
Modular Requirements for Hierarchical Interface-Based Supervisory Control
with Multiple Levels

R. C. Hill, J.E.R. Cury, M.H. de Queiroz and D. M. Tilbury

Abstract— Hierarchical Interface-Based Supervisory Control
employs interfaces that allow properties of a monolithic sys-
tem to be verified through local analysis. By avoiding the
need to verify properties globally, significant computational
savings can be achieved. In this paper we provide local
requirements for a multiple-level architecture. This multiple-
level architecture allows for a greater reduction in complexity
and improved reconfigurability over the two-level case that has
been previously studied since it allows the global system to be
partitioned into smaller modules. This paper also provides a
relaxation of existing interface requirements resulting in less
restrictive control and easier achievement of the multiple-level
architecture.

I. INTRODUCTION

In recent years, quite a well-formed body of theory has
been developed with regard to the control of discrete-event
systems (DES). Application of this theory has been hindered
by the well-known state-space explosion problem. One ap-
proach to address this problem is to introduce interfaces
between various components of a larger system [1] [2] [3].
The purpose of these interfaces is to limit the interaction
of various components in such a way that global properties
can be verified locally. By not requiring analysis of the
global system, state-space explosion can often be avoided.
This architecture also provides for improved reconfigurability
since a system component can be modified without having
to re-analyze the entire global system.

This type of approach does however have its drawbacks,
namely that the increased restrictiveness of the interfaces can
result in suboptimal control. In many cases, this exchange of
optimality for a reduction in computational complexity and
improved reconfigurability may be acceptable.

Considering existing research in this area, the results
provided by [1] do not address blocking. The work of [2] [3]
addresses the properties of controllability and nonblocking,
but is somewhat restrictive in that its proposed architecture
only allows for two levels of modules.

Other works that exist for reducing the complexity as-
sociated with synthesizing global nonblocking control rely
on incremental construction and abstraction [4] [5] [6].
Still other research employs similar approaches, but for
verification [7] [8]. These works are quite useful, but they
do not strictly rely on local analysis and design; rather,
their techniques are in essence applied to incrementally

This work was supported in part by NSF grant CMS-05-28287.
R. Hill and D. Tilbury are with the University of Michigan, Ann Arbor,

MI 48109-2125, USA (email:rchill,tilbury@umich.edu).
J. Cury and M. Queiroz are with the Federal University of

Santa Catarina, Florianópolis, SC 88040-900, Brazil (email:
cury,max@das.ufsc.br).

constructed abstractions of the global system. As such, these
techniques are not very reconfigurable and can still suffer
from state-space explosion.

This paper gives local conditions that guarantee global
controllability and nonblocking of a multiple-level system
with interfaces like the one pictured in Fig. 1. This gener-
alized architecture allows the system to be partitioned into
smaller modules than the two-level architecture of [2] [3],
thereby further limiting the complexity of analysis and
design. We also demonstrate that the interface consistency
requirements of [2] [3] can be relaxed. This change makes
the necessary requirements easier to satisfy, especially in
the multiple-level case. Methodologies for designing the
modules and interfaces themselves are not directly provided
by this work.

Fig. 1. Illustration of the multiple-level architecture

The organization of the remainder of this paper is as
follows: Section II will introduce notation, Section III will
demonstrate results for a multiple-level interface-based archi-
tecture, Section IV will demonstrate the application of this
architecture to a manufacturing example, and Section V will
conclude the paper with a summary of its contributions.

II. NOTATION AND PRELIMINARIES

We will consider DES modeled by automata, where
each automaton is represented by the five-tuple G =
(Q, Σ, δ, q0, Qm), where Q is the set of states, Σ is the set of
events, δ : Q×Σ → Q is the partial state transition function,
q0 ∈ Q is the initial state, and Qm ⊆ Q is the set of marked
states representing successful termination of a process. Let
Σ∗ be the set of all finite strings of elements of Σ, including
the empty string ε. The partial function δ can be extended to
δ : Q×Σ∗ → Q in the natural way. The notation δ(q, s)! for
any q ∈ Q and any s ∈ Σ∗ denotes that δ(q, s) is defined.

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

WeA14.4

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 483

The notation Σ(G) will be employed to denote the relevant
event set of the automaton G. By relevant, it is meant all
events over which G is defined that are not self-looped at
every state.

The generated and marked languages of G, denoted by
L(G) and Lm(G) respectively, are defined by L(G) = {s ∈
Σ∗ | δ(q0, s)!} and Lm(G) = {s ∈ Σ∗ | δ(q0, s) ∈ Qm}.
The notation L represents the set of all prefixes of strings
in the language L, and is referred to as the prefix-closure
of L. The following eligibility operator will be employed to
denote which events in the set Σ are enabled in the language
L following the occurrence of a string s ∈ Σ∗, EligL(s) :=
{σ ∈ Σ | sσ ∈ L}. A precise definition for relevant events
in terms of languages can be found in [9].

An automaton is said to be nonblocking when all of its
reachable states can reach a marked state. From a language
point of view, this is defined as Lm(G) = L(G). If an
automaton enters a state from which it cannot reach a marked
state, the automaton is said to have blocked.

