
  

  

Abstract—Offshore installations during harsh sea conditions 
results in rigorous requirements in terms of safety and 
efficiency for the involved crane system. Hence a heave 
compensation system based on heave motion prediction and an 
inversion based control strategy is proposed. The control 
objective is to let the rope suspended payload track a desired 
reference trajectory in an earth fixed frame without being 
influenced by the heave motion of the ship or vessel. Therefor a 
combination of a trajectory tracking disturbance decoupling 
controller and a prediction algorithm is presented and 
evaluated with simulation and measurement results.  

I. INTRODUCTION 
Today offshore installations such as underwater 

conveying systems for oil and gas or wind parks are 
becoming more and more important. The processing 
equipment for the development of oil and gas fields is 
already installed on the seabed. Hence the availability for 
maintenance, repair and replacement decreases compared to 
floating or fixed production platforms. Dealing with such 
installations results in rigorous requirements in terms of 
safety and efficiency for the involved crane system (see 
Figure 1). The main goal is to guarantee operation during 
harsh sea conditions in order to minimize production 
downtimes. Also essential is the safety of the operators on 
board. Situations may occur where the control of the 
payload get lost. 

Besides the navigation/positioning problem the wave-
induced motions of the ship/vessel lead to critical tension of 
the rope. The tension should not be less than zero in order to 
avoid slack rope situations. The peak value must not exceed 
a safety limit. Therefore heave compensation systems are 
utilized to improve the operability of offshore installations 
during harsh sea conditions. Additionally the vertical motion 
of the payload can be reduced significantly, which makes an 
exact positioning of the load possible. 

The problem of safe and efficient offshore operation in 
harsh sea conditions was addressed by numerous 
publications in the past. Basically there are two different 
approaches for the heave compensation. The fist one is 
based on passive heave compensation systems. For example 
Frederick et al. [1] determined the stiffness and damping 
characteristics of a cage mounted passive heave 
compensation system by a sequential quadratic 
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programming optimization. Hatleskog and Dunnigan [2] 
investigated a heave compensation system, which uses 
pneumatic cylinders to compensate the wave-induced 
motions of a drilling vessel. The second approach is to 
derive an active heave compensation system. Korde [3] for 
example presented a system for drilling ships subjected to 
irregular-wave excitation. The drilling ship is modeled as 
coupled mechanical oscillators. By adding an additional 
actuated oscillator the vertical motion of the load can be 
damped.  

 

 
Fig. 1.  vessel with offshore crane 

Other publications focus not only on the heave 
compensation above- or underwater but also on the wave 
synchronization during water entry of the payload (see 
Sagatun et al. [4]). Skaare and Egeland [5] presented a 
parallel force/position controller for crane loads in marine 
operation. A two phase crane control was discussed in 
Messineo et al. [6]. The first phase is the heave 
compensation, where the tension of the rope is controlled to 
a constant value equal to the weight of the load. In the 
second phase the relative velocity between the sea waves 
and the load is controlled in order to decrease the 
hydrodynamic slamming forces that affect the payload at 
water-entry. Sagatun [7] presented a combination of an 
augmented impedance control for the water entry phase and 
a passive heave compensation system. The compensation 
system consists of pneumatic cylinders in order to obtain 
constant spring stiffness and hydraulic cylinders to damp the 
oscillating system.  

This paper presents a heave compensation system based 
on ship/vessel motion prediction and an inversion based 
control strategy. There are basically two requirements on the 
compensation systems for offshore cranes. The first is to let 
the load track a desired reference trajectory generated out of 
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the hand lever signals of the operator in an earth fixed 
reference frame. The load should move at the assigned 
reference velocity in this frame decoupled from the wave-
induced ship motion. The second requirement is a modular 
heave-compensated crane. That means, the crane systems 
used for offshore installations can be installed at many 
different kinds of ships or vessels. Additionally the 
estimation and prediction algorithm for the vertical 
ship/crane motion must be independent of the ship/vessel 
type.  

The paper is organized as follows. In section 2 the 
dynamic model of the system consisting of the hydraulic 
actuator (winch) and the flexible rope is derived. Based on 
this model a linearizing control law is formulated in 
section 3. In order to stabilize the control system a feedback 
controller is derived. Fig: 2 illustrates the general control 
structure. 

