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Abstract—The two-stage Unscented Kalman Filter (TUKF) is 
proposed to consider the nonlinear system in the presence of 
unknown random bias in a number of practical situations. The 
adaptive fading UKF is designed by using the forgetting factor to 
compensate the effects of incomplete information. The TUKF to 
estimate unknown random bias is designed by using the adaptive 
fading UKF. This filter can be used for nonlinear systems with 
unknown random bias on the assumption that the stochastic 
information of a random bias is incomplete. The stability of the 
TUKF is analyzed and ensured under certain conditions. The 
performance of the TUKF is verified by using MATLAB 
simulation on the high-update rate Wheel Mobile Robot (WMR). 

I. INTRODUCTION 
HE well-known Unscented Kalman filtering (UKF)[1] 
has been widely used in many industrial areas as it aims at 

the nonlinear system directly [2]-[4]. The difference from 
Extended Kalman Filter (EKF) is that UKF need not the 
linearization of the system models by Jacobian matrix. This 
avoids the error produced by the interruption of higher-order 
terms and the precision can reach second-order even higher 
(as precise as third-order to the Gauss noise). Unscented 
Transformation (UT) is introduced into the UKF, so it is free 
to debug. The resemblances between the UKF and the EKF is 
that the implementations of the two algorithms all consist of 
the prediction of the state mean and covariance and the update 
of the measurement [5], [6]. 

In order to satisfy the conditions of Kalman filter, the 
standard UKF requires an accurate system model and exact 
stochastic information. However, in a number of practical 
situations, these models contain parameters, which may 
deviate from their nominal values by unknown constant or 
unknown random bias. Although, some procedures for 
estimating the dynamic states of a linear system in the 
presence of unknown constant bias [7], [8] or a random bias 
[9]-[13] were suggested as the two-stage Kalman filter 
(TKF)[14], few of scholars researched on the filter for 
nonlinear systems in the presence of random bias based on the 
UKF. 

Because the information of unknown random bias is 
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incomplete, the adaptive fading UKF is proposed using the 
innovation covariance in Section 3. The proposed adaptive 
fading UKF compensates the effect of inaccuracy information 
by rescaling of the error covariance and Kalman gain through 
the forgetting factor. Then the two-stage Unscented Kalman 
filter (TUKF) is proposed by using the adaptive fading UKF in 
Section 3. This TUKF can be used for system with the 
unknown random bias on the assumption that the stochastic 
information of the random bias is incomplete. In Section 4, 
some techniques based on an augmented-state TUKF 
equivalent to the TUKF [15]-[17] are used. We show that the 
augmented-state UKF is uniformly asymptotically stable and 
the stability of the augmented-state TUKF means the stability 
of the TUKF. Finally in Section 5, the performance of the 
TUKF is verified by MATLAB simulation on the high-update 
rate Wheel Mobile Robot (WMR) [18] and the results show 
the effectiveness of the algorithm. 

II. PROBLEM STATEMENT 
Consider the following nonlinear discrete-time stochastic 

system represented by: 
1 ( ) x

k k k k kx f x B b w+ = + +                          (1a) 
1

b
k k k kb A b w+ = +                               (1b) 

( )k k k k kz h x D b v= + +                          (1c) 
where kx  is the 1n×  state vector and kz  is the 1m×  
measurement vector. The nonlinear function ( )f i  and ( )h i  are 
state transition function and observation function, respectively, 
which are assumed to continuously differentiable with respect 
to kx .  kb  is the 1p ×  bias vector of unknown magnitude. All 
matrices have the appropriate dimensions. The noise sequence 

x
kw , b

kw  and kv  are zero mean uncorrelated Gaussian random 
sequences with 

T
0 0

0 0
0 0

x x x
k j k
b b b
k j k kj

k j k

w w Q
E w w Q

v v R
δ

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

                (1d) 

where 0x
kQ > , 0b

kQ > , 0kR >  and kjδ  is the Kronecker delta. 
The initial states 0x  and 0b  are assumed to be uncorrelated 
with the white noise processes. Assume that 0x  and 0b  are 
Gaussian random variables with  