The operation of two automata G1 and G2 together is
captured via the synchronous composition (parallel compo-
sition) operator, ‖. When composed, events not shared by
both automata are allowed to occur without participation of
the other automaton, while those events that are shared must
occur with the two automata synchronized.

We will use the following projection operator Pi : Σ∗ →
Σ∗i .

Pi(ε) := ε Pi(e) :=
{

e, e ∈ Σi ⊆ Σ
ε, e /∈ Σi ⊆ Σ

Pi(se) := Pi(s)Pi(e), s ∈ Σ∗, e ∈ Σ

Given a string s ∈ Σ∗, the projection Pi erases those events
in the string that are in the global alphabet Σ, but not in the
local alphabet Σi. We can also define the inverse projection
for a string t ∈ Σ∗i as follows, P−1

i (t) := {s ∈ Σ∗ : Pi(s) =
t}. These definitions can naturally be extended to languages.

A. Traditional Supervisory Control

In supervisory control [10], the event set of an automaton
is partitioned into controllable and uncontrollable events,
Σ = Σc∪̇Σu, where controllable events can be disabled and
uncontrollable events cannot. A supervisor, denoted S , is a
mapping that outputs a list of events to be disabled based on
the observation of strings generated by a plant G. Keeping
in mind that uncontrollable events are not allowed to be
disabled, a supervisor S : L(G) → 2Σc can be represented
by an automaton S such that the closed loop system behavior
S/G = S‖G.

To ensure that a given automaton S with alphabet Σ
represents a supervisor S that restricts the plant G to the
behaviour of S, it is necessary that the following Σu-
controllability condition be satisfied, where Σu ⊆ Σ. The
following expression can be interpreted as providing that
the language L(S) is Σu-controllable with respect to L(G),
where the two languages have the same alphabet.

(∀s ∈ L(S) ∩ L(G)) EligL(G)(s) ∩ Σu ⊆ EligL(S)(s)

B. Hierarchical Interface-Based Supervisory Control
We will now define the notation and definitions necessary

for proving results with regard to a multiple-level application
of hierarchical interface-based supervisory control. We will
specifically assume a connected tree architecture with a
single root node. Figure 1 illustrates this situation. Our
component-wise specified system is split up into modules,
each consisting of a plant Gi

k and a supervisor Si
k constructed

with respect to a local specification resulting in the closed-
loop subsystem Hi

k = Gi
k‖Si

k. The superscript i reflects
the level of the hierarchy and takes values {1, . . . , p}. The
subscript k indicates the index within a given level and
takes the values {1, . . . , ni}, where this set represents all
modules and interfaces on a given level i, including modules
and interfaces that have different corresponding high-level
neighbors.

All interaction between modules takes place through
corresponding interfaces, Ii

k. These interfaces restrict the
behaviour of the overall system in such a way that global
properties can be guaranteed by local analysis. In a sense,
these interfaces may apply additional control. Figure 2 shows
a detail of the multiple-level architecture. We do not provide
a general methodology for the construction of supervisors or
interfaces, though we do provide conditions for guaranteeing
global properties and provide an example multiple-level
system that satisfies these requirements in Section IV.

Fig. 2. Detail of the multiple-level architecture

In this architecture, all events shared between a given
module Hi

k and its high-level neighbor are classified as either
request events ρ ∈ ΣRi

k
or answer events α ∈ ΣAi

k
. The

occurrence of each of these events must then be accepted by
the corresponding interface Ii

k. Conceptually, request events
are thought of as being under the control of the higher-level
module and answer events as being under the control of
the lower-level module. For the purposes of this paper we
will assume the interfaces take the form of a command-pair
interface defined below in the manner of [2].

Definition 1: [2] A DES Ii
k is a command-pair interface

if the following are true:
A) L(Ii

k) ⊆ (ΣRi
k
.ΣAi

k
)∗

B) Lm(Ii
k) = (ΣRi

k
.ΣAi

k
)∗ ∩ L(Ii

k)
We will assume that the global alphabet is partitioned

as shown in (1), where the set Σi
k represents those events

484

relevant to Hi
k but no other modules. The following also

assumes there is only a single module on level 1, the top
level.

Σ := Σ1
1∪̇

⋃̇

i=2,...,p

(⋃̇
k=1,...,ni

(
Σi

k∪̇ΣAi
k
∪̇ΣRi

k

))
(1)

A consequence of (1) is that each interface is completely
disjoint from all other interfaces, that is, Σ(Ii

k) ∩ Σ(Ii′
k′) =

∅, ∀((i 6= i′) ∨ (k 6= k′)). We will further assume that the
event set of each module Hi

k is constrained to have the
partitioning given in (2). The following is consistent with
the connected tree architecture of this approach. Since there
are no interfaces with superscript 1 or p+1, we will consider
Σ(I1

k) = Σ(Ip+1
j) = ∅.

Σ(Hi
k) = Σi

k∪̇Σ(Ii
k)∪̇

⋃̇
j∈Ji

k

Σ(Ii+1
j)

where J i
k := {j | Σ(Hi

k) ∩ Σ(Ii+1
j) 6= ∅} (2)

In the above, the index sets J i
k for modules on level

i partition the set {1, . . . , ni+1} into disjoint subsets. An
implication of (2) is that each module Hi

k may share relevant
events only with modules from the i + 1 level and a single
module from the i − 1 level. We will employ script letters
to represent the languages generated by the corresponding
automata lifted to the global alphabet. This convention is
employed in the following definitions.