 

 
Fig. 2.  general structure of the heave compensation 

In section 4 the estimation and prediction of the 
ship/vessel motion is presented. Therefore a model is 
formulated based on the dominant modes of the heave 
motion. The modes are obtained by a Fast Fourier 
Transformation and a peak detection algorithm. The 
estimation and prediction is done by a Kalman Filter. In 
section 5 simulation and measurement results are presented. 
At the end of the paper concluding remarks are given. 

II. DYNAMIC MODEL 
The heave compensation system under consideration 

basically consists of a hydraulic-driven winch, a crane-like 
structure and the rope suspended load. For the modeling of 
the system it is assumed that the crane’s structure is a rigid 
body. The rope suspended payload can be approximated by 
a spring-mass-damper system (see Fig. 3). 

To approximate the flexible rope the equivalent mass eqm  

and the stiffness of the spring ropec  has to be calculated. 

Utilizing the Hook’s law the deformation ( )zε  for a rope at 
an arbitrary position z  can be obtained from 
 

( ) ( ) ( ) ( )( ), .l rope load
rope rope

z F z gz depth z m m
E EA EA

σ
ε = = = − + (1) 

 

( )zσ  is the tension of the rope, E  the Young’s modulus, 

( )F z  the static force acting on the rope at position z , ropeA  
the intersectional area of the rope, g  the gravitational 
constant, depth  the distance of the load from the sea level, 

,l ropem , and loadm  the mass of the rope per meter and the 
mass of the payload respectively. 
 

 
Fig. 3.  heave compensation system 

The extension of the whole rope RlΔ  is obtained by using 
equation (2). 
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Evaluating (2) results in 
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EA
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 (3) 

 

Utilizing the method of Newton/Euler, the second order 
differential equation for the motion of the rope suspended 
payload is obtained (see (4)). The load oscillations are exited 
by winch accelerations Wϕ&&  and the second derivation of the 
heave motion w&& . 
 

( ) ( )rope
eq R rope R R eq W W

EA
m l d l l depth m r w

depth
ϕ+ + − = +&& & && &&  (4) 

 

The actuator for the heave compensation system is the 
hydraulic-driven winch. The dynamics of this actuator can 
be approximated with a first order system. 
 

,

,

21 V W
W W W

W W mot W W

K
u

T i V T
π

ϕ ϕ= − +&& &  (5) 

 

Wϕ&&  and Wϕ&  are the winch angular acceleration and velocity 
respectively, WT  the time constant, ,mot WV  the volume of the 

hydraulic motor, Wu  the input voltage of the servo valve and 

,V WK  the proportional constant of flow rate to Wu . 
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III. CONTROL STRATEGY 
In order to derive a control law, the dynamic model of the 

system is formulated in the following form. The disturbance 
d  is defined as the 4th derivation of the heave motion. In 
Neupert et al. [9] a similar model extension by a disturbance 
model was presented. Hence the system’s relative degree is 
equal to the disturbance’s relative degree and a disturbance 
decoupling by Isidori [8] is possible. 
 

( ) ( ) ( )
( )

Wx f x g x u p x d

y h x

= + +

=

&  (6) 

 

With the states 
.. ...
w w
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(4) and (5), and the model extension, the dynamic equations 
are obtained as follows 
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In order to investigate the flatness property of the 
proposed model of the system, the relative degree has to be 
determined. 

A. Relative degree 
The relative degree concerning the system’s output is 

defined by the following conditions 
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The operator fL  represents the Lie derivative along the 

vector field f  and gL  along the vector field g  
respectively. With the output y  a relative degree 4r =  is 
obtained. The disturbance’s relative degree is obtained to 

4dr =  by utilizing (8) with the vector field p  in stead of 
g . Because the order of the system is 6n =  a second order 
internal dynamics exists and y is not a flat output. It can be 
shown, that this internal dynamics is the disturbance model. 
In our case the internal dynamics consists of a double 
integrator chain. This means, the internal dynamics is 
instable. Hence it is impossible to solve the internal 
dynamics by on-line simulation. But for the here given 
application case not only the disturbance d w= &&&&  but also the 
states 5x w= &&  and 6x w= &&&  can be estimated and predicted by 
the method discussed in section 4. This makes the simulation 
of the internal dynamics unnecessary and a trajectory 

tracking and disturbance decoupling controller can be 
derived. 

