2. In this case, it is easy to establish

inequalities (14) and (16) using Vi(s) = Lµ,k(s) = 1 −
cos(s). Hence, the overall system is locally asymptotically

cooperatively stable.

Similarly, global asymptotic cooperative stability can be

concluded using Vi(s) = Lµ,k(s) = s2 for the more general

class of systems in the form

θ̇µ =

q
∑

j=1

eµj(t)γµj(θj − θµ), (18)

where γµj(·) are strictly monotone increasing and γµj(0) =
0. Note that equation (18) can also be viewed as a nonlinear

version of Vicsek’s model [16]. △
Example 2: As another generalization of Vicsek’s model

[16], consider the case that 2-D heading of a particle is

adjusted according to the average of particles’ velocity
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projections along one of the primary axis. Then, dynamic

equations are

θ̇µ = − tan(θµ) +
1

cos(θµ)

q
∑

j=1

eµj(t) sin(θj),

where µ = 1, · · · , q, and eµj(t) is given by (17). It is

straightforward to verify using Vi(s) = Lµ,k(s) = s2 that

inequalities (11) and (12) hold locally. Thus, the overall

system is asymptotically cooperatively stable in the sense

that sin(θj) = c for some c ∈ ℜ and for all initial conditions.

More generally, inequalities (13) and (15) can be estab-

lished and (either local or global) asymptotical cooperative

stability can be claimed for the following class of systems

θ̇µ = −γ(θµ) +

q
∑

j=1

eµj(t)γ(θj),

where γ(·) is any (either locally or globally) strictly mono-

tone increasing function with γ(0) = 0. △
Example 3: Consider the following heterogeneous sys-

tems: 













ẋi = ui, i = 1, · · · , q − 1,

ẋq1 = γ1(xq2) − γ1(xq1),
ẋq2 = γ2(xq3) − γ2(xq2),
ẋq3 = γ3(xq1) − γ3(xq3) + uq,

where uj ∈ ℜ for all j, and γi(·) are strictly monotone

increasing functions with γi(0) = 0. For this group of

systems, nonlinear output-feedback cooperative control can

be chosen to be

uµ =

q
∑

j=1

eµj(t)[γ3(yj) − γ3(yµ)],

where µ = 1, · · · , q, eµj(t) is given by (17), yi = xi for

i = 1, · · · , q − 1, and yq = xq1. The matrix corresponding

to the overall system is

D(t) =



















e11(t) · · · e1(q−1) e1q 0 0
...

...
...

...
...

e(q−1)1(t) · · · e(q−1)(q−1) e(q−1)q 0 0
0 · · · 0 0 1 0
0 · · · 0 0 0 1

eq1(t) · · · eq(q−1) eqq 0 0



















,

and it is shown in [11] that the above matrix satisfies assump-

tion 2. Inequalities (14) and (16) can be established using

Vi(s) = Lµ,k(s) = s2, according to which asymptotical

cooperative stability can be shown.

Analogously, for the group of systems














ẋi = ui, i = 1, · · · , q − 1,

ẋq1 = γ1(xq2 − xq1),
ẋq2 = γ2(xq3 − xq2),
ẋq3 = γ3(xq1 − xq3) + uq,

nonlinear cooperative control can be chosen to be

uµ =

q
∑

j=1

eµj(t)γ3(yj − yµ).

The above control is also output-feedback and only requires

relative measurements. Upon verifying that inequalities (13)

and (15) hold (under many choices of Vi(s) and Lµ,k(s)),
asymptotical cooperative stability can be concluded.

It is apparent that cooperative stability of the above sys-

tems with γ1(s) = s3 cannot be analyzed using linearization

around the origin and that the systems with γ2(s) = s1/3

do not have a linearized version in any neighborhood of the

origin. △

V. CONCLUSION

In this paper, asymptotic cooperative stability of het-

erogeneous and nonlinear systems is investigated. A new

comparison theorem is presented to conclude cooperative

stability, and its proof fully explores properties of both

system dynamics in terms of their Lyapunov function compo-

nents and their associated sensing/communication network.

