
 

  
Abstract—The anti-windup problem seeks to minimize the 

closed loop performance deterioration due to input 
nonlinearities, such as saturation, for a given linear time-
invariant plant and controller. This paper presents a linear 
matrix inequality (LMI) based method that attempts to 
minimize performance deterioration while explicitly restricting 
the anti-windup closed loop dynamics. The restriction placed 
on the dynamics is described via LMI regions, which is a form 
of regional pole placement. Finally, the techniques discussed in 
this paper are demonstrated on an electro-hydraulic testbed. 

Index Terms—Windup, Control nonlinearities, Robust 
stability, Linear matrix inequality regions 

I. INTRODUCTION 
Given an unconstrained closed loop system composed of 

a linear time invariant (LTI) plant and stabilizing controller, 
the objective of the anti-windup problem, as defined in [7], 
is to mitigate the adverse effects of input nonlinearities, such 
as saturation. As shown in Figure 1, an anti-windup 
compensator Λ augments the controller in the presences of 
the input nonlinearity. The anti-windup compensator is 
optimized with respect to some performance metric. The 
induced 2A  and 2L  norms from disturbance w to regulated 
output z are two commonly used performance metrics for 
continuous and discrete time [4], [5], [7], [9]. 
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Figure 1: General closed loop system with anti-windup 

Linear matrix inequality (LMI) regions, a class of convex 
regions in the complex plane, are used to describe 

-stability,D  a modified notion of stability [2],[6]. In 
particular, [2] discusses quadratic -stabilityD  with respect 
to the H∞ norm over an LMI region, and presents LMI 
conditions that recover the continuous and discrete-time as 
special cases. This paper extends the concept of quadratic 

-stabilityD  to the anti-windup problem, thereby allowing 
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specifications for the anti-windup closed loop dynamics to 
be defined using intuitive complex plane constraints. The 
static anti-windup compensator case was initially 
investigated in [5], whereas this work focuses upon the 
dynamic, as well as static, anti-windup compensator 
synthesis conditions ensuring quadratic -stabilityD . 

The problem is defined in terms of quadratic -stabilityD  
using LMI regions in Section II. Section III.A develops LMI 
conditions to evaluate the performance of an anti-windup 
closed loop system. In Section III.B, anti-windup 
compensator synthesis conditions arise from a linearizing 
change of variables applied to the conditions of Section 
III.A. The conditions for continuous-time and discrete-time 
static [7], [9] and plant-order dynamic [4] anti-windup 
syntheses are included as special cases of the anti-windup 
synthesis conditions presented. In Section IV, an electro-
hydraulic powertrain test bed detailed in [10] is used as a 
practical example to demonstrate how the anti-windup 
compensator design technique may be used to restrict the 
anti-windup closed loop dynamics for digital prototyping. 

II. BACKGROUND AND PROBLEM DEFINITION 
A. Notation 

For a matrix A, A∗  denotes its complex conjugate 
transpose. nH  is the set of n by n Hermitian matrices. The 
matrix inequality A B>  means that , nA B ∈H  and A B−  is 
positive definite. ImA is the image subspace of the linear 
mapping represented by the matrix A. Let the matrix with its 
block diagonal described by M1,…,MN and zero elsewhere 
be denoted as ( )1diag , , NM M… .  

B. Quadratic D-Stability 
In order to discuss robust pole placement, let us introduce 

some notation for LMI regions, as defined in the [2]. 
Definition 1: An LMI region is a subset of the complex 

plane that is defined as 
 { : ( ) 0}s f s∈ <DD � ^   
where  
 ( )f s L Ms M s∗ ∗= + +D , , q qL M ×∈\ . (1) 

The open left half plane (OLHP) and open unit disc 
correspond to ( )f s s s∗= +D  and ( ) 1f s ss∗= −D , 

respectively. Note that ( ) 1f s ss∗= −D  is placed in the form 
(1) via the Schur complement [1],[6]. 
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Definition 2: If every eigenvalue of the matrix n nA ×∈\  
lies in the LMI region ,D  then A is considered to be 

