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Abstract— We address the control of the airpath of a tur-
bocharged SI engine equipped with Variable Valve Timing
(VVT) actuators. VVT devices are used to produce internal
exhaust gas recirculation, providing beneficial effects in terms of
consumption and pollutant emissions reduction. However, VVT
actuators affect the fresh air charge in the cylinders. This has an
impact on the torque output (leading to driveability problems),
and on the Air/Fuel Ratio (AFR) (leading to pollution peaks).
To compensate these undesirable effects, a new approach is
proposed. We model the intake dynamics as a first order system
using a balance equation in which the VVT actuators play the
role of a measured disturbance in the volumetric efficiency of
the aspiration phenomenon. In view of practical implementa-
tion, two types of modeling errors are considered. We address
them by an integral term and an observer. Convergence is
proven. This strategy is sufficient to control the engine air
mass. As a consequence, the AFR management is improved.
These points are supported by experimental results.

I. INTRODUCTION AND MOTIVATIONS

Lately, Variable Valve Timing (VVT) actuators have been

used in Spark Ignition (SI) engines to exploit all the possibil-

ities of direct injection and turbocharging. This approach is

of particular interest in the context of downsizing (reduction

of the engine size) which has appeared as a major solution

to reduce fuel consumption (see [1]).

VVT systems use electro-hydraulic mechanisms which

rotate the camshaft to modify the breathing of the engine.

Beneficial effects are an additional reduction of the pumping

losses and an increase of the torque performance over a range

wider than the one considered on conventional (fixed-valve

timing) SI engine. VVT systems also allow internal exhaust

gas recirculation leading to reduce Nitrogen Oxides (NOx)

and Hydrocarbons (HC) emissions [2].

One basic task in engine control consists in managing

the torque output of the engine according to the driver’s

requests, while limiting pollutant emissions. On conventional

SI engines, torque control is achieved by managing the air

mass of the cylinders, while keeping the Air/Fuel Ratio

(AFR) to the stoichiometric value in order to minimize

exhaust emissions.

On conventional SI engines, a reference in-cylinder air

mass is directly computed from the intake manifold pressure

through a quasi-static relation depending on the volumetric

efficiency (see [3]). Then, controlling the air mass is achieved
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by controlling the intake pressure through the intake throttle.

In parallel, AFR management consists of a PID controller

using AFR measurement (given by an oxygen sensor sit-

uated at the engine exhaust) which is complemented by a

feedforward control law to limit AFR fluctuations during

torque transients [4]. The AFR controller acts upon the

reference fuel mass which is sent to the injection system. The

mentioned feedforward control law is designed according to

a prediction of the air mass in the cylinders [5].

On SI engines equipped with VVT actuators, the in-

cylinder air mass depends also on the VVT actuators po-

sitions, because these have an impact on the volumetric

efficiency of the aspiration from the intake manifold into the

cylinders [3], [6], [7], [8]. Their influence is modeled, but

errors can not be avoided. Feedforward control law of the

AFR controller is generally based, as in fixed-valve timing

engine, on the air mass prediction [9]. This prediction usually

has substantial errors which, unavoidably, propagate, through

feedforward terms, onto the AFR management system. This

issue generates pollution peaks and results in poor driveabil-

ity.

We propose a simple alternative solution. Focusing on the

in-cylinder air mass control problem only, we compensate

two types of modeling errors with an improved control

strategy. We model the intake dynamics as a first order

system, using the above-mentioned volumetric efficiency

related to the VVT actuators, and we consider two biases.

One stands for errors in experimentally determined look-up

table of the throttle actuator. The other one accounts for

errors in the volumetric efficiency law. Provided that these

biases are known, we obtain a one-dimensional actuated

dynamics, for which the motion planning and trajectory

tracking problems are already solved. From a more realistic

standpoint, we propose to compensate these two biases by an

integral term and an observer. Convergence is proven, using

classic results from the literature on parameterized linear

time-varying systems. In parallel, the AFR management

system simply assumes that the reference signal for the in-

cylinder air mass is tracked. Experimental results prove the

relevance of this approach.