It is shown by illustrative examples that the proposed new

stability result can easily be used to establish cooperative

stability or to carry out cooperative control design.
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VI. APPENDIX

Proof of theorem 2: Let Ω = {1, · · · , n} be the set of indices

on state variables. We can define the following three subsets

of indices: at any instant time t,






Ωmax(t) = {i ∈ Ω : yi = ymax}
Ωmid(t) = {i ∈ Ω : ymin < yi < ymax}
Ωmin(t) = {i ∈ Ω : yi = ymin}

,

where

ymax(t) = max
j∈Ω

yj(t), ymin(t) = min
j∈Ω

yj(t).

It is apparent that, unless yi = yj for all i and j, ymin <

ymax and set Ω is partitioned into the three mutually disjoint

subsets of Ωmax, Ωmid and Ωmin. Defining another index

set

Ωmag(t) = {i ∈ Ω : |yi| = ymag} , ymag(t) = max
j∈Ω

|yj(t)|,

we know that, if i ∈ Ωmag(t), either i ∈ Ωmax(t) or i ∈
Ωmin(t) but not both unless yj are identical for all j ∈ Ω. For

each state variable yi, we can define the set of its neighbors

as

Θi(t) = {j ∈ Ω : j 6= i and dij > 0} .

In addition, we can define the set of its neighbors with

distinct values as

Θ′
i(t) = {j ∈ Ω : j 6= i, dij > 0, and yj 6= yi} .

Then, for any i ∈ Ωmag , define

Θ′
i,mag(t) = {j ∈ Ω : dij > 0 and j 6∈ Ωmag} .

Finally, let us define the maximum relative distance as

δmax(t) = max
µ,k∈Ω

|yµ(t) − yk(t)|.

It is obvious that δmax(t) = ymax(t) − ymin(t).
The proof is completed by establishing the following six

claims. The first claim deals with Lyapunov stability, and

the rest are about convergence and asymptotic cooperative

stability. It is worth noting that, if ymin = ymax at some

instant of time t, Ω = Ωmax = Ωmin while Ωmid is empty

and that, by claim 3, the system is already asymptotically

cooperative stable. Thus, in the analysis after claim 3, we

can assume without loss of any generality that ymin < ymax.

Claim 1: Lyapunov stability. To show Lyapunov stability, it

is sufficient to demonstrate that the maximum magnitude of

all the state variables does not increase over time. Suppose

without loss of any generality that, at time t, i∗ ∈ Ωmag(t). It

follows from (11), from the definition of Ωmag(t), from ηi(·)
being strictly monotone increasing and passing through the

origin, and from D(t) being non-negative and row stochastic

that

d

dt
Vi∗(yi∗)

≤ −2|ηi∗(yi∗)|
2 + 2

n
∑

l=1

di∗l(t)|ηi∗(yi∗)| · |ηi∗(yl)|

≤ 0, (19)

from which, by the monotone-increasing property of Vi(·)
with respect to magnitude of its argument, ymag(t) is known

to be non-increasing over time.

Claim 2: ymag(t) is strictly decreasing over any time interval

if, for all i ∈ Ωmag(t), the corresponding index sets Θ′
i,mag(t)

do not remain empty for the entire interval. The claim is

established by showing that, if |yi| = ymag and Θ′
i,mag(t) is

nonempty, |yi| is strictly decreasing at time t. By definition,

we know from Θ′
i,mag(t) being non-empty that there exists

some j 6= i such that dij > 0 and j 6∈ Ωmag. In this case,

(19) becomes a strict inequality and hence |yi| is strictly

decreasing. Furthermore, ymag(t) is strictly monotone de-

creasing if Θ′
i,mag(t) are nonempty for all t and for all

i ∈ Ωmag . In addition, since dij(t) is uniformly bounded

away from zero whenever dij(t) 6= 0, it follows from (19)

that, if ymag(t) is decreasing, the decreasing is uniformly

with respect to time.