PHi
k

: Σ∗ → Σ(Hi
k)∗ PIi

k
: Σ∗ → Σ(Ii

k)∗

Hi
k := P−1

Hi
k

(L(Hi
k)) Hi

mk
:= P−1

Hi
k

(Lm(Hi
k))

Gi
k := P−1

Hi
k

(L(Gi
k)) Si

k := P−1
Hi

k

(L(Si
k))

Ii
k := P−1

Ii
k

(L(Ii
k)) Ii

mk
:= P−1

Ii
k

(Lm(Ii
k))

The following requirements modified from [11] will be
employed to guarantee global properties through local anal-
ysis for a given set of DES. Each definition is given with
respect to a two-level portion of the larger multiple-level
system. In order to make these definitions easier to follow,
the following substitutions will be made: each two-level
subsystem will have a single high-level module H = Hi−1

` ,
a set of low-level modules Lk = Hi

k and corresponding
interfaces Ik = Ii

k, where k represents those indices in the set
K = {k | Σ(Hi−1

`)∩Σ(Ii
k) 6= ∅}. Also let I =

⋂
k∈K Ik and

Im =
⋂

k∈K Imk
. We will employ the notation {Lk} and

{Ik} to represent respectively the set of low-level modules
and interfaces with k ∈ K.

The event set of each interface Ik is still partitioned into
request and answer events where ΣIk

= Σ(Ii
k), ΣAk

= ΣAi
k

and ΣRk
= ΣRi

k
. The event set of each module H and

Lk will be denoted ΣIH = Σ(Hi−1
`) and ΣILk

= Σ(Hi
k),

respectively, where each set includes those events shared with
its corresponding interfaces. The event set ΣLk

is defined as
those events relevant to Lk that are not shared with its high-
level interface, that is, ΣLk

= Σ(Hi
k)−Σ(Ii

k). Furthermore,
the high-level supervisor and plant will be denoted SH and
GH respectively. Likewise for each low-level module, SLk

is the supervisor and GLk
is the plant. Script letters will

again represent the languages generated by the corresponding
automata lifted to the global alphabet. The alphabet partitions
of (1) and (2) will still hold.

Definition 2: [11] A two-level interface system composed
of H , {Lk}, and {Ik} is said to be level-wise nonblocking
if the following conditions are satisfied.

i) Hm ∩ Im = H ∩ I
ii) Lmk

∩ Imk
= Lk ∩ Ik, ∀k

Definition 3: [11] A two-level interface system composed
of plant components GH , {GLk

}, supervisors SH , {SLk
},

and interfaces {Ik} is said to be level-wise controllable if
for all k, the following conditions are satisfied.

i) The alphabet of GH and SH is ΣIH , of GLk
and

SLk
is ΣILk

, and of Ik is ΣIk
.

ii) (∀s ∈ GLk
∩ SLk

∩ Ik)
EligGLk

(s) ∩ Σu ⊆ EligSLk
∩Ik

(s)
iii) (∀s ∈ GH ∩ SH ∩ I)

EligGH∩I(s) ∩ Σu ⊆ EligSH
(s)

Definition 4: A two-level interface system composed of
H , {Lk}, and {Ik} is said to be interface consistent if for
all k, the following properties are satisfied.

1) The event set of H is ΣIH and the event set of
each Lk is ΣILk

.
2) Each Ik is a command-pair interface.
3) (∀s ∈ H ∩ I) EligIk

(s) ∩ ΣAk
⊆ EligH(s)

4) (∀s ∈ (Σ∗.ΣAk
)∗.Σ∗Lk

∩ Lk ∩ Ik),
EligLk∩Ik

(sΣ∗Lk
) ∩ ΣRk

= EligIk
(s) ∩ ΣRk

5) (∀s ∈ Σ∗.ΣRk
∩ Lk ∩ Ik),

EligLk∩Ik
(sΣ∗Lk

) ∩ ΣAk
= EligIk

(s) ∩ ΣAk

6) (∀s ∈ Lk ∩ Ik)
s ∈ Imk

⇒ (∃l ∈ Σ∗Lk
) sl ∈ Lmk

∩ Imk

In Definition 4, EligLk∩Ik
(sΣ∗Lk

) is defined to be equal
to ∪l∈Σ∗Lk

EligLk∩Ik
(sl). Furthermore, in words, Point 3

requires that the high-level module be ΣAk
-controllable with

respect to each of its low-level interfaces Ik. Point 4 and
5 require that request and answer events, respectively, be
reachable in the low-level by events not shared with the
corresponding high-level module. Point 6 requires that if a
string is marked and accepted by an interface, then it can
be extended to a marked string in the corresponding low-
level language by events that again are not shared with the
high-level module. Some of these requirements are discussed
further in Section III-A.

We will now define properties analogous to the above
level-wise conditions for multiple-level interface systems.

Definition 5: Consider a multiple-level interface system
composed of modules Hi

k and interfaces Ii
k, where each

module Hi
k consists of a plant Gi

k and supervisor Si
k.