The paper is organized as follows. In Section II, we present

the reference model of the intake manifold. This model

consists of mass balance and aspirated flow equations. In

Section III, we expose the control problem, and explain how

to compute feasible trajectories to solve this motion planning

problem. Section IV proposes an open-loop and a closed-

loop control law for the aspirated air mass. Some preliminary

assumptions (which were used for sake of simplicity in

the exposition of the control design) are discussed, and the
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control law is modified accordingly. An integral term and

an observer are proposed. Convergence proof of the tracking

error is given in Section V. In Section VI, we show exper-

imental results obtained on a presented test bench. Finally,

we conclude and give future directions in Section VII.

II. AIRPATH MODELING

A. Balance equations for the intake manifold

Fig. 1. Airpath scheme. Intake mass air flow, ṁat, upstream throttle
pressure, Put, intake manifold pressure and temperature, Pman and Tman,
and engine speed, Ne, are measured by sensors. ṁasp is the unknown
aspirated mass air flow. θth, Θint and Θexh are the actuators angle
positions.

Notations are given in Table I. Consider the airpath of

a SI engine equipped with VVT actuators as depicted in

Figure 1. In this configuration, i.e. with internal exhaust

gas recirculation, the airpath has a very simple structure.

It can be modeled by the intake manifold which has an

inlet flow (controlled by the throttle) and an outlet flow

(impacted by the VVT actuators). We consider the intake

manifold as a constant volume for which the thermodynamic

states (pressure, temperature, composition) are assumed spa-

tially homogeneous. Also, we neglect time variations of

temperature in this volume (following [10] and [11]), i.e.

Ṫman = 0. Under these assumptions, a mass balance in the

intake manifold gives

Ṗman = α(ṁat − ṁasp) (1)

with α , RTman

Vman
. Both Pman and Tman are measured by

sensors located in the intake manifold. ṁat is the intake

mass air flow. It is measured by a sensor placed upstream

the throttle (see Figure 1). Respectively, ṁasp is the mass

air flow aspirated into the cylinders.

The intake mass air flow can be modeled under the form

ṁat = Sthf(Pman) − b1 (2)

where Sth is the opening throttle area. The mass flow rate

f(Pman) is given in [3], under the form

f(Pman) = κPut
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where κ , 1√
RTman

and Pr , Pman

Put
, Put is the upstream

pressure from the throttle (considered as constant under at-

mospheric conditions), and γ is the specific heats ratio in the

intake manifold. The constant bias b1 is added to compensate

modeling errors, e.g. in the experimentally determined look-

up table used to transform the opening throttle area Sth into

a throttle angle θth.

Following [3], the mass air flow through the inlet valves

is modeled under the form

ṁasp = (ηΦ(Pman) + b2)βPman (4)

with β , Vd

RTman

Ne

2 . In this equation, ηΦ(Pman) is a

volumetric efficiency. It depends on the intake pressure,

Pman, and also on operating conditions such as the engine

speed, Ne, and, most importantly, on the VVT actuators

positions, i.e. Φ , (Ne,Θint,Θexh) ∈ R
3. The function

x 7→ ηΦ(x) is assumed to be known (through look-up table)

for every values of Φ. The constant bias b2 is added to

compensate modeling errors (see [10], [12]).

TABLE I

NOMENCLATURE

Symbol Description Unit Variable

b1 Intake mass air flow bias kg/s
b2 Volumetric efficiency bias -
ṁat Throttle mass air flow kg/s y2

ṁasp Aspirated mass air flow kg/s
masp In-cylinder air mass kg z
Ne Number of crankshaft revolutions s−1

ncyl Number of cylinders -
Pman Intake manifold pressure Pa x, y1

Put Pressure upstream the throttle Pa
R Ideal gas constant J/kg/K
Sth Throttle opening area m2 u
Tman Intake manifold temperature K
Vd Total displaced volume of all the cylin-

ders
m3

Vman Intake manifold volume m3

ηΦ Volumetric efficiency -
θth Opening throttle angle, θth -
Θint Intake valve timing actuator position oCA
Θexh Exhaust valve timing actuator position oCA