-stableD . • 
Definition 3:  The linear time-varying uncertain system 

 [ ( )] ( ( )) ( )x t A t x tδ = Δ , (2) 
where δ signifies a linear time operator such as the 
derivative for the continuous-time case and the forward step 
for discrete-time, is quadratic D-stable if  there exists 

nX ∈H  such that 
 ( , ( ( ))) 0M X A tΔ <D  and 0X >  
for every Δ(t) in the uncertainty set ( )tΔS . • 

 For the remainder of this paper, state variables x, 
uncertainties Δ, and other consequent variables are 
implicitly a function of t, unless otherwise noted. Consider 
the linear time-varying uncertain system described by the 
linear time-invariant (LTI) system 

 
[ ]x w

z Cx Dw
Ax Bδ⎧

⎨ = +⎩

= +
, (3) 

interconnected with ( ) ( ) ( )w t t z t= Δ , where S( )t ΔΔ ∈  and 
 S { ( ) : [ ] [ ] 0 , ( ) }znt z I I z z t∗ ∗ ∗ ∗

Δ Δ Δ Θ Δ ≥ ∀ ∈� \ , (4) 
for an appropriately partitioned Θ . Define M1 and M2 as the 
factorization for a given 1 2

q qM M M ×= ∈\  where 

1 2, q rM M ∗ ×∈\  and r=rank(M), and define the matrices 
zs nU ×∈\  and s s×Σ ∈\  as satisfying 1

11 U U∗ −Θ = Σ , where 
s=rank(Θ11). The reader is directed to [6, Theorem 1] for the 
proof of Lemma 1 and the discussion of equivalence to 
bounded and positive real lemmas for discrete-time and 
continuous time. 

Lemma 1 - Quadratic D-Stability for Uncertain System: 
Suppose the system (2) is described by the interconnection 
of (3) and ( ) ( ) ( )w t t z tΔ� , with S( )t ΔΔ ∈  in (4). Then the 
linear system is quadratically -stableD  and well-defined if 
there exists positive definite nX ∈H  such that 

 0
xx xw zx

xw ww zw

zx zw zz

∗

∗ ∗

⎡ ⎤Ω Ω Ω
⎢ ⎥Ω Ω Ω <⎢ ⎥

Ω Ω Ω⎢ ⎥⎣ ⎦

,  

where ( , ),xx M X AΩ = D  2zx M UCΩ = ⊗ ,  

 21 21 22

1 2 21

( )

.
zw r ww r

zz r xw

I UD I D D

I M XB M C

∗ ∗

∗ ∗ ∗

Ω = ⊗ Ω = ⊗ Θ + Θ + Θ

Ω = − ⊗ Σ Ω = ⊗ + ⊗ Θ
 

C. Class of Input Nonlinearities 
Rather than solving the anti-windup problem for a 

particular decentralized input nonlinearity, ( , )mu t uφ= , we 
consider a class of time-varying input nonlinearities 
 { ( , ) : ( , )( ( , )) 0, ( , )}t u t u u t u t uφ φ φ φ∗

Φ∈ − ≥ ∀S � ,  
which corresponds with the sector [0,1] of the circle 
criterion. Also, sufficient information is assumed to be 
known about the time-varying input nonlinearity such that 
an online measurement or estimate of um is available. The 

class of time-varying nonlinearities includes the saturation 
function, the dead-zone nonlinearity, and control switching, 
but the saturation function is the prevalent input nonlinearity 
of practical interest here. Let the decentralized saturation 
function be defined as 
 1 1sat( ) [sat ( ) , ,sat ( ) ]

u un nu u u∗ ∗ ∗= … .  
The departure from the unconstrained closed loop system 
( )mu u= , the closed loop system void of input-
nonlinearities, is described by 
 ( ) ( , ) ( , )v t t u u t uψ φ= −� , (5) 
where ψ Φ∈S  if and only if φ Φ∈S . 

D. Problem Definition 
The unconstrained closed loop system is described by the 

interconnection of the -StableD  LTI plant 

 
, ,

, , ,

, , ,

p p p p w p u m

p z p p zw p zu m

p y p p yw p yu m

x A x B w B u

P z C x D w D u

y C x D w D u

δ⎧ = + +
⎪

= + +⎨
⎪ = + +⎩

� , (6) 

and stabilizing LTI controller 

 , 1

, , 2

k k k k y

k u k k uy

x A x B y
K

u C x D y

δ ζ
ζ

= + +⎧⎪
⎨ = + +⎪⎩

� , (7) 

where ,pn
px ∈\  ,kn

kx ∈\  ,wnw∈\  ,un
mu ∈\  ,znz ∈\  

,yny ∈\  and 1 2[ , ] 0ζ ζ∗ ∗ = . Note that an important part of the 
anti-windup design paradigm is that K has been designed 
without consideration for the input-nonlinearities. 

