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Abstract— This paper is concerned with the H∞ control

problem for a class of non-minimum phase cascade switched

nonlinear systems. The system under consideration is composed

of two cascade-connected parts which are also switched systems.

Sufficient conditions under which the H∞ control problem is

solvable under an arbitrary switching law are presented. The

Common Lyapunov function and the switched state feedback

controller are constructed explicitly based on the structure

characteristics of the switched system. The corresponding

closed-loop switched system under consideration is globally

asymptotically stable and achieves an prescribed L2-gain. The

proposed method does not rely on the solutions of Hamilton-

Jacobi equations.

I. INTRODUCTION

H∞ control theory has become a powerful tool to solve

robust stabilization and disturbance attenuation problem.

Many results about nonlinear H∞ control have appeared[1,

2]. The nonlinear H∞ control problem has been solved either

based on the passivity theory, or based on the nonlinear

version of classical bounded real lemma. Both methods

require solving Hamilton-Jacobi equations, which imposes

a formidable difficulty. Therefore, many attempts have been

made towards designing nonlinear H∞ controllers by solving

reduced-order Hamilton-Jacobi equations or without the need

of solving Hamilton-Jacobi equations by focusing on some

special class of nonlinear systems. For example, “normal

form” and backstepping technique are used in [3, 4].

On the other hand, there has been increasing interest in

the analysis and synthesis of switched systems. The intricate

intersection between continuous and discrete dynamics of

switched systems has motivated a large and growing body
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of research work on a diverse array of issues, including

the modeling, optimization, stability analysis, and control.

Among which the stability issues have been a major focus

in studying switched systems [5-7]. Stability of switched

systems under arbitrary switching law is a desirable property

which can be assured by a common Lyapunov function,

because this property enables one to seek for other sys-

tem performances by switching without changing stability.

Except the common Lyapunov function method some other

techniques are summarized in the recent books [8, 9].

The H∞ property analysis of switched systems is a

valuable issue deserving us pay more attention to among the

growing body of research works that focuses on switched

systems. All of the stability analysis method appeared up

to now have been used in studying H∞ property of the

switched system although the research work is comparatively

fewer [10∼13]. [10] addressed the stabilization and L2-

gain analysis problem for a class of uncertain discrete-

time switched systems with switched Lyapunov function

technique. The disturbance attenuation problem was analyzed

in [11] using average dwell-time method. [12] studied the

robust H∞ control problem for a class of switched linear

systems with uncertainties using multiple Lyapunov function

method. The H∞ control problem for a class of cascade

nonlinear minimum-phase switched systems was considered

in [13] by constructing a common Lyapunov function.

In this paper, we shall address the H∞ control problem for

a class of non-minimum phase cascaded switched nonlinear

systems with external disturbance input. The switched system

under consideration is composed of two cascade-connected

nonlinear parts which are also switching systems, and the

controlled output is corrupted by the disturbance input but

does not involve the control input. We aim at designing

a switched state feedback controller such that the closed-

loop switched system is uniformly globally asymptotically

stable and the L2-gain, from the disturbance input to the

controlled output, is not larger than a given value under an

arbitrary switching law. Motivated by [3,14], we assume that

the first part of the switched system can be decomposed into
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two cascade-connected parts: the first decomposed part is

uniformly input-to-state stable, and the other is uniformly

asymptotically stabilizable. The control law and the common

Lyapunov function are explicitly designed under these as-

sumptions. The advantage of this paper with respect to other

approaches is that the construction of the common Lyapunov

function does not rely on the solutions of Hamilton-Jacobi

equations.