B. State space model and physical assumptions

Let us note x , Pman and u , Sth the state and the con-

trol variable of our system respectively. The measurements

are y1 , x and y2 , ṁat. Gathering equations (1), (4)

and (2), one can write

ẋ = α(uf(x) − b1 − (ηΦ(x) + b2)βx) (5)

By definition (3), f : R → R is a positive decreasing

function. Physically, ηΦ : R → R is a positive increasing

function.
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Due to physical limitations of the engine, the constants

α and β are bounded. We note α ∈ [α, α] > 0 and

β ∈
[

β, β
]

> 0 and consider α̇ = β̇ = 0. Further, the

volumetric efficiency η is also bounded, i.e. (ηΦ(x) + b2) ∈
[

η; η
]

. Its derivative η′
Φ is also positive and bounded.

III. CONTROL PROBLEM

A. Air mass control

Our goal is to control the air mass aspirated into the cylin-

ders. Three actuators have an influence on this variable: the

throttle, the intake VVT and the exhaust VVT (see Figure 1).

In the presented study, we control the air mass through

the throttle, taking into account VVT variations which are

considered as measured disturbances. VVT management is

presented in [9]. Since the throttle permits to control the

intake manifold pressure, we turn any air mass set point into

an intake pressure set point. For that, we define a function

which relates the aspirated air mass (noted z) and the intake

manifold pressure, x, under the form z , Ψ(x, b2). Besides,

z can also be computed by integrating the mass air flow,

ṁasp, over one period ∆t = 2
Nencyl

, i.e. z =
∫ ∆t

0
ṁaspdt.

Considering (4) as a steady state relation, the Ψ function is

defined by the averaging formula

z = Ψ(x, b2) , (ηΦ(x) + b2)βx∆t (6)

B. Reference trajectories

In vehicle applications, the driver prescribes a torque set

point to the control system through the acceleration pedal.

This information is directly transformed into an aspirated

air mass set point, zsp, using a look-up table which is

experimentally determined on the test bench under steady

state conditions. This yields zsp , map(T sp
q , Ne).

To reach this desired set point, we propose a motion

planning based method. Airpath transients can be achieved

by computing a feasible air mass trajectory. Inversion of the

averaging formula (6) yields

xsp , Ψ−1(zsp, b2) = Ψ−1(map(T sp
q , Ne), b2) (7)

The airpath has a first order dynamics (5). Therefore, this

trajectory must be at least one time differentiable. In practice,

this minimal smoothness requirement is guaranteed by a low-

pass filtering of the torque set point, T sp
q .

Since Ψ is a continuous function, xsp has the same

continuity and differentiability properties as zsp. However,

the bias b2 is unknown, and the trajectory xsp cannot be

explicitly computed. To compensate this lack of information,

we use an observer to reconstruct b2. We note this estimate

b̂2. The generated trajectory to be followed is then

xr , Ψ−1(map(T sp
q , Ne), b̂2) (8)

In the following, we assume that, as a consequence of the

discussed properties of the reference trajectories derivation,

xr is smooth and bounded and that ẋr is bounded. The

mentioned observer is presented in the next section.

IV. CONTROL SOLUTIONS

This section presents control methods guaranteeing track-

ing of the pressure trajectory (8).

System (5) is fully actuated and invertible. Provided that

the biases b1 and b2 are known, for any smooth trajectory,

one can easily compute an open-loop control law. As will be

explained in § IV-A, this is, in theory, sufficient to guarantee

tracking due to the open-loop stability of (5). When neither

b1 nor b2 are known, a closed-loop law based on an observer

can be considered. This is the topic addressed in § IV-B.

Convergence can be proven, as will be shown in Section V.