As represented by the relation ( ) ( ) ( )mu t u t v t= −  in 
Figure 1, ( ) 0v t ≠  may be viewed as a disturbance, 
produced by the input nonlinearity ( , )t uψ , acting on the 
unconstrained closed loop system. Driven by ( )v t , the linear 
anti-windup compensator mitigates the negative impact 
upon the closed loop performance via ( )tζ . Let the 
unconstrained closed loop system driven by ( )v t  and ( )tζ  
be written as 

 
, , ,

, , , ,

, , , ,

cl cl cl cl v cl w cl

cl u cl cl uv cl uw cl u

cl z cl cl zv cl zw cl z

x A x B v B w B

H u C x D v D w D
z C x D v D w D

ζ

ζ

ζ

δ ζ
ζ
ζ

⎧ = + + +
⎪

= + + +⎨
⎪ = + + +⎩

� , (8) 

where [ , ]cl p kx x x∗ ∗ ∗=  and the matrices in (8) are defined 
explicitly by (6), (7), and ( ) ( ) ( )mu t u t v t= − . The 
unconstrained closed loop system is augmented with a linear 
anti-windup compensator 

 
x A x B v

C x D v
λ λ λ λ

λ λ λ

δ
ζ

= +⎧
Λ ⎨ = +⎩
� , (9) 

where nx λ
λ ∈\ , and 1 2[ ]ζ ζ ζ∗ ∗ ∗= , that minimizes the 

performance deterioration due to the input-nonlinearity. 
For the following definition, we use a definition of 

performance similar in nature to [4, Definition 3]. 
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Definition 4: The linear anti-windup compensator Λ  
guarantees a quadratic performance level γ if the uncertain 
anti-windup closed loop system (8), (9), ( ) ( , )v t t uψ= , 
w=Δ(t)z satisfies: 

(a)  the interconnection is well defined for all ψ Φ∈S  
and ( )γΔΔ ∈S , where 

 2( ) { ( ) : ( ) ( ) 0, ( , )}t z z z z t zγ γ∗ ∗
Δ Δ − Δ Δ ≥ ∀S � , (10) 

(b) the anti-windup closed loop system is quadratic 
-StableD . • 

III. ANTI-WINDUP ANALYSIS AND SYNTHESIS 
Section III.A presents LMI conditions for establishing a 

quadratic performance level γ for an anti-windup closed loop 
system. In seeking to optimize quadratic performance level 
in Section III.B, synthesis conditions for Λ  arise from a 
linearizing change of variables applied to conditions 
presented in Section III.A. 
A. Anti-windup Performance Analysis 

For the analysis of the anti-windup closed loop system, 
assume the plant P in (6), controller K in (7), and anti-
windup compensator Λ in (9) are given, whereas the input 
uncertainty φ Φ∈S  and ( )γΔΔ ∈S  are not. Let the LTI 
portion of the anti-windup closed loop system be defined as 

 
v w

u uv uw

z zv zw

x Ax B v B w
G u C x D v D w

z C x D v D w

δ = + +⎧
⎪ = + +⎨
⎪ = + +⎩

� , (11) 

where [ , , ]p kx x x xλ
∗ ∗ ∗ ∗=  and the matrices A, Bv, Bw, Cu, Cz, 

Duv, Duw, Dzv, and Dzw are determined by the 
interconnections of the systems given in (8) and (9). 