0 0[ ]E x x∗= , T
0 0 0 0 0[( )( ) ] 0xE x x x x P∗ ∗− − = >  

0 0[ ]E b b∗= , T
0 0 0 0 0[( )( ) ] 0bE b b b b P∗ ∗− − = >  

T
0 0 0 0 0[( )( ) ] 0xbE x x b b P∗ ∗− − = >  

The problem is to design a two-stage Unscented Kalman 
filter (TUKF) to give a solution for nonlinear system with the 
unknown random bias on the assumption that the stochastic 
information of the random bias is incomplete. 
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III. ADAPTIVE TWO-STAGE UNSCENTED KALMAN FILTER 
However, the optimal TKF assumes that kA  and b

kQ  are 
known. In most cases, these are unknown. If this information 
is incomplete, the performance of the TKF may be degraded 
or diverged. To solve this problem, the TUKF in the section 
has to be adapted to environment of incomplete random bias 
information. Firstly we propose an adaptive fading UKF using 
innovation information and secondly propose a TUKF using 
this adaptive filter. 

A. Adaptive Fading UKF Using Innovation Covariance 
Consider the following nonlinear discrete-time stochastic 

system represented by: 
1 ( )k k kx f x w+ = +                                 (2a) 

( )k k kz h x v= +                                  (2b) 
where, kx  is the 1n×  state vector and kz  is the 1m×  
measurement vector. The nonlinear function ( )f i  and ( )h i  are 
state transition function and observation function, respectively, 
which are assumed to continuously differentiable with respect 
to kx . kw  and kv  denote sequences of uncorrelated Gaussian 
random vectors with zero means. Each covariance matrix is 

T[ ]k j k kjE w w Q δ= , T[ ]k j k kjE v v R δ=  and T[ ] 0k jE w v =  where kjδ  is the 
Kronecker delta function. The initial state 0x  is a random 
variable with mean 0x̂  and covariance matrix 0P  and is 
independent of kw  and kv . 

Under UKF, the n-dimensional random variable kx with 
mean kx�  and covariance kP  can be approximated by sigma 
points ,i kχ  selected from the columns of ( )k k ix a LP±� , 

0, ,2i L= … . The opposite weight iω  is 2
0 1 (1 )aω = − , 21 2i Laω =  

( 1, 2, , 2i L= … ). 
The predicted mean and covariance are computed as 

, 1 , 1( ) ( )i k i kfχ χ− −+ = , 
2

, 1
0

( ) ( )
n

k i i k
i

x ω χ −
=

− = +∑  
2

T
, 1 , 1

0
( ) ( ( ) ( ))( ( ) ( ))

n

k i i k k i k k k
i

P x x Qω χ χ− −
=

− = + − − + − − +∑  
2

T
, 1 , 1

0

( ) ( ) [ ( ( ) ( ))( ( ) ( )) ]
n

k k k k i i k k i k k k
i

P P x x Qλ λ ω χ χ− −
=

− = − = + − − + − − +∑  

where, kλ  is the forgetting factor introduced into the error 
covariance equation. The measurement update can be 
performed with the equations as 

, 1 , 1( ) ( )i k i kz h χ− −+ = ，
2

, 1
0

( ) ( )
n

k i i k
i

z zω −
=

− = +∑ , ( )k k kz zε = − −  
2

T T
, 1 , 1

0

[ ] ( ( ) ( ))( ( ) ( ))
n

zz k k i i k k i k k k
i

P E z z z z Rε ε ω − −
=

= = + − − + − − +∑  
2

T
, 1 , 1

0

ˆ( ( ) ( ))( ( ) ( ))
n

xz i i k k i k k
i

P x z zω χ − −
=

= + − − + − −∑  
1

k xz zzK P P−= , ( ) ( ) ( ( ))k k k k kx x K z z+ = − + − − , T( ) ( )k k k zz kP P K P K+ = − −  
T