A. Open-loop control when the biases are known

We consider that the biases b1 and b2 are known. Consider

the following open-loop control law

u =
1

f(x)

(

ẋr

α
+ b1 + (ηΦ(xr) + b2)βxr

)

(9)

After substitution in (5), we obtain

ẋ = ẋr + αβ((ηΦ(xr) + b2)x
r − (ηΦ(x) + b2)x) (10)

Let e , x − xr be the error between the measurement

and the reference pressure. Let h : R → R be the

increasing continuous function on I =
[

xmin;xmax
]

defined

by hΦ(x) , ηΦ(x)x. From the intermediate value theorem,

there exists one real c in [x;x] ⊂ I, where x = min(x, xr)
and x = max(x, xr), such that

hΦ(x) − hΦ(x) = h′
Φ(c)(x − x) (11)

In (11), c depends on x(t) and xr(t). More precisely, we

can represent it as a time-varying function, depending on

the initial condition of x that we shall denote λ. Using (11)

in (10), we obtain

ė = −αβ(h′
Φ(c(t, λ)) + b2)e

Yet, h′
Φ(c(t, λ)) + b2 = η′

Φ(c(t, λ))c(t, λ) + ηΦ(c(t, λ)) +
b2 ≥ η thanks to bounds given in § II-B. Then, the following

proposition holds.

Proposition 1. Consider system (5) and some smooth ref-

erence trajectory xr. The open-loop control law (9) (which

uses known values of b1 and b2) guarantees that the tracking

error e exponentially converges towards 0 when t → ∞.

B. Closed-loop control in the case of unknown biases

In a more realistic setup, we consider that the biases b1 and

b2 are not known. To compensate this missing information,

we use an observer (defined in (13)) as an estimate of b2.

Further, to compensate b1, we add an integral term in the

feedback law aiming at tracking the reference trajectory xr.

This leads us to consider the following control law

u = 1
f(x)

(

1
α
(ẋr − kp(x − xr) − ki

∫ t

0
(x − xr)dt)

+(ηΦ(xr) + b̂2)βxr
)

(12)

with kp > 0 and ki > 0.
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A nonlinear observer based on pressure measurement can

be considered under the form
{

˙̂x = α(y2 − (ηΦ(x) + b̂2)βx̂) + αβl1(x − x̂)
˙̂
b2 = −αβx̂l2(x − x̂)

(13)

where l1 > 0, l2 > 0 are two tuning gains.

V. CONVERGENCE PROOF

We now prove convergence of the observer-controller

presented in § IV-B. In the following, ‖·‖ is the Euclidian

norm, and, for any vector valued function f , ‖f‖∞ denotes

supt≥0 ‖f(t)‖.

A. Error dynamics

We note the observation errors x̃ , x − x̂ and

b̃2 , b2 − b̂2,
{

˙̃x = −αβ(ηΦ(x) + b2 + l1)x̃ − αβx̂b̃2

˙̃
b2 = αβx̂l2x̃

(14)

Consider

V (x̃, b̃2) ,
1

2
‖x̃‖

2
+

1

2l2

∥

∥

∥
b̃2

∥

∥

∥

2

(15)

Differentiation with respect to time leads to

V̇ (x̃, b̃2) = x̃ ˙̃x + 1
l2

b̃2
˙̃
b2

= −αβ(ηΦ(x) + b2 + l1)x̃
2 ≤ 0

Semi-negativeness of this last expression is directly obtained

from assumptions given in § II-B, together with l1 > 0. Since

V is decreasing, then x̃ and b̃2 are bounded. We note

‖x̃‖∞ < ∞ and

∥

∥

∥
b̃2

∥

∥

∥

∞
< ∞ (16)

After substitution of (12) in (5), we obtain

ẋ = ẋr − kp(x − xr) − ki

∫ t

0
(x − xr)dt − αb1

+αβ((ηΦ(xr) + b̂2)x
r − (ηΦ(x) + b2)x)

Note e , x − xr the error between the measurement and

the reference pressure, and ι the integral term, i.e. ι̇ = −kie.

Using (11), the error dynamics can be written under the state

space form
{

ė = −(kp + αβ(h′
Φ(c(t, λ)) + b2))e + ι − α(βxr b̃2 + b1)

ι̇ = −kie
(17)

Consider the variable (which can be interpreted as the asymp-

totic value of the integrator, once convergence is proven)

ω = α(βxr b̃2 + b1) (18)

and note ι̃ = ι − ω. The error dynamics (17) takes the

form of a forced parameterized Linear Time-Varying (LTV)

multivariable system,

Ẋc = A(t, λ)Xc + v(t) (19)

with Xc , (e ι̃)
T

, v(t) , (0 ω̇)
T

and

A(t, λ) ,

(

−kp − αβ(h′
Φ(c(t, λ)) + b2) 1
−ki 0

)

In (19), the matrix A(t, λ) is impacted by the control gains

kp and ki, while the forcing term v(t) is due to observation

error. To prove convergence of the pressure to the reference

trajectory (which is our main objective), we show that (19)

is λ-Uniformly Globally Asymptotically Stable (λ-UGAS).