Theorem 1: Given G in (11), ( )f sD  in (1), and  0γ > , the 
anti-windup closed loop system guarantees quadratic 
performance level of γ if there exists a symmetric matrix 

0X > , and a diagonal matrix 0W >  such that  

 0

xx xv ux xw zx

xv ux uv uv uw zv
T

xw uw zw

zx zv zw

I
I

γ
γ

∗ ∗

∗ ∗ ∗

∗ ∗

⎡ ⎤Ω Ω + Ω Ω Ω
⎢ ⎥Ω + Ω Ω + Ω Ω Ω⎢ ⎥ <

Ω Ω − Ω⎢ ⎥
⎢ ⎥Ω Ω Ω −⎣ ⎦

, (12) 

where, ( , )xx M X AΩ = D , 

 
1 1

2 2

xv xw v w

ux zx u z

M XB M XB

M C W M C∗ ∗ ∗ ∗ ∗ ∗

⎡ ⎤ ⎡ ⎤Ω Ω = ⊗ ⊗⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤Ω Ω = ⊗ ⊗⎣ ⎦ ⎣ ⎦

  

 ( ) .uv uw r uv r uw

r zv r zwzv zw

I W D I I WD
I D I D

⎡ ⎤Ω Ω ⊗ − ⊗⎡ ⎤=⎢ ⎥ ⎢ ⎥⊗ ⊗Ω Ω ⎣ ⎦⎣ ⎦
 

Proof: For a given trajectory u(t), define ( )tΨ  satisfying 
( ) ( , )t u t uψΨ = . Thus at every point in time, 

diag( , )Δ = Ψ Δ  satisfies [ ] [ ] 0I I∗ ∗ ∗Δ Θ Δ ≤  for any 
diagonal matrix 0W > , where 

 11 12

12 22

diag(0, / ) diag( ,0)
diag( ,0) diag( 2 , )

I W
W W I

γ
γ

∗⎡ ⎤Θ Θ ⎡ ⎤Θ = =⎢ ⎥ ⎢ ⎥− −Θ Θ ⎣ ⎦⎣ ⎦
. (13) 

Given G in (11) and Θ, Lemma 1 yields the above sufficient 
conditions.  □ 

Remark 1: Consider an LMI region that is the intersection 
of multiple LMI regions 
 

1

N
ii=

=∩D D , (14) 

described by ( ) diag( ( ), , ( ))Nf s f s f s=D D1 D… . If Theorem 1 
verifies a quadratic performance level of γ for each ( )if sD  

1, ,i r= … , then a quadratic performance level γ is satisfied 
for D . • 

Remark 2: The OLHP case of Theorem 1 concurs with the 
continuous-time results presented in Theorem 1 of [4]. • 
B. Anti-windup Compensator Synthesis 

Based on Theorem 1, simultaneously searching for X and 
an anti-windup compensator satisfying (12) is a bilinear 
matrix inequality. This section applies a linearizing change 
of variables to the conditions of Theorem 1 in order to 
construct conditions for the existence of an anti-windup. 

Consider a positive definite symmetric matrix Y  

 
11

112

12 22

R N S XY X
N M X X

−−
−

∗ ∗

⎡ ⎤⎡ ⎤= = =⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
,  (15) 

where , CLnR S ∈H , 22, nM X λ∈H , 12, CLn nN X λ×∈\ , and 
rank( )R S nλ− = . From (15), 1R S NM N− ∗− =  and 

 1 1

0
0

CLn
T

I R S S
Y

NM N M N− ∗ − ∗

−⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦
.  (16) 

Post-multiplying (16) by diag( , )V I  produces 2 1Y Π = Π , 
where 

 
1

1
1

1 0
NM N S

N

− ∗

∗

⎡ ⎤
Π = ⎢ ⎥

⎣ ⎦
, 2 1 1

1

0
CLnI

M N M N− ∗ − ∗

⎡ ⎤
Π = ⎢ ⎥−⎣ ⎦

, 

2 1 11diag( , )Q S∗Π Π = , 1 2[ , ] cl cln nV V V ×= ∈\  is orthonormal, 
V V I∗ = , 2

cln nV λ×∈\  forms the basis for the null space of 
( )R S− , 1 1

n nN V N λ λ×∗= ∈\ , and 1
11 1 1

nQ N M N λ− ∗= ∈H  is 
positive definite. 

