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Abstract

A statistical classification technique based on the
fraction of time the catalyst gain is very close to
zero is used as a diagnostic metric for on-board
monitoring of an automotive catalyst. Prelimi-
nary results indicate that it is possible to per-
form very accurate discrimination between cata-
lyst operation, even near the on-board diagnostic
detection threshold, using this technique. Exper-
imental vehicle tests with each of the different
catalysts are used as the basis for comparison.

1. Introduction

Effective and robust on-board system monitor-
ing is essential in order to ensure that the com-
ponents of an automotive emission control sys-
tem continue to operate properly with age. Be-
cause a small fraction of malfunctioning vehicles
are believed to account for a large fraction of
automotive emissions, on-board monitoring has
the potential to significantly reduce these emis-
sions. This observation, along with legislation
that mandates on-board diagnostic (OBD) sys-
tems to monitor the health and performance of
the catalyst system, has led to interest in moni-
toring strategies that are able to reliably indicate
when an automotive three-way catalyst emission
control system is no longer meeting specification
or when a fault is present in the system.

Legislated targets aimed at improving air qual-
ity through the reduction of automotive emis-
sions specify both the emission levels that must
be achieved by new vehicles as well as the devi-

ation from these levels that must be detected by
on-board diagnostic monitoring over the vehicle
lifetime. These emission regulations are speci-
fied in terms of hydrocarbon and nitrogen oxide
levels. However, there are no cost-effective and
reliable automotive sensors for these components
at present. This limitation has led to monitoring
approaches that consider the oxygen storage ca-
pacity of the catalyst rather than tailpipe emis-
sions. Although the catalyst oxygen storage ca-
pacity can not be measured directly, it can be in-
ferred using exhaust gas oxygen (EGO) sensors
and a suitable model of the catalyst. These sen-
sors are already available in modern automotive
emission control systems making this approach
to catalyst monitoring attractive.

A model-based catalyst monitoring strategy,
in which the catalyst oxygen storage capacity is
modeled as a nonlinear integrator with a time-
varying integral gain, is considered in this work.
We present a diagnostic metric based on an es-
timate of the probability density of the catalyst
gain around zero that is computed from a moving
window of catalyst gain values.

2. Catalyst Gain Derivation

The monitoring strategy presented in this work
is based on the use of the pre- and post-catalyst
exhaust gas oxygen sensors to determine the cat-
alyst gain. These sensors measure the excess or
deficiency of oxygen in terms of the air fuel ratio

λ =
1

Kλ

ṁO2

ṁf

(1)
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in which λ = 1 represents stoichiometric air fuel
ratio, ṁO2 is the oxygen mass flow rate, ṁf is the
fuel mass flow rate, and Kλ is the stoichiomet-
ric air fuel ratio times the oxygen mass fraction
of air. The rate of catalyst oxygen storage and
release can be estimated using the relationship

θ̇ = ṁfKλ [(∆λpre − ∆λpost) + ǫλ(∆H2)] (2)

where ∆λ = λ − 1 is the difference from sto-
ichiometry of the normalized air fuel ratio λ,
∆λpre is the pre-catalyst air fuel ratio deviation,
and ∆λpost is the post-catalyst air fuel ratio de-
viation. The term ǫλ(∆H2) represents a dynami-
cally varying measurement bias term due primar-
ily to differences between the pre-catalyst and
post-catalyst hydrogen concentrations [1].

Assuming that the measurement bias is neg-
ligible, the catalyst control system successfully
maintains the post-catalyst air fuel ratio at stoi-
chiometry (∆λpost = 0), and oxygen storage and
release rates are proportional to some function
of temperature, Eq. 2 can be simplified to

θ̇ = fT (T ) ṁ Kλ ∆λpre (3)

in which fT (T ) is the temperature dependence.
Integrating Eq. 3 with respect to time gives

θ = θo +

∫

fT (T ) ṁ Kλ ∆λpre dt (4)

where θo is the initial stored oxygen level. Fur-
ther assuming that the post-catalyst EGO sensor
voltage signal represents a measure of the cata-
lyst stored oxygen level leads to the following re-
lationship between the pre-catalyst air fuel ratio
and the post-catalyst EGO sensor voltage

vH = vo +

∫

b ṁ ∆λpre dt (5)

where vH is the post-catalyst EGO sensor volt-
age and b is the catalyst gain.