For that purpose, we will show that the unforced system

Ẋc = A(t, λ)Xc (20)

is λ-Uniformly Globally Exponentially Stable (λ-UGES) and

show some decay property of the forcing term v(t).

B. Proof of exponential stability

The multivariable system (20) belongs to a class of pa-

rameterized LTV systems studied in [13]. In the following,

we are going to use an important result.

Theorem 1. (λ-UGES of parameterized LTV systems, Lorı́a-

Panteley [13]) Consider the parameterized LTV multivari-

able system (21) under the following form

(

ė

θ̇

)

=

(

A(t, λ) B(t, λ)T

−C(t, λ) 0

)(

e

θ

)

(21)

where e ∈ R
n, θ ∈ R

m, A(t, λ) ∈ R
n×n, B(t, λ) ∈ R

m×n,

C(t, λ) ∈ R
m×n, λ ∈ D ⊂ R

l, and n, m, l are some

integers. Assume that the following two properties hold.

Assumption 1. There exists φM > 0 such that for all t ≥ 0

and for all λ ∈ D, max
{

‖B(t, λ)‖ ,
∥

∥

∥

∂B(t,λ)
∂t

∥

∥

∥

}

≤ φM .

Assumption 2. There exist symmetric matrices P (t, λ) and

Q(t, λ) such that

{

C(t, λ)T = P (t, λ)B(t, λ)T

−Q(t, λ) = A(t, λ)T P (t, λ) + P (t, λ)A(t, λ) + Ṗ (t, λ)

There exists pm, qm, pM and qM > 0 such that, for

all (t, λ) ∈ R≥0 × D, pmI ≤ P (t, λ) ≤ pMI and

qmI ≤ Q(t, λ) ≤ qMI .

Then, the system is λ-UGES if and only if B(t, λ) is λ-

uniform persistency of excitation, i.e. there exists µ, T > 0
such that

∫ t+T

t
B(τ, λ)B(τ, λ)T dτ ≥ µI ∀t.

Consider system (20) with D = R, n = 1, m = 1. We

have A(t, λ) = −kp − αβ(h′
Φ(c(t, λ)) + b2), B(t, λ) = 1

and C(t, λ) = ki. Then, Assumption 1 is easily enforced

with φM = 1.

Moreover, let P (t, λ) = ki and Q(t, λ) = 2ki(kp +
αβ(h′

Φ(c(t, λ))+b2)) with kp, ki, α, β > 0. By noticing that

h′
Φ(c(t, λ)) + b2 is bounded, it follows that Assumption 2 is

also verified. Finally, the λ-uniform persistency of excitation

is readily proven with µ = T = 1. We can now conclude

and state the following result.

Proposition 2. The parameterized LTV multivariable sys-

tem (20) is λ-UGES.
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C. Proof of asymptotic stability

Now, consider the forced system (19). The analytic solu-

tion of the differential equation is

Xc(t) = φ(t, 0, λ)Xc(0) +

∫ t

0

φ(t, τ, λ)v(τ)dτ

where φ is the transition matrix of the system. Since sys-

tem (20) is λ-UGES, there exists k, γ > 0, independent of

λ, such that ∀t, τ > 0, ‖φ(t, τ, λ)‖ ≤ ke−γ(t−τ). Then, a

bound on Xc(t) can be easily obtained by

‖Xc(t)‖ ≤ ke−γt ‖Xc(0)‖ +
∫ t

0
ke−γ(t−τ) ‖v(τ)‖ dτ

≤ ke−γt ‖Xc(0)‖ + I1(t1, t) + I2(t1, t)

where I1(t1, t) = k
∫ t1

0
e−γ(t−τ) ‖v(τ)‖ dτ and I2(t1, t) =

k
∫ t

t1
e−γ(t−τ) ‖v(τ)‖ dτ and 0 ≤ t1 ≤ t. One can separately

evaluate the two quantities I1 and I2.