Theorem 2: Given the plant P in (6), the unconstrained 
controller K in (7), ( )f sD  in (1), an integer cln nλ ≤ , an 

orthonormal matrix 1 2[ ] cl cln nV V ×∈\ , 1
cln nV λ×∈\ , and 

0γ > ;  there exists a linear anti-windup compensator Λ of 
order nλ  such that the anti-windup closed loop system has a 
quadratic performance level γ  if there exists 

ˆ ˆˆ ˆ( , , , )A B C Dλ λ λ λ , clnS ∈H , 11
nQ λ∈H , and diagonal 

unU ∈\  satisfying 
 110, 0, 0,U S Q> > >  (17) 

 0

xx xx xv ux xw zx

xv ux uv uv uw zv

xw uw zw

zx zv zw

I
I

γ
γ

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

⎡ ⎤Ω + Ω Ω + Ω Ω Ω
⎢ ⎥Ω + Ω Ω + Ω Ω Ω⎢ ⎥Ω = <

Ω Ω − Ω⎢ ⎥
⎢ ⎥Ω Ω Ω −⎣ ⎦

, (18) 

where  
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11

1 11 1 ,

ˆ 00
ˆ ˆ02xx

cl cl cl

AL Q MS A V Q V A B C A Sζ

⎡ ⎤⎡ ⎤Ω = ⊗ + ⊗ ⎢ ⎥⎢ ⎥ − +⎣ ⎦ ⎢ ⎥⎣ ⎦
  

 
2 , 1 11 , ,

2 , 1 11 , ,

ˆ

ˆ
ux cl u cl u cl u

zx cl z cl z cl z

M C V Q D C C S

M C V Q D C C S

ζ

ζ

⎡ ⎤Ω = ⊗ +⎣ ⎦
⎡ ⎤Ω = ⊗ +⎣ ⎦

  

 1
, , 1

ˆ
,ˆ ˆxv

cl v cl

B
M

B U B D V Bζ

⎡ ⎤
Ω = ⊗ ⎢ ⎥+ −⎣ ⎦

1
,

0
xw

cl w
M B

⎡ ⎤Ω = ⊗ ⎢ ⎥
⎣ ⎦

 

, , ,

, , ,

ˆ( )
.ˆ( )

r cl uv cl u r cl uwuv uw

zv zw r cl zv cl z r cl zw

I D U D D U I D
I D U D D I D

ζ λ

ζ λ

⎡ ⎤⊗ + − ⊗Ω Ω⎡ ⎤ = ⎢ ⎥⎢ ⎥Ω Ω ⊗ + ⊗⎣ ⎦ ⎢ ⎥⎣ ⎦
 

Proof: Start by assuming (17) and (18) are satisfied. Choose 
N1, N, M satisfying 1

11 1 1Q N M N− ∗=  and 1
1 11 1V Q V NM N∗ − ∗= . 

Noting 1
1
−Π  exists because 1N  and S are full rank, apply the 

congruence transformation 
 ( )1

1diag , ,q rT I I W I−= ⊗ Π ⊗  

to (18) and set 1W U −= , 1R S NM N− ∗= +  

 
1 1

1 1 1 1

1

ˆ ˆ

ˆ ˆ .

A MN A N B MN B W

C C N D D W
λ λ λ λ

λ λ λ λ

− −∗ −

−∗

= =

= =
  

in order to show (12) is satisfied for X  in (15). □ 
The matrix V1 describes the choice of subspace for 

1 11 1( )R S V Q V ∗− =  while satisfying the rank constraint 

rank( )R S nλ− = . Choosing 1 [ ,0 ]
p p kn n nV I ∗

×=  produces what 

is known as a plant-order anti-windup compensator 
( )pn nλ = , whereas choosing 2 clnV I=  produces what is 

known as a static anti-windup compensator ( 0)nλ = . 
Remark 3: For the static anti-windup compensator 

synthesis, the conditions of Theorem 2 are equivalent to 
Theorem 1 in [9] and Theorem 3 in [7] for the special cases 

( ) 1f s ss∗= −D  and ( )f s s s∗= +D , respectively. For more 
details on the static anti-windup synthesis for LMI regions 
see [5]. • 

Remark 4: If M in ( )f sD  has rank(M)=1, the Elimination 
Lemma [1] can be used to produce equivalent conditions  
from (18) that are devoid of ˆ ˆˆ ˆ( , , , )A B C Dλ λ λ λ . For the plant-
order anti-windup compensator, those equivalent conditions 
correspond to the necessary and sufficient conditions in 
[4,Proposition 2]. For rank( ) 1r M= > , the simplicity 
offered by the Elimination Lemma breaks down due to the 
added complexity of the structured LMI variable 

 r r

r r

I A I B
I C I D

λ λ

λ λ

⊗ ⊗⎡ ⎤= ⎢ ⎥⊗ ⊗⎣ ⎦
Λ .  