Although the exact relationship between the
post-catalyst EGO sensor voltage vH and the
stored oxygen level θ is unknown, it can be as-
sumed that this relationship is nonlinear. The
effect of this unknown nonlinearity will be ab-
sorbed into the catalyst gain making b a function
of θ in addition to temperature as follows

b = fθ(θ) fT (T )Kλ (6)

where fθ(θ) represents the stored oxygen rela-
tionship. The catalyst gain is therefore a mea-
sure of both the EGO sensor voltage relationship
to the oxygen storage level and the oxygen stor-
age and release rate relationship to catalyst tem-
perature. It is changes in the catalyst gain values
due to the changes in these relationships as the
catalyst systems degrades with age that are ex-
pected to indicate the catalyst system health.

An estimate of the catalyst gain can be com-
puted from the derivative of Eq. 5 as follows.

b̂ =
v̇H

ṁf∆λpre
(7)

A slowly varying post-catalyst EGO sensor volt-
age results in a small catalyst gain that is indica-
tive of a healthy catalyst. Conversely, rapidly
changing post-catalyst EGO sensor voltage sig-
nals coupled with small pre-catalyst stoichiomet-
ric deviations and low mass flow rates result in
a large catalyst gain that is indicative of an un-
healthy catalyst. A critical restriction on this
metric, however, concerns the ∆λpost = 0 as-
sumption leading to Eq. 3. If this assumption
is violated to the extent that the post-catalyst
EGO sensor voltage saturates from either a rich
or lean emissions breakthrough, v̇H will approach
zero and the resulting catalyst gain will indicate
a healthy catalyst when the converse is the most
likely cause of the breakthrough. In practice,
monitoring for post-catalyst EGO sensor voltage
saturation is necessary to avoid this scenario. A
second restriction concerns the catalyst temper-
ature. Low temperatures produce decreased cat-
alytic activity and reduced oxygen storage ca-
pacity that result in an increased catalyst gain
even for a healthy catalyst. In practice, a min-
imum entry condition on the estimated catalyst
temperature is necessary for diagnosis.

Examination of Eq. 7 also reveals potential
computational issues with the catalyst gain.
The control system will typically cycle the pre-
catalyst air fuel ratio ∆λpre across stoichiometry
in a manner similar to relay feedback control.
The value of ∆λpre will therefore go through zero
at every cycle resulting in an undefined catalyst
gain at that point. Assuming that the controller
instantly achieves its pre-catalyst target as it is
cycled, ∆λpre can be replaced by a gain that rep-
resents the magnitude of the stoichiometric de-
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viation of the controller target. The use of this
gain will prevent undefined values.

A second computational issue is the phase dif-
ference between v̇H and ṁf arising from the de-
lay in the post-catalyst EGO sensor response.
This phase difference can significantly effect the
catalyst gain calculation at the relatively high
switching frequency of the post-catalyst EGO
sensor. Attempting to remove this phase differ-
ence by adding a delay to the ṁf value is prob-
lematic because the EGO sensor delay is a strong
function of both speed and load. A simpler and
more robust, although clearly approximate, al-
ternative is to ignore the fuel mass flow rate de-
pendence in the catalyst gain estimate. Varia-
tions in fuel mass flow rate will then propagate
into the gain estimate, but the effect is likely to
be more pronounced for unhealthy catalysts.

After implementing these computational mod-
ifications, a simplified catalyst gain estimate is

b̂ =
v̇H

K
(8)

where K is the magnitude of the pre-catalyst
controller target deviation from stoichiometry.
The resulting catalyst gain metric is a scaled
post-catalyst EGO sensor voltage time derivative
where the magnitude of the scaling factor K is
adapted by the catalyst control system based on
the estimate of the catalyst gain. Larger values
of the catalyst gain, indicating an unhealthy cat-
alyst, result in a reduction in the stoichiometric
deviation magnitude of the controller target.