B. Trajectory tracking controller 
The trajectory tracking and disturbance decoupling 

controller can be formulated as follows based on the 
input/output linearization method. 
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To stabilize the resulting controlled system a feedback term 
is added. The term (equation (10)) compensates the error 
between the reference trajectories refy  and the derivatives of 

the output y . 
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The feedback gains ik  are obtained by the pole placement 
technique. The control structure is illustrated in Fig. 2. 

IV. ESTIMATION AND PREDICTION OF HEAVE MOTION 
The first part of this section gives a proposal how the 

whole ships/vessels movement can be estimated by 
measuring with an Initial Measurement Unit (IMU). As a 
crucial claim, any ship specific information should be used 
for this estimation. The second part discusses a short time 
prediction problem. Here only the cranes heave motion gets 
predicted. This reduces the complexity of 6 degrees of 
freedom to only one without losing information needed. As 
desired before, the prediction will also be completely 
independent of a ship model. 

A. Measurement of ship movement 
The ship/vessel, considered as a rigid body, has 6 degrees 

of freedom. With an IMU the ship’s displacement from 
steady state can be measured with high accuracy. These low 
cost stand alone motion sensors have 3 accelerometers for 
measuring surge, sway and heave and 3 rotation rate sensors 
for roll, pitch and yaw. To obtain the desired relative 
position of the ship, a double-integration of the acceleration 
signals and a single-integration of the rotation signals are 
needed. To reduce typical errors like sensor noise, bias and 
misalignment of the accelerometers and ensure a stable 
integration, the signal conditioning can be realized like 
presented in [10].  

If the IMU isn’t fastened at the payload’s attachment a 
simple transformation between the sensor’s coordinate 
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system and the payload’s attachment coordinate system 
leads to the desired heave motion.  

B. Prediction of the payload’s attachment heave 
The fact that the payload’s attachment heave isn’t totally 

chaotic, but depends on the ship dynamics and the sea 
condition, makes it possible to calculate a prediction for its 
movement. A short time prediction can even be done 
without knowing anything about the ship’s properties. 

The main idea of this prediction method is to detect the 
periodic components of the measured heave motion and use 
them to calculate the future heave progress. Therefore the 
measured heave motion w(t) between two time points 0t  and 
T gets decomposed in a set of N sinus waves, the so called 
modes, and an additional arbitrary term υ(t). This results in a 
heave motion model described by 
 

0
1

( ) sin(2 ) ( ) 1,...,
N

i i i
i

w t A f t t i N t t Tπ ϕ υ
=

⎛ ⎞= + + = ≤ ≤⎜ ⎟
⎝ ⎠
∑  (11) 

 

where iA  is the amplitude, if  the frequency and iϕ  the 
phase of the i-th mode. The aim of the prediction is to 
estimate how much modes will be necessary for an accurate 
forecast of the length PredT  and to fit the three parameters for 
each mode.  

The prediction method’s structure is displayed in Fig. 4  
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Fig. 4.  structure of the prediction method 

At first a Fast Fourier Transformation (FFT) is applied to the 
measured heave motion w(t). The analyzed length and 
sample time of the input signal are to be chosen in a way 
that the maximal heave motion’s frequency can be detected 

and the desired frequencies resolution is reached. The peaks 
of the resulting amplitude-response over frequency A(f) will 
then be extracted by a peak detector. This leads to a first 
estimation of the mode’s amplitudes and frequencies which 
will be stored in the respective parameter vectors AFFT and 
fFFT. The modes quantity N is equal to the number of 
detected peaks. By taking the phase-response φ(f) into 
account the mode’s phases φFFT can be defined too. With 
these parameters, which will be updated online, the heave 
motion model described in (11) can be parameterized. 
Evaluation of real measured heave motion data shows the 
need for a permanently updated model (see Fig. 5). 
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Fig. 5.  mode detection for real measured data 

Here the detected peaks of a ship’s heave under harsh sea 
conditions are displayed. It can clearly be seen, that modes 
change during measurement.  

In the next step an observer adapts the parameter vectors 
by comparing the measured heave motion w(t) with the 
modeled one. This is necessary because the FFT only detects 
mean values of a long period whereas the observer is able to 
take latest modifications into account. With these new 
parameter vectors denoted by AObs, fObs and φObs the heave 
motion prediction can be performed by using (11) again. 