The authors of [8] further elaborate on the resulting 
difficulty of the necessary and sufficient conditions related 
to the Elimination Lemma for structured LMI variables.   • 

Corollary 1: Suppose pn nλ =  and 1 [ ,0 ]
p p kn n nV I ∗

×= . Then 

there exists 0γ >  such that (17) and (18) are feasible if Ap 
and Acl in (6) and (8) are -stableD .  

Proof: Note that we may assume Dp,yu=0 without loss of 
generality. Let 11

ˆ
pA A Q= , 11 , , ,

ˆ [ , ]p y k y k uyC Q C B D∗ ∗ ∗ ∗= − , 
ˆ 0D = , and ,

ˆ
p uB B U= . Since Ap and Acl are -stableD , there 

exists Q11 and S such that (17) and (18) are satisfied for 
sufficiently large γ .  □ 

It may also be shown via Corollary 1 that if Im[V1] 
contains the subspace Im[ ,0]

pnI * and Ap and Acl are 

-stableD , then there exists a solution for some finite 0γ >  
such that (17) and (18) are feasible. 

Remark 5: As in Remark 1, a less conservative condition 
may be constructed for an LMI region that is the intersection 
of multiple LMI regions (14). Theorem 2 can be evaluated 
for each ( )

i
f sD  by replacing S with iS  and searching for 

ˆ ˆˆ ˆ( , , , )A B C Dλ λ λ λ , 11Q , iS , and U  that satisfy (17) and (18). 
Then the reconstruction of Xi and ( , , , )A B C Dλ λ λ λ  can be 
accomplished as outlined in the proof of Theorem 2.  • 

IV. PRACTICAL EXAMPLE 
In this section, the Earthmoving Vehicle Powertrain 

Simulator (EVPS) at the University of Illinois at Urbana-
Champaign is used as a testbed to demonstrate the utility of 
the quadratic -stabilityD  in anti-windup compensator 
design. Although the work presented in this paper also 
supports the discrete-time case, the following example was 
chosen as a novel approach to a problem often encountered 
when digitally prototyping continuous-time anti-windup 
compensators. 

The continuous-time controller and linear anti-windup 
compensators are implemented on a hardware-in-the-loop 
system using a Runge-Kutta fixed-step solver and Wincon 
3.2 software designed by Quanser Consulting Inc. As a 
general rule of thumb, the Nyquist frequency ωs= π/Ts  
(Ts=0.002) should be several times faster than the fastest 
dynamics. As noted in Turner & Postlethwaite (2004), the 
continuous-time anti-windup compensator synthesis 
presented in [4] can yield excessively fast poles, which 
cause difficulties in the digital implementation of the anti-
windup compensator. 

The following presents an example where excessively fast 
anti-windup closed loop poles were generated via the 
algorithms discussed in [4]. Attempts at implementing the 
resulting anti-windup compensators proved unsuccessful. 
However, Theorem 2 was used to explicitly constrain the 
poles, thereby enabling the resulting anti-windup 
compensators to be successfully implemented. 
A. Experiment Setup 

The EVPS is a hardware-in-the-loop testbed capable of 
emulating earthmoving powertrains [10] and similar 
hydraulic equipment. In the following experiment, the EVPS 
was utilized to emulate a hydrostatic powertrain with a 
continuously variable transmission (CVT). The prime mover 
for the powertrain, shown in Figure 2, consists of a 
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compression ignition engine emulated through a three-phase 
induction motor. The emulated engine drives the variable-
displacement pump, i.e. the CVT in the powertrain, and the 
pressurized hydraulic fluid drives a hydraulic motor with a 
disturbance torque applied to its shaft. 