II. SYSTEM DESCRIPTION AND PROBLEM

STATEMENT

We address the H∞ control problem for non-minimum-

phase switched cascaded nonlinear systems of the form,














η̇ = fσ(t)(η, ξ) + pσ(t)(η, ξ)w,

ξ̇ = aσ(t)(η, ξ) + bσ(t)(η, ξ)uσ(t) + cσ(t)(η, ξ)w,

y = hσ(t)(η, ξ) + dσ(t)(η, ξ)w,

(1)

where η ∈ Rn−d, ξ ∈ Rd are the states, w(t) ∈ L2[0,∞)

is the external disturbance input, y ∈ Rm is the controlled

output, σ(t) : [0,+∞) → P = {1, · · · , N} is the switching

law, which is a piecewise constant function of time. In

specific situations, the value σ(t) at a given time t might

just depend on t or x(t), or both. ui ∈ Rd is the control

input, fi(·, ·), pi(·, ·), ai(·, ·), bi(·, ·), ci(·, ·), hi(·, ·), di(·, ·)
are smooth real functions for i = 1, · · · , N , and fi(0, 0) = 0,

ai(0, 0) = 0, hi(0, 0) = 0, bi(η, ξ) is nonsingular for

∀(η(t)T , ξ(t)T )T ∈ Rn, i = 1, · · · , N . The switching signal

σ(t) can be characterized by the switching sequence:

Σ = {(ηT
0 , ξT

0 )T ; (i0, t0), (i1, t1), · · · ,

(in, tn), · · · , | in ∈ p, n ∈ N}. (2)

in which t0 is the initial time, (ηT
0 , ξT

0 )T is the initial state.

When t ∈ [tk, tk+1), σ(t) = ik, that is, the ikth subsystem

is activated. Therefore, the trajectory x(t) of the switched

system (1) is the trajectory xik
(t) of the ikth subsystem when

t ∈ [tk, tk+1). In addition, we assume that the state of the

switched system (1) does not jump at the switching instants,

i.e. the trajectory x(t) is everywhere continuous.

Consider the switched systems described by equations of

the form

ẋ(t) = fσ(t)(x, d). (3)

where x(t) ∈ Rn is the state, σ(t) : [0,∞] → P =

{1, . . . , N} is the switching signal defined as in (1). d is

a measurable locally bounded disturbance input.

Definition 1. The switched system (3) is said to be uniformly

input-to-state stable if and only if there exists a proper,

positive definite, and radially unbounded function V (x) such

that

∂V (x)

∂x
fi(x, d) ≤ −α(‖x‖) + χ(‖d‖), i ∈ P . (4)

for some class K∞ functions α(·) and χ(·).
Throughout this paper, with abuse of terminology, we refer

to the first equation of system (1) as the zero dynamics

equation when ξ = 0. And we assume that the system (1) is

stabilizable non-minimum phase and satisfies the following

assumptions

Assumption 1. The η-part of the switched system (1) can

be decomposed into the following two cascade-connected

subsystems,

{

η̇1 = f1σ(t)(η1, η2, ξ) + p1σ(t)(η1, η2, ξ)w,

η̇2 = f2σ(t)(η2, ξ),
(5)

Assumption 2. (i) For the η1-subsystem there exist a proper,

real-valued, and positive definite function W1(η1), such that

∂W1

∂η1

[

f1σ(t)(η1, η2, ξ) + p1σ(t)(η1, η2, ξ)w
]

≤ −α1‖η1‖2 + γ2
1‖w‖2 + k1(η2, ξ), (6)

for some positive definite function k1(η2, ξ) and some posi-

tive constants α1, γ1.

(ii) For the η2-subsystem there exist a switching-

independent real valued function φ(η2), a proper, and posi-

tive definite function W2(η2), such that

∂W2

∂η2
f2σ(t)(η2, φ(η2)) ≤ −α2W2(η2), (7)

‖W2(η2)‖ ≥ α3‖η2‖2. (8)

for some positive constants α2, α3.

Assumption 3. The controlled output y of system (1) is of

the form

y = hi(η2, ξ) + di(η, ξ)w, i ∈ P . (9)

where hi(η2, ξ) are smooth functions with hi(0, 0) = 0, and

di(η, ξ) are uniformly bounded, i.e.

‖di(η, ξ)‖ ≤ γd. i ∈ P (10)

for some positive constant γd.