- 1

1
1

k

zz i i
i k M

P
M

ε ε
= +

=
− ∑ ,  

2
T

, 1 , 1
0

[ ( ( ) ( ))( ( ) ( )) ]
n

zz k zz k i i k k i k k k
i

P P z z z z Rα α ω − −
=

= = + − − + − − +∑  

The scalar variable kα  can be estimated by 
11max{1, tr( )}k zz zzP P

m
α −=  or tr( )max{1, }

tr( )
zz

k
zz

P
P

α =  

From ( ) ( )k k kP Pλ− = −  and zz k zzP Pα= , we can obtain the new 
Kalman gain and the forgetting factor kλ . 

1k k
k k xz zz

k k

K K P Pλ λ
α α

−= =  

2
T

, 1 , 1
0

2
T

, 1 , 1
0

tr[ ( ( ) ( ))( ( ) ( )) ( 1) ]

tr[ ( ( ) ( ))( ( ) ( )) ]

n

k i i k k i k k k k
i

k n

i i k k i k k
i

z z z z R

z z z z

α ω α
λ

ω

− −
=

− −
=

+ − − + − − + −
=

+ − − + − −

∑

∑
, 1kλ ≥  

Then it gives 
( ) ( ) ( ( ))k k k k kx x K z z+ = − + − − , T( ) ( )k k k zz kP P K P K+ = − −  

The proposed adaptive filter has several characteristics. 
First, the adaptive fading UKF proposed in this section has a 
unified filter structure for system with incomplete dynamic or 
measurement equation. Secondly, the forgetting factor using 
innovation information is adaptively adjusted for system with 
incomplete information. The method using this forgetting 
factor requires a low computation time. Also the forgetting 
factor is calculated simply. Hence the proposed adaptive 
fading UKF can be used for complex nonlinear stochastic 
system without a heavy burden. 

B. Two-stage UKF in the Presence of Random Bias 
The TUKF can be designed by the proposed adaptive 

fading UKF. This TUKF can be used when the information of 
kA  and b

kQ  are incomplete. Several equations related to the 
innovation are arranged as follows. 

( ) ( )b
k k k k kz z N bε = − − − −                             (3) 

2
T T T

, 1 , 1
0

[ ] ( ( ) ( ))( ( ) ( )) ( )
n

b b b b
zz k k i i k k i k k k k k k

i
P E z z z z R N P Nε ε ω − −

=

= = + − − + − − + + −∑   (4) 

T

- 1

1
1

k
b b b

zz k k
i k M

P
M

ε ε
= +

=
− ∑                              (5) 

To compensate the effects of incomplete information in the 
bias filter of the TUKF, the calculated innovation covariance 
and the estimated innovation covariance are defined by (4) 
and (5). We use the adaptive fading UKF with rescaling ( )kP −  
because the dynamic equation of the bias filter is incomplete. 
Then b

kα  is equal to the forgetting factor b
kλ  where b b b

zz k zzP Pα= . 
By the forgetting factor calculated from (4) and (5), the error 
covariance equation is changed into ( ) ( )b b

k k kP Pλ∗ − = − . 
Next, we consider the modified bias free filter of the TUKF 

which has ku  and x
kQ . For convenience, ku  and x

kQ  of TUKF 
are rewritten as 

( )
1 1

1 1
1 1 1

( ) ( )

[ ( )] ( ) [ ( )] ( )
k k k k k

b b b b
k k k k k k k k k k k

u U U A b

U U I Q P A b U Q P A b
+ +

− −
+ + +

= − +

⎡ ⎤= − − − + = − +⎣ ⎦
  (6) 

1 1
x x b
k k k k kQ Q U Q U+ += +                                 (7) 