 
Figure 2: Hydrostatic powertrain schematic 

The linearized model is a variance of the model structure 
presented in [10]. The engine speed ne and hydraulic motor 
speed nm, as well as the corresponding reference signals ne,r 
and nm,r, are measurements available to the controller. The 
powertrain is controlled through the engine fuel index γe, 
and swash plate angle α. The reduced-order model linear 
model is: 

 ,

, ,

p p p p u
yu

p y p p yu

x A x B u
P

y C x D u
= +⎧⎪= ⎨ = +⎪⎩

�
  

where [ ]eu γ α ∗= , [ ]p e mx n p n ∗= , 

 
-0.8409 -9.699 0

  0.1803 0.8461 -0.5271
-2.03 2440 -28.01

pA
⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

, ,
1 0 0= 0 0 1p yC ⎡ ⎤
⎢ ⎥⎣ ⎦

,  

 ,

29.15 -22.11
  0.01547 6.976

0.02799 -11.54
p uB

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

, and ,
0 0= 0 0p yuD ⎡ ⎤
⎢ ⎥⎣ ⎦

. 

B. Feedback Controller Design 
The control objective is to simultaneously track a desired 

engine speed and motor speed. In order to fulfill robust 
performance requirements, the controller K̂  was designed 
to minimize the H∞  gain from w to z of the unconstrained 
( )mu u=  closed loop system shown in Figure 3. The 
weighting matrices on the various signals in Figure 3 are as 
follows 
 ( )= diag 40,40rW , ( )= diag 0.30,0.15uW , 

 ( )= diag 0.0667,0.400eW , and 

 
3

-65.13 -3.256 +32.56
=

- -0.05 0.5
Wn Wn e m

n
Wn e m

x x n n
W

z x n n
=⎧

⎨ = +⎩

�
. 

The controller K̂  was designed via the hinfmix 
algorithm available in the LMI Control Toolbox, [3]. For 
this example, the magnitude of the anti-windup closed loop 
poles will be limited to ωmax=ωs/4≈350 rad/s. In order to 
allow some extra bandwidth for the anti-windup 
compensator design, the unconstrained closed loop LMI 
region was chosen as the OLHP intersected with a disk with 
a radius of 300 rad/s centered at the origin. 
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Figure 3: Anti-windup closed loop system 

C. Anti-windup Compensator Design 
The ability of the transmission to meet the command 

tracking objectives is limited by input constraints on the fuel 
index γe and swashplate angle α. The limited fuel index 
reflects a limited power range, whereas the limited 
swashplate angle reflects a limited gear ratio. When the 
inputs saturate, the integrators in Figure 3 continue to wind-
up. In order to counter the wind-up problem, an anti-windup 
compensator is employed, as shown in Figure 3. The anti-
windup compensator design is based upon the same H∞  
weightings as the controller design. In order to avoid the 
algebraic loops discussed in [4], [9], we restrict Dλ

∗�  to the 

form 1
ˆ ˆ[ ,0 ]

u un nD Dλ λ
∗ ∗

×= , where 1
ˆ k un nDλ

×∈\ . 

First, we consider designing the anti-windup 
compensators for continuous-time using ( )f s s s∗= +D1 . For 
the static anti-windup synthesis 2( )

clnV I= , Theorem 2 

yields the anti-windup compensator 

1
-23.81 -9.051 -2.992 13.65 2.163 5.156 465.7 220.3 0 0
0.998 -1.125 0.365 0.013 0.079 -0.188 -6.703 24.79 0 0s

∗
⎡ ⎤Λ = ⎢ ⎥⎣ ⎦

 

Similarly, denote the plant order 1( [ ,0] )nV I ∗=  anti-windup 
compensator as 1dΛ , which the state space description is 
omitted for brevity. The quadratic performance levels 
guaranteed by Theorem 2 for Λs1 and Λd1 are 3.003γ =  and 

2.979γ = , respectively. 
Next, we consider restricting the anti-windup 

augmentation such that the anti-windup augmentation is 
suitable for digital prototyping. The LMI region described 
by 3 1 2( ) diag( ( ), ( ))f s f s f s=D D D , where 2

2 ( ) 350f s ss∗= −D . 
Applying Theorem 2 and Remark 5 yields the static anti-
windup compensator 