Remark 1. (i) of Assumption 2 indicates that the η1-

subsystem is uniformly input-to-state stable (see Definition

1). (ii) of Assumption2 indicates that the η2-subsystem

can be globally uniformly asymptotically stabilized by the

switching-independent state feedback control law φ(η2).
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Remark 2. Assumption 1 is not conservative. In fact, even

for non-switched linear system, similar assumptions is indeed

necessary. Due to the complexity of switched systems, this

assumption is reasonable. this can be seen from the fact that

for a switched nonlinear system, asymptotic stability with

zero input of the η1-subsystem does not imply asymptotic

stability when the input is not zero. Asymptotic stability

with zero input of the η1-subsystem and asymptotic stabi-

lizability of the η2-subsystem are not sufficient, in general.

to guarantee the solution of the problem. Somewhat stronger

conditions are needed. For the η1-subsystem a form of

uniformly input-to-state stability is required, while for the

η2-subsystem a particular form of uniformly stabilizability

is needed.

Remark 3. The Assumption of the existence of a switching-

independent state feedback φ(η2) in (ii) of Assumption 2 is

reasonable, this is a phenomena that does exist in switched

systems.

Remark 4. It is easy to observe that the uniformly bound-

edness of di(η, ξ) is necessary for the L2-gain from the

disturbance input w to the controlled output y to be bounded.

This paper addresses the following H∞ control problem:

Given any constant γ > γd, design a switched state

feedback controller ui = ui(η, ξ), with ui(0, 0) = 0 for

system (1), such that

(a) the corresponding closed-loop switched system (1) is

globally uniformly asymptotically stable with w = 0.

(b) for some real-valued function β : Rn−d ×Rd → R with

β(0, 0) = 0

∫ ∞

0

yT (t)y(t)dt ≤ γ2

∫ ∞

0

wT (t)w(t)dt + β(η0, ξ0), (11)

holds for any initial condition (ηT
0 , ξT

0 )T ∈ Rn. Where

w(t) ∈ L2[0,+∞).

III. MAIN RESULT

In this section, we derive sufficient conditions under witch

the H∞ control problem of system (1) under arbitrary

switching law is solvable. And a nonlinear switched state

feedback controller is also explicitly constructed.

Theorem 1 Given any constant γ > γd, if the disturbed

switched nonlinear system (1) satisfies Assumptions 1∼3,

then, the global H∞ control problem for system (1) under

arbitrary switching law is solvable.

Proof. For system (1), define the following coordinate trans-

formation:

η = η, ζ = ξ − φ(η2). (12)

where φ(η2) is as in (ii) of Assumption 2.

Applying this coordinate transformation and taking As-

sumption 1 into consideration, we can transform the η2-

subsystem into

η̇2 = f̂2i(η2) + f̃2i(η2, ζ)ζ, (13)

where f̂2i(η2) = f2i(η2, φ(η2)), f̂2i(0) = 0. In view of (ii)

of Assumption 2, (7) becomes

∂W2

∂η2
f̂2σ(t)(η2) ≤ −α2W2(η2). (14)

Using (1) and completing the squares, we obtain

‖y‖2 − γ2‖w‖2

≤ hT
i (I +

1

γ2
2

dT
i di)hi − wT [(γ2 − γ2

2)I − dT
i di]w,

It follows from (10) that

‖y‖2 − γ2‖w‖2 ≤ (1 +
γ2

d

γ2
2

)‖hi‖2 − γ2
3‖w‖2, (15)

where γd is as defined in Assumption 3, γ2, γ3 are two

positive real constants satisfying γ2
3 = γ2 − γ2

2 − γ2
d > 0.

For any positive constant γ̃ > γ1, from Assumption 3, we

know that there exist positive definite functions Hi(η2, ζ),

i ∈ P , such that

k1(η2, ξ) +
γ̃2

γ2
3

(1 +
γ2

d

γ2
2

)‖hi‖2 ≤ Hi(η2, ζ),

where γ1, k1(η2, ξ) are as defined in Assumption 1. Let

H(η2, ζ) = max{Hi : i ∈ P}, we have

k1(η2, ξ)+
γ̃2

γ2
3

(1+
γ2

d

γ2
2

)‖hi‖2 ≤ H(η2, ζ), i ∈ P . (16)

Since H(η2, ζ) is also a positive definite function, we have

H(0, 0) = 0. Thus, H(η2, ζ) can be decomposed as:

H(η2, ζ) = H1(η2) + H2(η2, ζ)ζ, (17)

where H1(η2) = H1(η2, 0) and H1(0) = 0.