Furthermore, consider a series of two-level portions of the
multiple-level system each composed of a high-level Hi−1

` ,
interfaces {Ii

k

∣∣ k ∈ J i−1
` }, and a low-level of modules

corresponding to these interfaces {Hi
k||(

∣∣∣∣
j∈Ji

k

Ii+1
j)} where

i = {2, . . . , p} and ` = {1, . . . , ni−1} for each i. Note, the
low-level “modules” include the interfaces associated with
those modules directly below them in the hierarchy, except
for those modules that are not preceded by any interfaces. For
those low-level modules that are preceded by interfaces, their

485

associated plants are then {Gi
k||(

∣∣∣∣
j∈Ji

k

Ii+1
j)}. This multiple-

level interface system is said to be:
A) multi-level nonblocking if each two-level interface system
defined above is level-wise nonblocking by Definition 2.
B) multi-level controllable if each two-level interface system
defined above is level-wise controllable by Definition 3.
C) multi-level consistent if each two-level interface system
defined above is interface consistent by Definition 4.

III. GLOBAL NONBLOCKING AND CONTROLLABILITY

In this section we will present the main results of this
paper. Specifically, we will show that if a set of local con-
ditions based on the definitions of Section II-B are satisfied,
then the global multiple-level system with its interfaces is
nonblocking and controllable. These results are presented in
Theorem 1 and Theorem 2 given below. Their proofs are
presented after some important special cases are discussed.

Theorem 1: Let there be a multiple-level interface system
composed of modules H1

1 and {Hi
k}, and interfaces {Ii

k},
where i = {2, . . . , p} and k = {1, . . . , ni} for each i. If this
system is multi-level nonblocking and multi-level consistent
with respect to the alphabet partition of (1) and (2), then the
complete system is nonblocking:

H1
m ∩H2

m ∩ I2
m ∩ . . . ∩Hp

m ∩ Ip
m =

H1 ∩H2 ∩ I2 ∩ . . . ∩Hp ∩ Ip

where

Hi
m = Hi

m1
∩ . . . ∩Hi

mni
, Ii

m = Ii
m1
∩ . . . ∩ Ii

mni

Hi = Hi
1 ∩ . . . ∩Hi

ni
, Ii = Ii

1 ∩ . . . ∩ Ii
ni

Theorem 2: Let there be a multiple-level interface system
composed of component plants G1

1 and {Gi
k}, component

supervisors S1
1 and {Si

k}, and interfaces {Ii
k}, where i =

{2, . . . , p} and k = {1, . . . , ni} for each i. If this system is
multi-level controllable with respect to the alphabet partition
of (1) and (2), then the supervisor language S = S1 ∩ S2 ∩
I2∩ . . .∩Sp∩Ip is Σu-controllable with respect to the plant
language G = G1 ∩ . . . ∩ Gp.

Where: Si = Si
1 ∩ . . . ∩ Si

ni
, Ii = Ii

1 ∩ . . . ∩ Ii
ni

and
Gi = Gi

1 ∩ . . . ∩ Gi
ni

A. Two-Level Case

In this subsection we present the following results which
are special cases of Theorem 1 and Theorem 2 for a two-
level system. Specifically, Theorem 3 is a result modified
from [11] for the new interface consistency definition of
Section II-B, while Theorem 4 is taken directly from [11].

Theorem 3: Let there be a two-level interface system
composed of modules H and {Lk}, and interfaces {Ik}. If
this system is level-wise nonblocking and interface consis-
tent, then

Hm ∩
⋂

k∈K

(Lmk
∩ Imk

) = H ∩
⋂

k∈K

(Lk ∩ Ik)

Theorem 4: [11] Let there be a two-level interface system
composed of plant components GH and {GLk

}, supervisors

SH and {SLk
}, and interfaces {Ik}. If this system is level-

wise controllable, then the supervisor language S = SH ∩⋂
k∈K(SLk

∩Ik) is Σu-controllable with respect to the plant
language G = GH ∩⋂

k∈K(GLk
).

Proof of Theorem 3 can be found in [12] and follows
closely the logic presented in [13], where the only difference
is that the interface consistency requirement has been re-
laxed. Specifically, Point 4 of Definition 4 has been modified
from what was originally a controllability requirement to
the reachability requirement prescribed in this paper. The
original Point 4 required that each low-level module Lk be
ΣRk

-controllable with respect to its interface Ik:

(∀s ∈ Lk ∩ Ik), EligIk
(s) ∩ ΣRk

⊆ EligLk
(s) (3)

The spirit of this requirement is that the low-level has
control only over those events shared with the high-level
that are answer events. Therefore, the high-level knows that
if it issues a request that is accepted by the interface, the
low-level will not disable it. This requirement is mirrored
by Point 3 that specifies that the high-level module H be
ΣAk

-controllable with respect to each of its interfaces Ik.
These requirements are at the core of what enables us to
draw conclusions about the global system with only local
analysis.

The new Point 4 still captures the intent of the original
requirement by requiring instead that the low-level be able
to reach, via a string of low-level events, each request event
allowed by the interface. Therefore, even though the low-
level may not allow a request event immediately (as dictated
by the original controllability requirement), it will eventually
be able to execute the required request event following the
occurrence of a string of low-level events. Since the request
event is reached by local low-level events, we know that
the low-level cannot be prevented from reaching the request
event by interaction with the interface or high-level module.
The following example helps to illustrate the difference
between the original and modified requirements.