,3
0.544 -0.946 0.231 0.060 -0.274 0.081 36.40 19.38 0 0  1.153 -1.267 0.507 -0.020 0.031 -0.101 -8.517 38.61 0 0s

∗
⎡ ⎤Λ = ⎢ ⎥⎣ ⎦

 

and the plant-order dynamic anti-windup compensator, 
denoted by 3dΛ . The quadratic performance levels 
guaranteed by Theorem 2 for Λs3 and Λd3 are 3.003γ =  and 

2.990γ = , respectively. 
It is evident Λs1 has significantly larger terms than Λs3, 

thus inferring larger anti-windup closed loop poles are likely 
induced. The anti-windup quadratic performance level γ in 
Table 1 was evaluated via Theorem 1 and 1( )f sD . The anti-
windup closed loop is a nonlinear dynamic system, thus the 
magnitudes of the poles are not directly assessed, as in a 
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purely linear system. Theorem 1 and 2( )f s ss ρ∗= −D  was 
used to determine a worst case upper bound ρ  for the 
magnitudes of the anti-windup closed loop poles as γ → ∞ . 
The quantity ρ̂  in Table 1 denotes the largest pole for the 
open (um=0) and closed (um=u) loop linear systems for each 
case. Note that ρ̂  must be less than or equal to ρ , and both 
closely agree. 

Table 1: Performance and pole magnitude 
 (u=um) Λs1 Λd1 Λs3 Λd3 
γ 2.51 3.00 2.98 3.00 2.99
ρ [rad/s] 263 3.4×103 9.1×106 285 271 
ρ̂ [rad/s] 263 3.4×103 9.1×106 285 268 

 
The unconstrained case (um=u) is the baseline for both the 

closed loop performance and magnitude of the closed loop 
poles. The values of ρ  for both Λs1  and Λd1 are much 
larger than the Nyquist frequency ωs≈1571 rad/s. The γ 
values in Table 1 confirm no discernible performance was 
lost by restricting the magnitude of the poles. In addition, 
the plant-order anti-windup compensators did not enable 
significantly lower values of γ compared to the static anti-
windup compensators.  
D. Experimental Results 

The experiment consists of starting the idle engine at 
approximately 70 rad/s and the hydraulic motors at rest, and 
tracking a series of step commands. The baseline case 
(um≈u) is limited by only the hardware limitations γe∈[0,10] 
volts and α∈[0,10] volts. Note that Λs3 was used to 
compensate for the brief saturation at startup. The input 
saturation effects were emphasized by artificially limiting 
the fuel index and swash plate input to γe∈[3.5,7.0] volts and 
α∈[3.5,6.5] volts, respectively. 
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Figure 4: Closed loop response; um≈u (solid red), Λ=0 (dotted dark red), Λs3 
(solid green), Λd3 (dotted blue) 

The fixed-step simulation of the anti-windup 
compensators Λs1 and Λd1 was observed to be unstable for 
even the open loop (um=0) and closed loop (um=u) cases. 
The Runge-Kutta integration technique is only an 

approximate integration technique. Specifically, the 
integration error increases as ρ  increases for a fixed 
sampling time Ts. Consequently, the unstable simulation was 
likely caused by the poles that greatly exceeded the Nyquist 
frequency.  

As shown in Figure 4, the uncompensated case (Λ=0) 
exhibited significant performance deterioration due to input 
saturation. In contrast, the anti-windup compensators greatly 
improved the performance over the uncompensated case. 
The anti-windup closed loop systems quickly recovered 
from input saturations to approximately match the baseline 
closed loop response. 

V. CONCLUSIONS 
This paper extended the notion of quadratic D-stability to 

the analysis and design of anti-windup closed loop systems. 
Theorem 1 established sufficient conditions for the quadratic 
performance of an anti-windup closed loop system. Theorem 
2 presents sufficient conditions for the existence of an anti-
windup compensator that enables a quadratic performance 
level of γ. Special cases of Theorem 2 were also briefly 
discussed in terms of equivalence to several results in the 
literature. In the practical example, the anti-windup 
compensator design was applied to an electro-hydraulic 
testbed. The practical example illustrated how the notion of 
quadratic D-stability can be a useful tool to restrict the 
continuous-time anti-windup compensator design for digital 
prototyping. 
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