Since W2(η2) is positive definite and radially unbounded,

there exists a class K∞ function k : R+ → R+, such that

H1(η2) + ‖η2‖2 ≤ k(W2(η2)). (18)

Define a K∞ function S : R+ → R+ as follows:

S(W2) = W2 sup
0≤t≤1

dk(t)

dt
+

∫ 2W2

W2

k(t)dt. (19)
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From [4], we know that S(W2) satisfies:

S(W2) ≥ k(W2), W2
dS(W2)

dW2
≥ S(W2). (20)

Next, construct the composite common Lyapunov function

W for system (1) as:

W (η1, η2, ξ) = W1(η1) +
1

α1
S(W2(η2)) +

1

2
ζT ζ, (21)

where W1(η1), α1 are as defined in (i) of Assumption 2 and

(ii) of Assumption 2 respectively.

In view of (12), (13) and Assumption 1, we can calculate

the time derivative of W as follows:

Ẇ =
∂W1

∂η1

[

f1i(η1, η2, ξ) + p1i(η1, η2, ξ)w
]

+
1

α2

dS(W2)

dW2

·∂W2

∂η2

[

f̂2i(η2) + f̃2i(η2)ζ
]

+ ζT ζ̇, (22)

Moreover,

ζ̇ = ai(η, ξ) + bi(η, ξ)ui + ci(η, ξ)w

−∂φ(η2)

∂η2
f2i(η2, ξ), (23)

Substituting (23) into (22), and taking Assumption 2, (14),

(18), and (20) into consideration, we obtain

Ẇ ≤ −α1‖η1‖2 + γ2
1‖w‖2 + k1(η2, ξ) −

dS(W2)

dW2
W2(η2)

+
1

α2

dS(W2)

dW2

∂W2

∂η2
f̃2i(η2)ζ+ ζT

[

ai(η, ξ)+ bi(η, ξ)ui

+ci(η, ξ)w − ∂φ(η2)

∂η2
f2i(η2, ξ)

]

≤ −α1‖η1‖2 + γ2
1‖w‖2 + k1(η2, ξ) − k(W2)

+ζT
[

ai(η, ξ) + bi(η, ξ)ui −
∂φ(η2)

∂η2
f2i(η2, ξ)

+
1

α2

(dS(W2)

dW2

∂W2

∂η2
f̃2i(η2)

)T

+ ci(η, ξ)w
]

≤ −α1‖η1‖2 + γ2
1‖w‖2 + k1(η2, ξ) − H1(η2) − ‖η2‖2

+ζT
[

ai(η, ξ) + bi(η, ξ)ui −
∂φ(η2)

∂η2
f2i(η2, ξ)

+
1

α2

(dS(W2)

dW2

∂W2

∂η2
f̃2i(η2)

)T

+ ci(η, ξ)w
]

, (24)

From (15), (16), and (17), it follows that

γ̃2

γ2
3

(‖y‖2 − γ2‖w‖2)≤ γ̃2

γ2
3

(1 +
γ2

d

γ2
2

)‖hi‖2 − γ̃2‖w‖2

≤ H1(η2) + H2(η2, ζ)ζ − k1(η2, ξ)

−γ̃2‖w‖2. (25)

Combining (24) and (25), gives

Ẇ +
γ̃2

γ2
3

(‖y‖2 − γ2‖w‖2)

≤ −α1‖η1‖2 − γ2
4‖w‖2 − ‖η2‖2 + ζT

[

ai(η, ξ)

+bi(η, ξ)ui + ci(η, ξ)w − ∂φ(η2)

∂η2
f2i(η2, ξ)

+HT
2 (η2, ζ) +

1

α2

(dS(W2)

dW2

∂W2

∂η2
f̃2i(η2)

)T ]

≤ −α1‖η1‖2 − ‖η2‖2 + ζT
[

ai(η, ξ) + bi(η, ξ)ui

−∂φ(η2)