Example 1: Consider the interface I and low-level module
L displayed in Fig. 3. Let I and L be the respective generated
languages lifted to the global alphabet. For the set of request
events ΣR = {r1, r2} and answer events ΣA = {a1, a2}, I is
a command-pair interface. It can be seen by inspection that L
is not ΣR-controllable with respect to I. Specifically, r1 /∈
EligL(ε), but r1 ∈ EligI(ε), implying a violation of ΣR-
controllability since r1 is not enabled at state 0 of L. Also,
r2 /∈ EligL(l1r1a1l2), but r2 ∈ EligI(l1r1a1l2), therefore,
implying a violation since r2 is not enabled at state 4 of
L. L can be modified to remove state 4 (and subsequently
state 5) and will generate a non-trivial language such that
l1r1a1l2 /∈ L, but the only way to remove the string ε from L
is to make L the empty automaton. Another possible remedy
is to replace the event r1 in the set ΣR by the event l1. The
problem that we run into here is that it could be the case
in a multiple-level architecture that l1 was employed in an
interface from a lower level of the architecture.

The original language L however does satisfy the modified
Point 4 with respect to the interface language I. For example,

486

even though the request r1 is not enabled at state 0 of L,
r1 can be reached by low-level events. Likewise, the request
event r2 can be reached from state 4 via low-level events. ¦

Fig. 3. Example illustrating the relaxation of Point 4

Point 4 of the interface consistency definition is specifi-
cally employed in Proposition 13 of [13]. A revised version
of this proposition using the modified Point 4 can be found
in [12]. This revised proposition demonstrates that the re-
laxed interface consistency definition holds in the two-level
case. Later it will be seen that our interface consistency
definition is sufficient for the multiple-level case also.

It should be noted that if this interface-based approach
to control is implemented in a distributed fashion, then the
new Point 4 will make it difficult for the modules to truly
synchronize on a request event, since an event requested
by a module does not have to occur in the lower level
immediately. If the modular control is implemented on a
centralized computer, then the modules can synchronize with
one another since there are no problems with communication.
If the modular supervisors are distributed across several
computers, then when a request is made by a module, the
associated lower-level module will have to queue this request
until it is able to address it. Even though the modules will not
actually be synchronized in time, all the necessary actions
will still be performed in the correct order.

B. Multiple-Level Serial Case

We will now demonstrate results analogous to Theorem 1
and Theorem 2 for the case where each level of the hierarchy
consists of only a single module. This case is referred to as
a multiple-level serial-interface architecture. Examination of
the proofs for this case will make the logic of the main results
of this paper easier to follow.

Controllability and nonblocking of the multiple-level
serial-interface architecture will follow from the results
presented for the two-level case. Specifically, the require-
ments of Theorem 3 and Theorem 4 must be met for a
series of two-level systems consisting of a high level of
Hi−1 = Si−1‖Gi−1, an interface of Ii, and a low level of
Hi‖Ii+1 = Si‖Gi‖Ii+1, where i = {2, . . . , p}. The proofs
to follow rely on this modified formulation where the low-
level plant includes the interface from the level below, that
is, the low-level plant is considered Gi‖Ii+1. Furthermore,
the disjointness of the alphabet partition of (1) and (2) will

also be needed. For the interface Ip, Hp−1 is considered the
high-level and Hp is considered the low-level since there is
no interface preceding the first level of the hierarchy.

Figure 4 illustrates the approach taken in the following
proofs. The proofs begin with the two-level system at the
top of the hierarchy, which is immediately nonblocking and
controllable by Theorems 3 and 4. We then consider this
serial system to be the “high-level” and add another module
that is considered the “low-level.” This process continues
where the high-level gets larger and larger and the low-level
is just the next module considered. With this in mind, all
low-level requirements are immediately met. The high-level
properties are shown by induction.

Fig. 4. Illustration of approach of proofs

The two propositions given below will be needed in the
proofs to follow.

Proposition 1: Let K, L ⊆ Σ∗ be prefix-closed lan-
guages. If K does not have any relevant events in the set
Σu ⊆ Σ, then K is Σu-controllable with respect to L.

Proof: See the proof in [12].
Proposition 2: [10] Let K1, K2, L ⊆ Σ∗ be prefix-

closed languages. If K1 and K2 are each Σu-controllable
with respect to L, then the intersection K1 ∩K2 is also Σu-
controllable with respect to L.

The following two important theorems demonstrate local
conditions under which the global multiple-level serial inter-
face system is nonblocking and controllable.