1) Observer 
The observer design depends on a heave motion model 

described by a set of ordinary differential equations (ODEs). 
To transform model (11) to a set of ODEs, there are two 
opportunities possible. On the one hand, the heave motion 
can be modeled as a nonlinear system which enables the 
observer to estimate all parameters needed for the heave 
prediction. However due to the claim to receive an online 
prediction this method isn’t applicable on recent computers. 
On the other hand a linear model can be used instead. Here 
only the mode’s frequencies will not be fitted again. But 
these are estimated with high accuracy by the FFT, anyway. 
Choosing the linear method, a Kalman Filter can be used. 
This yields to an observer equation displayed below. 
 

( ) 0 0

0

ˆ ˆ ˆ ˆ( )
ˆ ˆ
x Ax L w w x t x
w Cx t t T

= + − =
= ≤ ≤

&
 (12) 
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The system matrices A and C result from the heave motion 
model described as follows, whereas the prediction results 
also depend on defining the correction matrix L properly.  

To transform the heave model described in (11) suitable 
for an observer, one single mode can be defined by the ODE 
 

( )

0 0,2

0 1 sin( )
( )

(2 ) 0 2 cos( )
1 0 1,..., .

i i
i i

i i i i

i i
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Applying the parameter vectors obtained by the FFT, 
summating all modes together and introducing an offset-
state representing the non-periodic term υ(t) leads to the 
observer heave model 
 

[ ]

1 0,1

2 0,2

0 0

0,

1 2

0 0
0

( )
0

0 0 0 0

( ) 1 .

N N

N

A x
A x

x Ax x x t x
A x

w t Cx C C C x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = = =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= =

L L

O M

& M O O O M M

M O

L L

L

 (14) 

 

The choice of the L matrix elements can be achieved by 
using the Filter design of Kalman and Bucy. This requires 
solving the Riccati equation (solution is P ) and computing 
the gain-matrix L as described in (15). 
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0T T
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PC R CP AP PA Q
L PC R

−

−

− − − =

=
 (15) 

 

Here Q, used as a design parameter, is chosen as a diagonal 
matrix penalizing fast modes harder than slow ones, whereas 
R influences all modes equally. 

The parameters fitted by the observer can be extracted 
from its states. Based on the equations of one single mode 
 

( )
( )

1, , , ,

2, , , , ,

ˆ ( ) sin 2

ˆ ( ) 2 cos 2
i Obs i FFT i Obs i

i Obs i FFT i FFT i Obs i

x t A f t

x t A f f t

π ϕ

π π ϕ

= +

= +
 (16) 

 

the new parameters can be calculated by 
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2) Prediction 
The last part of the prediction method is the prediction 

calculation itself. Therefore (11) can be used taking the 
parameter vectors adapted by the observer which results to: 
 

Pr , , , Pr
1

( ) sin(2 ) ( ) 1,..., ,π ϕ υ
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⎛ ⎞= + + = ≤ ≤⎜ ⎟
⎝ ⎠
∑

N
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w t A f t t i N T t T  (18) 

 
 
 
 

The progress of the non-periodic term υ(t) cannot be 
predicted. As it is equal with the observer’s offset state it 
should be defined as a constant with 
 

2 1 Prˆ( ) . ( ) .υ += = ≤ ≤N edt const x T T t T  (19) 
 

To give a short impression of the heave prediction’s 
performance, simulation results are presented below. 
Therefore real IMU signals of a ship under harsh sea 
conditions were used to reproduce the heave motion. Fig. 6 
shows the predicted and measured heave motion over time. 
The prediction interval PredT was chosen to 1 second. For a 
better illustration, the predicted heave motion was shifted 
back in time afterwards. So an error free, predicted signal 
would be congruent with the measured one. 
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Fig. 6.  prediction of 1s over time 

V. SIMULATION AND MEASUREMENT RESULTS 
In Fig. 7 the simulated tracking behavior of the heave 

compensation system can be seen. The reference trajectory 
is generated by a hand lever signal and the crane is subjected 
to a heave motion. For this simulation only a linearizing 
controller without stabilization was used. With this setup the 
excitation of the payload’s attachment heave, which is 
displayed in the first graph of Fig. 7 can be reduced by 
factor 5. The reason why these oscillations aren’t rejected 
completely is that the pump-motor system was simulated 
with a dead time, which is not considered in the controller 
design. 