∂η2
f2i(η2, ξ) +

1

α2

(dS(W2)

dW2

∂W2

∂η2
f̃2i(η2)

)T

+HT
2 (η2, ζ)

]

− γ2
4‖w‖2 + ζT ciw

≤ −α1‖η1‖2 − ‖η2‖2 + ζT
[

ai(η, ξ) + bi(η, ξ)ui

−∂φ(η2)

∂η2
f2i(η2, ξ) +

1

α2

(dS(W2)

dW2

∂W2

∂η2
f̃2i(η2)

)T

+HT
2 (η2, ζ)

]

− (γ4w − 1

γ4
cT
i ζ)T (γ4w − 1

γ4
cT
i ζ)

+
1

γ2
4

ζT cic
T
i ζ

≤ −α1‖η1‖2 − ‖η2‖2 + ζT
[

ai(η, ξ) + bi(η, ξ)ui

−∂φ(η2)

∂η2
f2i(η2, ξ) +

1

α2

(dS(W2)

dW2

∂W2

∂η2
f̃2i(η2)

)T

+
1

γ2
4

cic
T
i ζ + HT

2 (η2, ζ)
]

,

where γ2
4 = γ̃2 − γ2

1 .

Design the state feedback controller as:

ui= b−1
i (η, ξ)

[

− ai(η, ξ) +
∂φ(η2)

∂η2
f2i(η2, ξ) − HT

2 (η2, ζ)

− 1

α2

(dS(W2)

dW2

∂W2

∂η2
f̃2i(η2)

)T

− 1

γ2
4

cic
T
i ζ − ζ

]

. (26)

Thus, we have,

Ẇ +
γ̃2

γ2
3

(‖y‖2−γ2‖w‖2) ≤ −α1‖η1‖2−‖η2‖2−‖ζ‖2, (27)

which means

Ẇ +
γ̃2

γ2
3

(yT y − γ2wT w) ≤ 0, ∀t ≥ 0. (28)

For ∀T ≥ 0, we let tj ≤ T ≤ tj+1 for some j. Integrating

both sides of (28) from t0 = 0 to T yields

∫ T

0

[

Ẇ +
γ̃2

γ2
3

(yT y − γ2wT w)
]

dt

=

∫ t1

0

[

Ẇ +
γ̃2

γ2
3

(yT y − γ2wT w)
]

dt +

∫ t2

t1

[

Ẇ +
γ̃2

γ2
3

·(yT y − γ2wT w)
]

dt + . . .

+

∫ T

ti

[

Ẇ +
γ̃2

γ2
3

(yT y − γ2wT w)
]

dt
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=

∫ t1

0

Ẇdt +

∫ t2

t1

Ẇdt + . . . +

∫ T

tj

Ẇdt +
γ̃2

γ2
3

∫ T

0

(yT y

−γ2wT w)dt

= W (T ) − W (0) +
γ̃2

γ2
3

∫ T

0

(yT y − γ2wT w)dt

which is equivalent to

∫ T

0

yT y ≤ γ2

∫ T

0

wT wdt +
γ2
3

γ̃2
W (0), ∀(ηT

0 , ξT
0 )T 6= 0.

where W (T ) = W (W1(η1(T )), S(W2(η2(T ))), ζ(T )),

W (0) = W (W1(η1(0)), S(W2(η2(0))), ζ(0)). Therefore,

(10) holds under arbitrary switching law.

When w = 0, it follows from (27) that

Ẇ ≤ −α1‖η1‖2 − ‖η2‖2 − ‖ζ‖2. (29)

This implies that W is a common Lyapunov function of

system (1), and thus the global asymptotic stability of system

(1) with (26) with w = 0 under arbitrary switching law

follows.

IV. EXAMPLE

Consider the switched system with the following two

subsystems















η̇ = −η3 + ξ,

ξ̇ = ξ2 + u1 + ηξ2w,

y = η + w sin ξ,















η̇ = −η − ηξ2 sin2 η,

ξ̇ = η2 + u2 + ξ2w,

y = η + w cos ξ,

(30)

where η ∈ R, ξ ∈ R, w ∈ R, P = {1, 2}. Let γ = 2, we

will design a switched state feedback controller for switched

system (30) such that the closed-loop system is uniformly

globally asymptotically stable and the L2-gain from the

disturbance input w to the controlled output y is not larger

than 2.