3. Probability Density Metric

Experimental vehicle data from a 4.6 liter ULEV
II gasoline engine operating over an EPA Federal
Test Procedure (FTP) drive cycle is used to de-
termine the ability of the test statistic to discrim-
inate between catalysts of varying health. Three
differently aged catalysts were used: healthy cat-
alyst aged to useful life, critically aged catalyst,
and unhealthy aged catalyst. The healthy cat-
alyst was thermally aged to the baseline emis-
sion limit. The critically aged catalyst was ther-
mally aged and poisoned with phosphorus to just
meet the emission threshold limit for on-board
diagnostic monitoring. The unhealthy aged cata-
lysts was thermally aged and poisoned with phos-
phorus to just exceed the on-board diagnostic

threshold limit. Additional details on these cat-
alysts are given in [2].

Previous work in [3] considered the mean, the
variance to mean ratio, and the coefficient of
variation of the absolute value of the estimated
catalyst gain in Eq. 8 as test statistics. These val-
ues were computed from a data window consist-
ing of the entire FTP drive cycle with a minimum
temperature entry condition of 800◦ F. Similar
test statistics computed from a slightly different
catalyst gain for the same FTP drive cycle data
are presented in [2]. Although these test statis-
tics were able to distinguish the healthy catalyst
from the aged catalysts, they were not able to
discriminate between the two aged catalysts.

This difficulty in discriminating between the
aged catalysts reflects the very close similarity in
the aging process. The two catalysts are nearly
identical. The only difference is the level of phos-
phorus poisoning (5% for the critically aged cat-
alyst and 6% for the unhealthy aged catalyst).
However, examination of the estimated cumu-
lative distribution function of the catalyst gain
for each of the three catalysts carried out in [3]
did reveal a clear difference between the distri-
butions for the two aged catalysts around zero.
It is this difference that is exploited to develop a
more sensitive OBD detection test statistic.

3.1. Density Estimate

In order to quantify the differences between the
distributions around zero for the three catalysts,
kernel density estimates were computed using
the R statistical computing package [4]. These
estimates were calculated using a Gaussian ker-
nel density estimator with a bandwidth given by

h = 0.9
min (s, IQR/1.34)

N0.2
(9)

where s is the sample standard deviation of the
catalyst gains in the data window, IQR is the
interquartile range, and N is the sample size [5].
As shown in Figure 1, the three catalysts have
different density estimates for catalyst gain val-
ues close to zero that allow the three catalysts to
be clearly differentiated using FTP cycle data.

3.2. Fraction of Small Gain Values

A much more computationally efficient approxi-
mation to the kernel density around zero can be
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Figure 1: Density plot.
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Figure 2: Fraction ∆b vs. HC emissions.

obtained by considering the fraction of catalyst
gain values that are within some small threshold
around zero. This fraction of small catalyst gain
values is defined as

∆b =

∑N
i=1

ηi

N
, ηi =















1,
∣

∣

∣

b̂i

∣

∣

∣

≤ Tb

0,
∣

∣

∣
b̂i

∣

∣

∣
> Tb

(10)

where N is the number of values in the moving
window, b̂i is defined in Eq. 8, and Tb = 0.01 is
the threshold. Figures 2 and 3 present the frac-
tion of small catalyst gain values in Eq. 10 for all
of the FTP drive cycle data with the three dif-
ferently aged catalysts as a function of hydrocar-
bon and NOx emissions. The entire FTP cycle is
taken as the data window and a minimum tem-
perature entry condition of 800◦ F is applied.The
first vertical red line in each figure represents the
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Figure 3: Fraction ∆b vs. NOx emissions.
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Figure 4: Fraction ∆b vs. HC (all data sets).

baseline emission limit and the second vertical
red line represents the on-board diagnostic de-
tection emission limit. The dashed horizontal
lines represent the average fraction over all of
the FTP drive cycles for each catalyst. The frac-
tion of small catalyst gain values, ∆b, demon-
strates good discrimination between the healthy
and aged catalysts and can distinguish between
the critically aged and unhealthy aged catalysts.