Theorem 5: Let there be a multiple-level interface sys-
tem composed of modules {H1, . . . , Hp} and interfaces
{I2, . . . , Ip}. If this system is multi-level nonblocking and
multi-level consistent with respect to the alphabet partition
of (1) and (2), then the global system is nonblocking:

H1
m ∩H2

m ∩ I2
m ∩ . . . ∩Hp

m ∩ Ip
m =

H1 ∩H2 ∩ I2 ∩ . . . ∩Hp ∩ Ip

Proof:
• Beginning at the top of the hierarchy, consider a two-
level system consisting of a high-level H1, a low-level of
H2‖I3, and an interface I2. Because the overall system
is multi-level nonblocking and multi-level consistent, this
two-level component is level-wise nonblocking and interface
consistent. Therefore, Theorem 3 can be applied to show that:

H1
m ∩H2

m ∩ I2
m ∩ I3

m =
H1 ∩H2 ∩ I2 ∩ I3 (4)

487

• Now consider a two-level system where the high-level
is H1‖H2‖I2, the low-level is H3‖I4, and the interface
is I3. Based on the given assumptions, all low-level and
multi-level requirements are known to be met. The level-wise
nonblocking of the high-level has been shown to be met by
(4). The only necessary requirement left to be shown is that
Point 3 of the interface consistency definition is satisfied,
that is, H1∩H2∩I2 is ΣA3-controllable with respect to the
interface I3.

By the given interface consistency requirements, H2 is
ΣA3-controllable with respect to the interface I3. By (1) and
(2), the languages H1 and I2 do not have any relevant events
in the set ΣA3 , therefore, they are both ΣA3-controllable
with respect to I3 by Proposition 1. Hence, the intersection
H1∩H2∩I2 is also ΣA3-controllable with respect to I3 by
Proposition 2 since all languages are prefix-closed.

Since all necessary requirements are met for this two-level
system, Theorem 3 can be employed again to show that:

H1
m ∩H2

m ∩ I2
m ∩H3

m ∩ I3
m ∩ I4

m =
H1 ∩H2 ∩ I2 ∩H3 ∩ I3 ∩ I4

• This logic is repeated until all modules have been ad-
dressed, leading to the desired result.

In the above proof, the “low-level” module always stands
alone, thus Point 4 of Definition 4 is immediately satisfied
(as well as all other low-level requirements).

Theorem 6: Let there be a multiple-level interface system
composed of component plants {G1, . . . , Gp}, component
supervisors {S1, . . . , Sp}, and interfaces {I2, . . . , Ip}. If this
system is multi-level controllable with respect to the alphabet
partition of (1) and (2), then the supervisor language S =
S1 ∩S2 ∩I2 ∩ . . .∩Sp ∩Ip is Σu-controllable with respect
to the plant language G = G1 ∩ . . . ∩ Gp.

Proof:
• Beginning at the top of the hierarchy, consider a two-level
system consisting of a high-level plant G1 and supervisor S1,
a low-level plant G2‖I3 and supervisor S2, and an interface
I2. Since the overall system is multi-level controllable, this
two-level component is level-wise controllable. Therefore,
Theorem 4 can be applied to show that S1 ∩ S2 ∩ I2 is
Σu-controllable with respect to G1 ∩ G2 ∩ I3.
• Now consider a two-level system with the high-level plant
G1‖G2 and supervisor S1‖S2‖I2, a low-level plant G3‖I4

and supervisor S3, and an interface I3. Based on the given
assumptions, points i) and ii) of the level-wise controllability
requirement are satisfied. Additionally, point iii) is satisfied
by the previous step of this proof. Therefore, Theorem 4 can
be applied again to show that S1 ∩ S2 ∩ I2 ∩ S3 ∩ I3 is
Σu-controllable with respect to G1 ∩ G2 ∩ G3 ∩ I4.
• This logic is repeated until all modules have been ad-
dressed, leading to the desired result.

C. General Multiple-Level Case

The proofs of the main results of this paper follow the
logic of Theorems 5 and 6, but with multiple modules per
level of the hierarchy. Recall Fig. 1 and Fig. 2 that illustrate
the general multiple-level architecture we are considering.

Proof of Theorem 1:
• Beginning at the top of the hierarchy, consider a two-
level system consisting of a high-level H1

1 , a set of inter-
faces {I2

` }, and a corresponding set of low-level modules
{H2

` ||(
∣∣∣∣

k∈J2
`

I3
k)} where ` = {1, . . . , n2}. It is given that

the overall system is multi-level nonblocking and multi-level
consistent, therefore this two-level component is level-wise
nonblocking and interface consistent and Theorem 3 can be
applied to show (5). Within a given level, all modules are
included since the system is connected.

H1
m ∩H2

m ∩ I2
m ∩ I3

m =
H1 ∩H2 ∩ I3 ∩ I3 (5)

• Now consider a system with a high-level
H1

1‖H2
1‖ . . . ‖H2

n2
‖I2

1‖ . . . ‖I2
n2

, a set of interfaces {I3
k}, and

a corresponding set of low-level modules {H3
k ||(

∣∣∣∣
j∈J3

k

I4
j)}

where k = {1, . . . , n3}. Based on the given assumptions,
all low-level and multi-level requirements are known to be
met. The level-wise nonblocking of the high-level has been
shown to be met by (5). The only requirement left is Point
3 of the interface consistency definition, that is, it must be
shown that the high-level language is ΣA3

k
-controllable with

respect to each I3
k , ∀k = {1, . . . , n3}.