The system (30) is already in the form of (1). Note that this

switched system contains only the η2-subsystem, thus, W1 =

0, α1 = 0, γ1 = 0, k1(η, ξ) = 0 in (i) of Assumption 2, and

(ii) of Assumption 2 are satisfied with the φ(η2) = η3−η, the

Lyapunov function W2 = 1
2η2, α2 = 2, α3 = 0.5. Moreover,

Assumption 3 are satisfied with γd = 1. i.e. Assumption

1 ∼ 3 hold. Therefore, Theorem 1 is applicable, then, we will

apply theorem 1 to design a suitable switched state feedback

controller for switched system (30).

Taking γ2 = 1, γ3 =
√

3, γ̃ = 1, we can obtain

H(η2, ξ) = η, H1(η2) = η2, H2(η2, ξ) = 0,

k(W2) = 4W2, S(W2) = 4W2 + 6W 2
2 ,

and W = η2+ 3
4η4+ 1

2ξ2 as the common Lyapunov function.

From (26), the switched state feedback controller can be

taken as:

u1 = −ξ(ξ + 2) − η(3η4 + η2 + 3) + η2ξ(η3ξ3 − ηξ3

−ξ4 + 3),

u2 = −ξ(ξ4 + 1) − η2(η3 sin2 η + 2η + 1) − (3η3ξ2

−ηξ2 − 2η2ξ + 2η3 − 3η4ξ − 3η7) sin2 η

+ηξ4(η2 − 1),

Let the initial state (ηT
0 , ξT

0 )T = (−1.5,−2), Figure 1 shows

the the state response of the closed-loop switched system (28)

with the forgoing designed state feedback under an arbitrary

chosen switching law when w = sin t, which indicate that

the feasibility of our result.

0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

time(s)

s
ta

te

x
2
 

x
1
 

Fig. 1. The state response of the switched system (30)

V. CONCLUSIONS

In this paper, we have studied the H∞ control problem for

a class of non-minimum phase switched cascaded nonlinear

systems with external disturbances. Sufficient conditions for

the solvable of the H∞ control problem under arbitrary

switching law are presented. The common Lyapunov func-

tion is designed explicitly. An numerical example is given

to illustrate the applicability of the method proposed. The

H∞ controllers designed according to the method proposed

in this paper successfully stabilize the switched nonlinear

cascaded system and meanwhile maintain an acceptable H∞

disturbance attenuation level of the closed-loop system. The

situation that when the state feedback in (ii) of Assumption

2 is switching-depend maintains for further study.

REFERENCES

[1] A. Isidor, Nonlinear control systems. 3rd edition. Berlin: Springer,

1995.

5084



[2] A. J. Van der Shaft, L2-gain and passivity techniques in nonlinear

control. London: Spring-Verlag, 2000.

[3] A. Isidor, A note on almost disturbance decoupling for nonlinear

minimum phase systems, System & control letters, vol. 27, 1996(b),

pp. 191-194.

[4] L. Xie, Z. Su, Robust H∞ control for a class of cascaded nonlinear

systems, IEEE Trans. on Automatic Control, vol. 42, 1997, pp. 1465-

1469.

[5] D. Liberzon, A. S. Morse, Basic problems in stability and design of

switched systems, IEEE Control Syst. Mag. vol. 19, 1999, pp. 59-70.

[6] Z. Sun, S.S. Ge, Analysis and synthesis of switched linear control

systems, Automatic, vol. 41, 2005, pp. 181-195.

[7] R. N. Shorten, K. S. Narendra, Necessary and sufficient condition for

the existence of a common quadratic Lyapunov function for M-stable

linear second order systems, in Proc. 2000 Amer. Control Conf., pp.

359-363, 2000.

[8] D. Liberzon, Switching in Systems and Control, Boston: Brikhauser,

2003.

[9] S. Pettersson, Analysis and Design of Hybrid Systems, Chalmers
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