Claim 3: Maximum distance δmax(t) is non-increasing. It

follows from (12) and from D(t) being row-stochastic that

d

dt
Lµ,k(yµ − yk)

≤ −ξ′µ,k(|yµ − yk|) − 2|η′
µ,k(yµ) − η′

µ,k(yk)|2 + 2
n

∑

l=1

[

η′
µ,k(yµ) − η′

µ,k(yk)][dµl(t) − dkl(t)][η
′
µ,k(yl) − η′

µ,k(yk)]

= −ξ′µ,k(|yµ − yk|) − 2|η′
µ,k(yµ) − η′

µ,k(yk)|2 + 2[η′
µ,k(yµ)

−η′
µ,k(yk)]

n
∑

l=1

dµl(t)[η
′
µ,k(yl) − η′

µ,k(yk)] − 2[η′
µ,k(yµ)

−η′
µ,k(yk)]

n
∑

l=1

dkl(t)[η
′
µ,k(yl) − η′

µ,k(yk)]. (20)

Recall the property of η′
µ,k(·) and note that, for any µ∗ ∈

Ωmax and k∗ ∈ Ωmin,

η′
µ∗,k∗(yµ∗)−η′

µ∗,k∗(yk∗) = max
µ,k∈Ω

|η′
µ∗,k∗(yµ)−η′

µ∗,k∗(yk)| ≥ 0,

and that, for all l ∈ Ω,

η′
µ∗,k∗(yl) − η′

µ∗,k∗(yk∗) ≥ 0.

Since matrix D(t) is row stochastic,

0 ≤ [η′
µ∗,k∗(yµ∗) − η′

µ∗,k∗(yk∗)]

n
∑

l=1

dµ∗l(t)[η
′
µ∗,k∗(yl)

−η′
µ∗,k∗(yk∗)]

≤ |η′
µ∗,k∗(yµ∗) − η′

µ∗,k∗(yk∗)|2.
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Therefore, we know that

−2[η′
µ∗,k∗(yµ∗) − η′

µ∗,k∗(yk∗)]

×

n
∑

l=1

dk∗l(t)[η
′
µ∗,k∗(yl) − η′

µ∗,k∗(yk∗)] ≤ 0, (21)

and

2[η′
µ∗,k∗(yµ∗) − η′

µ∗,k∗(yk∗)]

×

n
∑

l=1

dµ∗l(t)[η
′
µ∗,k∗(yl) − η′

µ∗,k∗(yk∗)]

≤ 2|η′
µ∗,k∗(yµ∗) − η′

µ∗,k∗(yk∗)|2. (22)

Substituting the above inequalities into (20) yields

d

dt
Lµ∗,k∗(yµ∗ − yk∗) ≤ −ξ′µ∗,k∗(|yµ∗ − yk∗ |) ≤ 0,

from which δmax(t) being non-increasing can be concluded.

Claim 4: δmax is strictly monotone decreasing as long as

D(t) is lower triangularly complete, and the decreasing is

uniformly with respect to time. It follows from the derivations

in claim 3 that we need only show that at least one of

inequalities (21) and (22) is a strict inequality. To prove this

proposition by contradiction, let us assume that both (21)

and (22) be equalities. It follows that, unless ymin = ymax,

n
∑

l=1

dk∗l(t)[η
′
µ,k(yl) − η′

µ,k(yk∗)] = 0

=⇒ dk∗l(t) = 0 if l ∈ Ωmid ∪ Ωmax and k∗ ∈ Ωmin,

and that
n

∑

l=1

dµ∗l(t)[η
′
µ,k(yl) − η′

µ,k(yk∗)] = η′
µ,k(yµ∗) − η′

µ,k(yk∗)

=⇒ dµ∗l(t) = 0 if l ∈ Ωmid ∪ Ωmin and µ∗ ∈ Ωmax.

Recall that, as long as ymin < ymax, index sets Ωmin,

Ωmid and Ωmax are mutually exclusive, and Ωmin ∪Ωmid ∪
Ωmax = Ω. This means that, unless ymin = ymax, there is

permutation matrix P (t) under which

P (t)D(t)PT (t) =





E11 0 0
0 E22 0

E31 E32 E33





△
= E(t), (23)

where Eii are square blocks, row indices of E11 ∈
ℜnmin×nmin correspond to those in Ωmin, row indices of

E22 ∈ ℜnmax×nmax correspond to those in Ωmax, and row

indices of E33 ∈ ℜnmid×nmid correspond to those in Ωmid.