I1(t1, t) = k
∫ t1

0
e−γ(t−t1)e−γ(t1−τ) ‖v(τ)‖ dτ

≤ k
γ
e−γ(t−t1) ‖v‖∞ (1 − e−γt1)

I2(t1, t) = k
∫ t

t1
e−γ(t−τ) ‖v(τ)‖ dτ

≤ k supτ∈[t1;+∞[ ‖v(τ)‖
∫ t

t1
e−γ(t−τ)dτ

≤ k
γ

supτ∈[t1;+∞[ ‖v(τ)‖

To obtain a bound on Xc, we use t1 = t
2 and derive

‖Xc(t)‖ ≤ ke−γt ‖Xc(0)‖ + k
γ
‖v‖∞ (e−γ t

2 − e−γt)

+ k
γ

supτ∈[ t
2
;+∞[ ‖v(τ)‖

(22)

Thanks to this inequality, convergence of Xc(t) towards 0
can be guaranteed, provided the following two conditions

hold
{

‖v‖∞ < ∞ (a)

limt→∞ supτ∈[ t
2
;+∞[ ‖v(τ)‖ = 0 (b)

We will now prove that this is indeed the case. The norm of

the forcing term can be computed from (18),

‖v(t)‖ = ‖ω̇(t)‖ = αβ
∥

∥

∥
ẋr(t)b̃2(t) + xr(t)

˙̃
b2(t)

∥

∥

∥
(23)

From the observer dynamics (14), we have
˙̃
b2(t) = αβx̂(t)l2x̃(t). In addition, note x̂(t) , x(t)− x̃(t),
then

‖v(t)‖ = αβ
∥

∥

∥
ẋr b̃2 + αβl2x

rxx̃ − αβl2x
rx̃2

∥

∥

∥

≤ q(t) + l2r(t) + l2s(t) ‖x‖
(24)

with q(t) , αβ ‖ẋr‖
∥

∥

∥
b̃2

∥

∥

∥
, r(t) , α2β2 ‖xr‖ ‖x̃‖

2
and

s(t) , α2β2 ‖xr‖ ‖x̃‖. Yet, b̃2 and x̃ are bounded, as we

know from (16) and, by assumption, xr and ẋr are also

bounded. We can easily deduce that q(t), r(t) and s(t) are

also bounded, ‖q‖∞ < ∞, ‖r‖∞ < ∞ and ‖s‖∞ < ∞.

Further, to guarantee that (a) holds, we will prove that x is

also bounded. Conservatively, (22) yields

‖Xc(t)‖ ≤ ke−γt ‖Xc(0)‖ +
k

γ
(1 + e−γ t

2 − e−γt) ‖v‖∞

Using (24) we obtain

‖Xc(t)‖ ≤ ke−γt ‖Xc(0)‖ + k
γ
(1 + e−γ t

2 − e−γt)

∗(‖q‖∞ + l2 ‖r‖∞ + l2 ‖s‖∞ ‖x‖∞)
(25)

Yet, ‖x‖ = ‖xr + e‖ ≤ ‖xr‖ + ‖e‖ ≤ ‖xr‖ + ‖Xc‖ and

then, simply,

‖x‖∞ ≤ ‖xr‖∞ + ‖Xc‖∞ (26)

From (26), inequality (25) leads to

‖Xc‖∞ ≤ k ‖Xc(0)‖ + 2k
γ

(‖q‖∞ + l2 ‖r‖∞
+l2 ‖s‖∞ ‖Xc‖∞ + l2 ‖s‖∞ ‖xr‖∞)

and, finally, to

‖Xc‖∞

(

1 − l2
2k
γ
‖s‖∞

)

≤ k ‖Xc(0)‖ + 2k
γ

(‖q‖∞ + l2 ‖r‖∞ + l2 ‖s‖∞ ‖xr‖∞)
(27)

Bounds on ‖x̃‖∞ and

∥

∥

∥
b̃2

∥

∥

∥

∞
can be obtained from the

definition of the candidate Lyapunov function (15) and its

decreasingness. In facts, one easily derives

‖x̃‖∞ ≤

√

‖x̃(0)‖
2

+ 1
l2

∥

∥

∥
b̃2(0)