In (6), ku  is related to the incomplete kA  and b
kQ . Also in 

(7), x
kQ  is related to the incomplete b

kQ . These mean that the 
dynamic equation of the modified bias free filter is incomplete. 
Therefore we use the adaptive fading UKF with rescaling ( )kP − . 
Several equations related to the innovation are arranged as 
follows: 

2

, 1
0

( ) ( )
n

x
k k k k i i k

i
z z z hε ω χ −

=

= − − = −∑                      (8) 
2

T T
, 1 , 1

0
[ ] ( ( ) ( ))( ( ) ( ))

n
x x x

zz k k i i k k i k k k
i

P E z z z z Rε ε ω − −
=

= = + − − + − − +∑       (9) 

T

- 1

1
1

k
x x x

zz k k
i k M

P
M

ε ε
= +

=
− ∑                           (10) 
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To compensate the effects of incomplete information in the 
modified bias free filter of the TUKF, each innovation 
covariance is defined by (9) and (10). Here,  x

kα  is equal to the 
forgetting factor x

kλ  where x x x
zz k zzP Pα= . By the forgetting factor 

calculated from (9) and (10), the error covariance equation is 
changed into ( )x x x

k k kP Pλ∗ = − . From equations above, the TUKF 
of Definition 1 is proposed. 

Definition 1. A discrete-time two-stage Unscented Kalman 
filter (TUKF) is given by the following coupled difference 
equations when the information of nonlinear stochastic system 
given by (1) is incomplete: 

ˆ ( ) ( ) ( )k k k kx x U b− = − + − , ˆ ( ) ( ) ( )k k k kx x V b+ = + + +            (11a) 
Tˆ ( ) ( ) ( )x x b

k k k k kP P U P U∗ ∗− = − + − , Tˆ ( ) ( ) ( )x x b
k k k k kP P V P V∗ ∗+ = + + +       (11b) 

where kA and b
kQ  are partially known. Here, ˆkx , kx  and kb  are 

the state vectors of the TUKF, the modified bias-free filter and 
the bias filter, respectively.  

The modified bias free filter is 

, 1 , 1( ) ( )i k i kfχ χ− −+ = , 
2

, 1 1
0

( ) ( )
n

k i i k k
i

x uω χ − −
=

− = + +∑  
2

T
, 1 , 1 1

0
( ) [ ( ( ) ( ))( ( ) ( )) ]

n
x x x

k k i i k k i k k k
i

P x x Qλ ω χ χ∗
− − −

=

− = + − − + − − +∑  

, 1 , 1( ) ( )i k i kz h χ− −+ = , 
2

, 1
0

ˆ ( ) ( )
n

k i i k
i

z zω −
=

− = +∑  
2

, 1
0

( ) ( )
n

x
k k k k i i k

i
z z z hε ω χ −

=

= − − = −∑  
2

T T
, 1 , 1

0
[ ] ( ( ) ( ))( ( ) ( ))

n
x x x

zz k k i i k k i k k k
i

P E z z z z Rε ε ω − −
=

= = + − − + − − +∑  

x x x
zz k zzP Pλ= , 1x

kλ ≥ , T

- 1

1
1

k
x x x

zz k k
i k M

P
M

ε ε
= +

=
− ∑  

11max{1, tr[ ( ) ]}x x x
k zz zzP P

m
λ −=  or tr( )max{1, }

tr( )

x
x zz
k x

zz

P
P

λ =  

2
T

, 1 , 1
0

( ( ) ( ))( ( ) ( ))
n

x
xz i i k k i k k

i
P x z zω χ∗

− −
=

= + − − + − −∑  
1( )x x x

k xz zzK P P∗ ∗ −=  
( ) ( ) x x

k k k kx x K ε∗+ = − + , T( ) ( ) ( )x x x x x
k k k zz kP P K P K∗ ∗ ∗ ∗+ = − −  

and the bias filter is 
1 1( ) ( )k k kb A b− −− = + , T

1 1 1 1( ) [ ( ) ]b b b b
k k k k k kP A P A Qλ∗ ∗

− − − −− = + +  
2

T T T 1
, 1 , 1

0
( ) [ ( ( ) ( ))( ( ) ( )) ( ) ]