Note that nmin(t) > 0 and nmax(t) > 0 and that, if nmid =
0, E33 is empty and matrix E becomes 2-block diagonal.

Clearly, the structure of matrix E(t) contradicts with the

knowledge that D(t) is lower triangularly complete. Hence,

we know that at least one of inequalities (21) and (22) must

be a strict inequality and hence δmax is strictly monotone

decreasing. Again, the decrease is uniform with respect to

time since, whenever dij(t) 6= 0, dij(t) is uniformly bounded

away from zero.

Claim 5: δmax is strictly decreasing over an infinite sequence

of finite time intervals if D(t) over time may not be lower

triangularly complete but is sequentially complete. Assume

that δmax(t0) > 0. Then, the claim is established by showing

that, given any time instant t1, there exists a finite duration

∆t such that

δmax(t1 + ∆t) < δmax(t1), (24)

where ∆t > 0 depends upon changes of D(t) over [t1, t2)
and the value of δmax(t1).

Consider index sets Ωmax(t1) and Ωmin(t1). It follows

that δmax(t1) = yµ∗(t1) − yk∗(t1), where µ∗ ∈ Ωmax(t1)
and k∗ ∈ Ωmin(t1). Evolution of δmax(t) after t = t1
has two possibilities. The first case is that, for every µ∗ ∈
Ωmax(t1), there exists k∗ ∈ Ωmin(t1) such that index pair

{µ∗, k∗} belongs to the same lower-triangularly-complete

block in the lower triangular canonical form of D(t1). In this

case, it follows from claims 4 and 3 that δmax(t) is strictly

decreasing at time t = t1 and non-increasing afterwards.

Therefore, we know that, for any ∆t > 0, inequality (24)

holds.

The second and more general case is that, at time t =
t1 as well as in a finite interval afterwards, some of the

indices in Ωmax(t) correspond to different diagonal block

in the lower triangular canonical form of D(t) than those

for all the indices in Ωmin(t). In this case, claim 4 is no

longer applicable, while claim 3 states that δmax(t) is non-

increasing for all t ≥ t1. Nonetheless, the sequence of

matrix D(t) over time is sequentially complete and hence

we know that, for any index i ∈ Ωmag , either i ∈ Ωmax(t)
or i ∈ Ωmin(t), and set Θ′

i,mag cannot be nonempty except

over some sub-intervals. It follows from claims 1 and 2

that ymag(t) is non-increasing over time and is also strictly

monotone decreasing over all (possibly intermittent) time

intervals with nonempty Θ′
i,mag and hence there exists a

finite length ∆t such that

ymag(t1 + ∆t) < 0.5[ymax(t1) − ymin(t1)]. (25)

Recalling ymag(t) = max{|ymax(t)|, |ymin(t)|}, we know

from (25) that, for any µ ∈ Ωmax(t1 + ∆t) and k ∈
Ωmin(t1 + δt),

δmax(t1 + ∆t) = ymax(t1 + ∆t) − ymin(t1 + ∆t)

≤ 2ymag(t1 + ∆t)

< ymax(t1) − ymin(t1),

which establishes inequality (24). In essence, while

max{|ymax(t)|, |ymin(t)|} decreases, the value of

[ymax(t) − ymin(t)] could remain unchanged but only

temporarily (and at latest till the time instant that

ymax(t) = −ymin(t)), and afterwards δmax(t) must

decrease as ymag(t) does. Since t1 is arbitrary, strictly

decreasing of δmax(t) over an infinite sequence of finite

intervals is shown.

Claim 6: Asymptotic cooperative stability if D(t) over time

is sequentially complete. It is clear that claim 5 includes

claim 4 as a special case. We know from claims 3 and 5 that

δmax is asymptotically convergent to zero. Hence, asymptotic

cooperative stability is concluded. 2
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