∥

∥

∥

2

and

∥

∥

∥
b̃2

∥

∥

∥

∞
≤

√

l2 ‖x̃(0)‖
2

+
∥

∥

∥
b̃2(0)

∥

∥

∥

2
(28)

Let us study inequality (27) when l2 tends towards 0. On the

left hand-side, we have

lim
l2→0

l2
2k

γ
‖s‖∞ = 0

while, on the right hand-side,

liml2→0(‖q‖∞ + l2 ‖r‖∞ + l2 ‖s‖∞ ‖xr‖∞)

= αβ ‖ẋr‖∞

∥

∥

∥
b̃2

∥

∥

∥

∞
+ α2β2 ‖xr‖∞

∥

∥

∥
b̃2(0)

∥

∥

∥

2

∞

Then, for l2 small enough, one can derive another more

conservative inequality

1
2 ‖Xc‖∞ ≤ k ‖Xc(0)‖

+ 4k
γ

(

αβ ‖ẋr‖∞

∥

∥

∥
b̃2

∥

∥

∥

∞
+ α2β2 ‖xr‖∞

∥

∥

∥
b̃2(0)

∥

∥

∥

2

∞

)

It follows that ‖Xc‖∞ < ∞, and, from (26),

‖x‖∞ < ∞ (29)

The condition (a) is easily obtained from (29) and (24).

Let us now focus on the second condition (b). Inequal-

ity (28) shows that both x̃ and b̃2 are bounded (as we already

know it from the function V property). Further, we can

deduce from (14) and (29) that ˙̃x is also bounded. Then,

x̃ is uniformly continuous. In addition, positiveness of (15)

brings

V (x̃(0), b̃2(0)) ≥ −
∫ t

0
V̇ (x̃(t), b̃2(t))dt

≥
∫ t

0
αβ(ηΦ(x) + b2 + l1)x̃

2dt

Let C , αβ(η + l1) > 0, then
∫ t

0
x̃2dt ≤ V (x̃(0),b̃2(0))

C
.

Thus, x̃ is square integrable, and, from the uniform continuity
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of x̃2 (because x̃ is uniformly continuous), one can deduce

that x̃2 tends towards 0 when t → ∞,

lim
t→∞

x̃(t) = 0 (30)

From (14), we deduce that

lim
t→∞

˙̃
b2(t) = 0 (31)

In addition, a further time differentiation of ˙̃x leads to

¨̃x = −αβ((ηΦ(x) + b2 + l1) ˙̃x + x̃ẋη′
Φ(x)

+(ẋ − ˙̃x)b̃2 + (x − x̃)
˙̃
b2)

Yet, x̃ and b̃2 are bounded, while ηΦ(x)+b2 + l1, and η′
Φ(x)

are also bounded by assumption (see Section II-B). Then,

from (14), ˙̃x is bounded. Moreover, using the expression

of
˙̃
b2, considering (29) and recalling that ẋ = ẋr + ė, we

deduce that ¨̃x is bounded. As ˙̃x is uniformly continuous

and using (30), we obtain limt→∞ ˙̃x(t) = 0 from Barbalat’s

lemma ([14], Lemma 8.2). Finally, from (14),

lim
t→∞

b̃2(t) = lim
t→∞

˙̃x + αβ(ηΦ(x) + b2 + l1)x̃

αβ(x − x̃)
= 0 (32)

Gathering (31) and (32) and recalling that, by assumption,

xr and ẋr are both bounded, then, from (23), we obtain the

condition (b). Finally, we can conclude with the following

proposition.

Proposition 3. The forced system (19) is λ-Uniformly Glob-

ally Asymptotically Stable (λ-UGAS). The tracking error e

asymptotically converges towards 0 when t → ∞.