Figure 4 presents the same test statistic ap-
plied to street drive test data. Because there are
no emission measurements for the street drive
tests, the fraction of small catalysts gain values
for this data were given a zero emissions value
and incorporated with the results in Figure 2.
The fraction of small catalyst gain values for
street drive data also demonstrates good discrim-
ination between the healthy and critically aged
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Figure 5: Fraction ∆b time series (all FTP cycles).

catalysts. However, there is more variation be-
tween the ∆b values for different tests and the
average ∆b for each catalyst is less than the FTP
drive cycle average. There is no street drive data
for the unhealthy aged catalyst.

The fraction of small catalyst gain values
demonstrates good discrimination between the
three differently-aged catalysts for the FTP drive
cycles when the entire cycle is taken as the data
window. However, if the detection method is to
be effective for all types of driving, it should not
be overly dependent on the particular drive cy-
cle or data window chosen. Figure 5 presents the
times series of ∆b values for overlapping 100 sec
windows and demonstrates that the ∆b values
vary considerably over the course of drive cycle
for each catalyst. Therefore, no single diagnostic
threshold is appropriate for all windows.

There is a negative linear correlation between
the ∆b values in Figure 5 and the mean air mass
flow rate for the same window. For example, the
linear correlation between ∆b and the mean air
mass flow rate for one FTP cycle of the healthy
catalyst is -0.93 indicating a strong negative lin-
ear correlation. The linear correlation is -0.64
for one FTP cycle of the critically aged catalyst
and -0.49 for the unhealthy aged catalyst indicat-
ing a more moderate negative linear correlation.
These results are representative of all of the FTP
cycle data where the correlation between the ∆b
values and the air mass flow rate decreases with
catalyst age. This relationship between the ∆b
values and the air flow rate suggests that air mass
flow could be included in the diagnostic monitor.

4. Two Dimensional Diagnostic Monitor

Because a relationship exists between the ∆b
values and the air mass flow rate, an on-board
diagnostic detection threshold that incorporates
both variables should be more discriminating. A
sample of 100 sec non-overlapping windows from
each FTP cycle was used to determine a detec-
tion threshold using three different criteria. The
first criterion minimizes the total number of mis-
classifications subject to the number of critically
aged catalysts misclassifications is equal to the
number of unhealthy aged catalysts misclassifi-
cations. The second criterion minimizes the total
number of misclassifications with no restrictions
on type of catalyst. The last criterion minimizes
the number of unhealthy aged catalysts misclas-
sifications subject to no critically aged catalysts
misclassifications. This criterion is of practical
relevance because avoiding healthy catalyst mis-
diagnosis is critical for implementation.

Figures 6, 7, and 8 present the detection
threshold line for each criterion. The slope and
intercept for each of the detection threshold lines
is given in Table 1. Data pairs that fall on or be-
low the detection threshold line are indicative of
an unhealthy catalyst. The total number of mis-
classifications using the first criterion is 18 result-
ing in nine misclassifications for both catalysts.
There are 17 misclassifications using the second
criterion with 11 for the critically aged and six
for the unhealthy aged catalyst. There are 22
misclassifications using the final criterion all of
which are for the unhealthy aged catalyst. For
each criterion, there are no healthy catalyst mis-
classifications. This diagnostic metric can clearly
distinguish between a useful life catalyst and a
catalyst that is approaching the OBD detection
limit. We also note that the data windows used
in this study are much smaller than would be im-
plemented in practice due to the limited FTP cy-
cle data available in this study. Although accept-
able performance is obtained with the 100 sec
windows, better diagnostic discrimination would
be possible with larger windows.

5. Conclusions

The results of this study indicate that the frac-
tion of time the catalyst gain is close to zero is a
sensitive detection metric for on-board diagnos-
tic monitoring of an automotive catalyst. This
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Figure 6: Equal number of misclassifications.
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Figure 7: Minimum number of misclassifications.

metric is able to distinguish between the three
differently aged catalysts over a series of FTP
drive cycles. One of the major advantages to
this metric is that it does not require any specific
operating conditions and therefore is straightfor-
ward to implement. Future work includes testing
this metric on additional vehicle platforms over
a wider range of driving conditions.
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