Consider a single interface language from this two-level
system, I3

k . On level 2, there is a single module H2
` that

shares relevant events with this interface, that is, (Σ(H2
`) ∩

Σ(I3
k) 6= ∅). By construction, the language generated by this

module H2
` is ΣA3

k
-controllable with respect to I3

k due to
the interface consistency requirements. For those modules
H2

`′ from level 2 that do not share relevant events with I3
k ,

they do not possess any relevant events that are in the set
ΣA3

k
by (2). Therefore by Proposition 1, each language H2

`′

for which `′ 6= ` is also ΣA3
k
-controllable with respect to I3

k .
Furthermore, each interface from level 2, I2

` , and the
module from the level 1, H1

1 , also do not share any relevant
events with the event set ΣA3

k
by (1) and (2). Applying

Proposition 1 again demonstrates that each of the languages
generated by these DES are ΣA3

k
-controllable with respect

to the interface language I3
k .

Since the module language H1
1, and the interface and

module languages, I2
` and H2

` where ` = {1, . . . , n2}, are
ΣA3

k
-controllable with respect to I3

k , so is the composition
of these languages by Proposition 2. Otherwise stated, H =
H1

1∩H2
1∩ . . .∩H2

n2
∩I2

1 ∩ . . .∩I2
n2

is ΣA3
k
-controllable with

respect to the interface language I3
k . Repeating this logic,

this high-level language can be shown to be ΣA3
k
-controllable

with respect to any interface language I3
k , ∀k = {1, . . . , n3}.

Therefore we have shown that Point 3 has been satisfied.
Since all requirements are met for this two-level system,
Theorem 3 then gives us:

H1
m ∩H2

m ∩ I2
m ∩H3

m ∩ I3
m ∩ I4

m =
H1 ∩H2 ∩ I2 ∩H3 ∩ I3 ∩ I4

• This logic is repeated until all modules on all p levels have
been addressed. Low-level modules that do not have any in-
terfaces below them are slightly different in that each module

488

just has the form Hi
k. However, they still satisfy the level-

wise nonblocking and interface consistency requirements
leading to the desired result. ¥

Proof of Theorem 2:
• Beginning at the top of the hierarchy, consider a two-
level interface system consisting of a high-level plant G1

1 and
supervisor S1

1 , a set of interfaces {I2
` }, and a corresponding

set of low-level plants {G2
` ||(

∣∣∣∣
k∈J2

`

I3
k)} and supervisors

{S2
` } where ` = {1, . . . , n2}. Because the overall system is

multi-level controllable, this two-level component is level-
wise controllable. Therefore, Theorem 4 can be applied to
show that the language S1∩S2∩I2 is Σu-controllable with
respect to G1 ∩ G2 ∩ I3. Within a given level, all modules
are included since the system is connected.
• Now consider an interface system with a
high-level plant G1

1‖G2
1‖ . . . ‖G2

n2
and supervisor

S1
1‖S1

1‖ . . . ‖S2
n2
‖I2

1‖ . . . ‖I2
n2

, a set of interfaces {I3
k}, and

a corresponding set of low-level plants {G3
k||(

∣∣∣∣
j∈J3

k

I4
j)}

and supervisors {S3
k} where k = {1, . . . , n3}. Based on

the given assumptions, points i) and ii) of the level-wise
controllability requirement are satisfied. Additionally, point
iii) is known to be satisfied based on the previous step
of this proof. Therefore, Theorem 4 can be applied again
to show that the language S1 ∩ S2 ∩ I2 ∩ S3 ∩ I3 is
Σu-controllable with respect to G1 ∩ G2 ∩ G3 ∩ I4.
• This logic is repeated until all modules on all p levels
have been addressed. Low-level modules that do not have any
interfaces below them are slightly different in that their plant
components just have the form Gi

k. They each still satisfy
level-wise controllability leading to the desired result. ¥

IV. MANUFACTURING SYSTEM EXAMPLE

In this section we will demonstrate an application of this
new theory to the manufacturing example shown in Fig. 5
(modified from [14]). In this example the machines are con-
sidered the component plants and the buffers are considered
the component specifications. The automaton models of these
plants and specifications can be found in Fig. 6 and Fig. 7
respectively. In these models, states with double circles are
considered marked states and the state with the short arrow
is considered the initial state. Furthermore, the convention is
employed where odd numbers represent controllable events
and even numbers correspond to uncontrollable events.

Application of this approach depends on designer un-
derstanding. Specifically, how the system components are
partitioned into modules, how request and answer events are
chosen, and how interfaces and supervisors are constructed,
are all areas where designer intuition can enter in. Multiple
combinations may be tried to find a satisfactory solution.

Here we present a solution to the multiple-level problem
that satisfies the requirements prescribed in this paper. The
dashed boxes in Fig. 5 demonstrate the partition chosen for
this example. Figure 8 illustrates the hierarchy imposed upon
the system and the flow of information. The sets of request
and answer events are chosen to be: ΣR2

1
= {61}, ΣA2

1
=

{64}, ΣR2
2

= {91}, ΣA2
2

= {94}, ΣR3
1

= {33}, ΣA3
1

=

Fig. 5. Flexible manufacturing system example

Fig. 6. Automaton models of plant components

{30, 38}, ΣR3
2

= {71}, and ΣA3
2

= {74}. Figure 9 shows
the designed interface automata.

The modular supervisors constructed according to the
following equations succeed in satisfying all the necessary
level-wise and interface-based requirements. Here the no-
tation sup C(K,L) represents the supremal sublanguage of
K that is controllable with respect to L. Notice that each
specification and plant component are addressed by a mod-
ular supervisor. Also, each modular supervisor is built based
on components in its given partition and on neighboring
interfaces, that is, each modular supervisor is constructed
employing only local information.