D. Conclusion on air mass control

We have shown that the closed-loop control law allows to

address the tracking of the pressure trajectory, i.e.

lim
t→∞

|xr(t) − x(t)| = 0 (33)

Moreover, using (7) and (8), convergence of the bias obser-

vation error (32) leads to the convergence of the generated

trajectory towards the expected trajectory,

lim
t→∞

|xsp(t) − xr(t)| = 0 (34)

From (33) and (34), we can conclude on the convergence of

the pressure to the expected pressure trajectory,

lim
t→∞

|xsp(t) − x(t)| = 0 (35)

Recalling that pressure and air mass in the cylinder are

related by (6), using (32) and (35), we obtain

lim
t→∞

|zsp(t) − z(t)| = 0

Then the following proposition holds,

Proposition 4. The closed-loop control law (12) - (13)

guarantees the tracking of the air mass trajectory.

VI. EXPERIMENTAL RESULTS

In this section, we illustrate the relevance of the proposed

closed-loop approach with experimental results.

A. Engine setup

The engine under consideration is a 1,8L four-cylinder SI

engine using direct injection technology and homogeneous

combustion. The airpath consists of a turbocharger with

monoscroll turbine controlled by a waste-gate, an intake

throttle and a downstream-compressor heat exchanger per-

mitting intake air temperature regulation. To take advantage

of all the versatility of direct injection and turbocharging, the

engine is equipped with two variable valve timing devices,

for intake and exhaust valves. This engine setup is consistent

with the scheme reported in Figure 1.

B. Results

The control strategy presented in this paper has been tested

on an experimental test bench. Fast tip-in and tip-out are

imposed to the engine to stress the improvements gener-

ated by the proposed strategy. Figure 2 compares strategy

presented in [9] (strategy 1) against the proposed strategy

(strategy 2) on the torque and the Air/Fuel Ratio (AFR) .

The management of the AFR near the stoichiometric value is

better with the new strategy, especially for tip-out. Actually,

during the tip-out, the prediction of the trapped air mass sent

to the AFR controller is rather poor. Good management of

the AFR with strategy 2 comes from a good tracking of the

fresh air charge trajectory.

Figure 3 presents the results of the control strategy pro-

posed in that paper. Figure 3a shows the tracking of the

fresh air mass in the cylinder comparing the trajectory, zsp,

with the reconstruction given by the observer, ẑ. The good

tracking explains the efficiency of the strategy on AFR

management. In Figure 3b, one can clearly see that the

measurement of the intake manifold pressure, xmeas, tracks

its reference trajectory, xr. The set point of the throttle

generating such a tracking is presented on Figure 3c. One

can see the influence of the feedforward term that boosts the

throttle opening area, θ
sp
th , during transients. This permits to

improve torque response during transients.

Figure 4 compares the strategies for numerous torque

transients. The improvements on AFR managements and thus

in torque response can be seen on each transients of the

experiment.

VII. CONCLUSION AND FUTURE DIRECTION

The paper presents a new approach for controlling the

airpath on a SI engine equipped with VVT actuators. The

method is based on the tracking of a reference trajectory of

the air mass in the cylinders. VVT actuators are considered

as measured disturbances. A closed-loop control law based

on the intake manifold pressure measurement is presented

and its convergence its proven. The strategy is tested on test

bench and improvements can be observed in AFR manage-

ment (and thus, indirectly, on torque control), compared to

a classical approach.

The strategy has been validated under atmospheric condi-

tions. To extend it to turbocharging conditions, we plan to

consider the change in the airpath dynamics during the tran-

sition between atmospheric and turbocharging conditions.
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Fig. 2. Experimental results on a 4-cylinder SI engine at constant engine speed (2000 rpm). Comparison of the two AFR control strategies on torque and
AFR during tip-in and tip-out. Strategy 1 : classical air mass prediction for AFR control [9], strategy 2 : proposed strategy for AFR control.
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Fig. 3. Experimental results on a 4-cylinder SI engine at constant engine speed (2000 rpm). Results of the proposed airpath control strategy for the same
torque transients as in Figure 2.
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Fig. 4. Experimental results on a 4-cylinder SI engine at constant engine speed (2000 rpm). Some torque transients under atmospheric conditions.
Strategy 1 : classical air mass prediction for AFR control [9], strategy 2 : proposed strategy for AFR control. Mismatch between torque set point and
measurements under steady-state conditions come from inaccurate torque to in-cylinder air mass look-up table.
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