Applying the observer and closing the loop of the control 
system improves the tracking behavior tremendously. As it 
can be seen in Fig. 8, the simulated position displacement 
never grows beyond ± 3cm. 

For the first two simulations, the heave prediction was 
switched of. Fig. 9 illustrates the open loop tracking 
behavior of the payload position with a heave prediction in 
the range of the actuator’s dead time (0.2 seconds). It can be 
seen, that as soon as the linearizing controller gets activated, 
which is at time 250s, good heave compensation results are 
achieved. Comparing the tracking with and without heave 
prediction, a clear improvement can be seen. 
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Fig. 7.  simulation results with linearizing controller 

 
Fig. 8.  simulation results with trajectory tracking controller 

 
Fig. 9.  simulation results with heave motion prediction and 

linearizing controller 

To prove the simulation results, measurements with an 
experimental setup were performed. Fig. 10 shows this 
setup. The ship’s heave is imitated by the winch HW 
whereas the second winch (SW) realizes the heave 
compensation such that the payload’s vertical position 
should remain constant. The heave signal used for the active 
heave compensation is based on the rotation angle of the 
winch HW.  

 
Fig. 10.  experimental setup 

The measurement results displayed in Fig. 11 illustrate the 
tracking behavior with constant reference value. The 

resulting position error is equal with the simulation results. 

 
Fig. 11.  measurement results with linearizing controller 

VI. CONCLUSION 
In this paper a heave compensation approach for offshore 

cranes is presented. The dynamic model of the compensating 
actuator (hydraulic driven winch) and the rope suspended 
load are derived. Based on this model a trajectory tracking 
controller is designed. In order to compensate the wave-
induced ship/vessel motion, the heave motion is defined as a 
time-varying disturbance and analyzed concerning 
decoupling conditions. With a model extension these 
conditions are met and a inversion based decoupling control 
law is formulated. In order to stabilize the system, a observer 
is utilized to reconstruct the unknown state from a force 
measurement. Further the compensation performance can be 
increased by predicting the heave motion. A prediction 
method is proposed, where no ship/vessel models or 
properties are needed. Simulation and measurement results 
validate the heave compensation method. 

REFERENCES 
[1] F. R. Driscoll, B. Buckham, Meyer Nahon, “Numerical Optimization 

of a Cage-Mounted Passive Heave Compensation System,” in 
OCEANS 2000, vol. 2, Sept. 2000, pp. 1121-1127. 

[2] J.T. Haltleskog, M.W. Dunnigan, “Heave Compensation Simulation 
for Non-Contact Operation in Deep Water,” OCEANS 2006, Sept. 
2006, pp. 1-6. 

[3] U. A. Korde, “Active heave compensation on drill-ships in deep 
water,” Ocean Engng., vol. 25, no. 7, pp. 541-561, 1998. 

[4] S. I. Sagatun, T. A. Johansen, T. I. Fossen, Finn G. Nielsen, “ Wave 
Synchronizing Crane Control during Water Entry in Offshore 
Moonpool Operations,” in Proc. o f the  IEEE Conference on Control 
Applications, Glasgow, Scotland, U.K., pp. 174-179, 2002. 

[5] B. Skaare, O. Egeland, “Parallel Force/Position Crane Control in 
Marine Operations, IEEE Journal of Oceanic Engineering, vol. 31, no. 
3, pp. 599-613, 2006. 

[6] S. Messineo, F. Celani, O. Egeland, “Crane feedback control in 
offshore moonpool operations,” Control Engineering Practice (2007), 
doi: 10.1016/j.conengprac.2007.05.003 

[7] S. I. Sagatun, “Active Control of Underwater Installation”, IEEE 
Trans. Control Systems Technology, vol. 10, no 5, pp. 743-748, 2002. 

[8] A. Isidori, “Nonlinear Control Systems”, Berlin Springer Verlag, 1995 
[9] J. Neupert, T. Mahl, O. Sawodny, K. Schneider, “A Nonlinear Control 

Strategy for Boom Cranes in Radial Direction,” Proc. of the IEEE 
American Control Conference, New York, USA, pp. 25-30, 2007 

[10] John-Morten Godhavn, “Adaptive tuning of heave filter in motion 
sensor,” Proc. of OCEANs 1998, vol. 1, 1998 pp. 174-178. 

543