S1
1 = sup C(Lm(B9‖I2

1‖I2
2),L(I2

1‖I2
2))

S2
1 = sup C(Lm(B6‖B7‖AM‖I3

1‖I3
2),L(AM‖I3

1‖I3
2))

S2
2 = sup C(Lm(B3‖R2‖Mill),L(R2‖Mill))
S3

1 = sup C(Lm(B2‖B4‖C2‖R1‖Lathe),L(C2‖R1‖Lathe))
S3

2 = sup C(Lm(B8‖C3‖PM),L(C3‖PM))

489

Fig. 7. Automaton models of specification components

Fig. 8. Hierarchy imposed on flexible manufacturing system example

For comparison, the composition of all plant and specifica-
tion components in this example results in an automaton with
291,456 states and 1,226,672 transitions. Furthermore, the
resulting closed-loop behavior is generated by an automaton
with 20,232 states and 80,028 transitions. The local modular
solution of [15] greatly reduces the complexity of synthesiz-
ing the control for this example, but results in blocking.

In the generation of the multiple-level hierarchical
interface-based control, the largest automaton that was con-
structed had 80 states and 182 transitions. This automaton
was built in the process of constructing S2

1 . Furthermore, the
resulting global closed-loop behavior is safe and nonblock-
ing. The reduced size of the automata built in the process
of constructing this solution gives some indication of its
advantage. A drawback, however, is that this interface-based
control only allows four pieces to be active in the factory at
any given time. The monolithic solution allows a maximum
of eight pieces to be active at one time.

If instead a two-level architecture is employed with low-
level modules consisting of H2

2 , H3
1 , and H3

2 , and a high-
level module made up of the remaining components, then
the largest automaton that needs to be constructed has 320
states and 888 transitions. This solution allows a maximum
of five pieces to be active at any given time.

Fig. 9. Proposed interfaces for flexible manufacturing example

V. CONCLUSION

In this paper we have provided requirements for a
multiple-level interface-based architecture by which global
controllability and nonblocking can be verified locally. This
general architecture is an improvement over the special two-
level case of [3] in that it allows the global system to be
partitioned into smaller modules, thereby leading to less
complexity and improved reconfigurability, though at the
possible expense of increased restrictiveness. Furthermore,
the interface consistency requirements of this paper are
shown to be a relaxation of the corresponding requirements
of [11]. The benefits of this architecture are also demon-
strated through its application to a manufacturing example.

REFERENCES

[1] E. Endsley, E. Almeida, and D. Tilbury, “Modular finite state ma-
chines: Development and application to reconfigurable manufacturing
cell controller generation,” Contr. Eng. Pract., 2006.

[2] R. J. Leduc, B. A. Brandin, M. Lawford, and W. Wonham, “Hierar-
chical interface-based supervisory control–part I: Serial case,” IEEE
Trans. Auto. Contr., 2005.

[3] R. J. Leduc, M. Lawford, and W. Wonham, “Hierarchical interface-
based supervisory control–part II: Parallel case,” IEEE Trans. Auto.
Contr., 2005.

[4] K. Schmidt, T. Moor, and S. Perk, “A hierarchical architecture for
nonblocking control of discrete event systems,” in Mediterranean
Conf. Control and Automation, 2005.

[5] R. Hill and D. Tilbury, “Modular supervisory control of discrete-event
systems with abstraction and incremental hierarchical construction,”
in Proc. WODES, 2006.

[6] L. Feng and W. Wonham, “Computationally efficient supervisor de-
sign: Abstraction and modularity,” in Proc. WODES, 2006.

[7] P. Pena, J. Cury, and S. Lafortune, “Testing modularity of local
supervisors: An approach based on abstractions,” in Proc. WODES,
2006.

[8] H. Flordal and R. Malik, “Modular nonblocking verification using
conflict equivalence,” in Proc. WODES, 2006.

[9] B. A. Brandin, R. Malik, and P. Malik, “Incremental verification and
synthesis of discrete-event systems guided by counter examples,” IEEE
Trans. Contr. Sys. Tech., 2004.

[10] C. Cassandras and S. Lafortune, Introduction to Discrete Event Sys-
tems. Boston, MA: Kluwer Academic Publishers, 1999.

[11] R. J. Leduc, M. Lawford, and P. Dai, “Hierarchical interface-based
supervisory control of a flexible manufacturing system,” IEEE Trans.
Contr. Sys. Tech., 2006.

[12] R. Hill, “Modular verification and supervisory controller design for
discrete-event systems using abstraction and incremental construction,”
Ph.D. dissertation, University of Michigan, Ann Arbor, USA, 2008.

[13] R. Leduc, “Hierarchical interface-based supervisory control,” Ph.D.
dissertation, University of Toronto, Toronto, Canada, 2002.

[14] M. H. de Queiroz, J. E. R. Cury, and W. Wonham, “Multitasking su-
pervisory control of discrete-event systems,” Discrete Event Dynamic
Systems: Theory and Application, 2005.

[15] M. H. de Queiroz and J. E. R. Cury, “Modular supervisory control of
composed systems,” in Proc. ACC, 2000.

490