n
b b b
k k k i i k k i k k k k k k

i
K P N z z z z R N P Nω∗ ∗ ∗ −

− −
=

= − + − − + − − + + −∑  

( ) [ ] ( )b b b
k k k kP I K N P∗ ∗ ∗+ = − − ,  ( ) ( ) b b

k k k kb b K ε∗+ = − +  
( ) ( ) ( )b x

k k k k k k k kz z N b N bε ε= − − − − = − −  
2

T T
, 1 , 1

0
( ( ) ( ))( ( ) ( )) ( )

n
b b

zz i i k k i k k k k k k
i

P z z z z R N P Nω ∗
− −

=

= + − − + − − + + −∑  

b b b
zz k zzP Pλ= , 1b

kλ ≥ , T

- 1

1
1

k
b b b

zz k k
i k M

P
M

ε ε
= +

=
− ∑  

11max{1, tr[ ( ) ]}b b b
k zz zzP P

m
λ −=  or tr( )max{1, }

tr( )

b
b zz
k b

zz

P
P

λ =  

with the coupling equations 
k k k k kN H U Dγ= + , 1

1 1[ ( )]b b b
k k k k kU U I Q Pλ ∗ −

+ −⎡ ⎤= − −⎣ ⎦ ,  
b

k k k kV U K N∗= − , 1
1 1 1 1 1( )k k k k k kU V B Aβ −

+ − − − −= Φ + ,  

1 1( ) ( )k k k k ku U U A b+ += − + , 1 1
x x b
k k k k kQ Q U Q U+ += +  

where, 
ˆ

( )

k

k
x x

f x
x =

⎛ ⎞∂Φ = ⎜ ⎟⎜ ⎟∂⎝ ⎠
 and 

ˆ

( )

k

k
x x

h xH
x =

⎛ ⎞∂= ⎜ ⎟⎜ ⎟∂⎝ ⎠
. 

And the unknown instrumental diagonal matrices 
1, 2 , ,diag( , , , )k k k N kβ β β β= "  and 1, 2, ,diag( , , , )k k k M kγ γ γ γ= "  are 

introduced in order to take these residuals into account and 
obtain a more exact equality. 
Also, the initial conditions are 

0 0 0 0( )x x V b∗ ∗+ = − , 0 0( )b b∗+ = , 1
0 0 0( )xb bV P P −= ,  

T
0 0 0 0 0
x x bP P V P V= − , 0 0( )b bP P+ =  

Remark 1. To compensate the effects of incomplete 
information in the modified bias free filter of the TUKF, the 
forgetting factor kλ  is introduced into the predicted 
covariance ( )kP − . The error covariance equation is changed 
into ( )x x x

k k kP Pλ∗ = − . This enlarges the predicted covariance ( )kP −  
and make more error, which is not established in the model, be 
included. Then the algorithm is simpler and more reliable. 

IV. STABILITY ANALYSIS 
In this section, the stability of the TUKF of Definition 1 is 

analyzed. Firstly, instrumental time-varying matrices are 
introduced to give a formulation for the UT technique. Then 
an augmented-state TUKF can be obtained as a simple 
structure of the TUKF. Secondly, we show that the 
augmented-state TUKF is uniformly asymptotically stable by 
Theorem 1 in order to discuss the stability of the TUKF 
further more. 

A. Instrumental diagonal matrix and equivalence system 
Expanding ( )f i and ( )h i in (1) by a Taylor series about ˆkx  

yields an approximate equality 
1

x
k k k k k k kx x B b wβ+ ≈ Φ + +  

1
b

k k k kb A b w+ = +  
k k k k k k kz H x D b vγ≈ + +  

where, 
ˆ

( )

k

k
x x

f x
x =

⎛ ⎞∂Φ = ⎜ ⎟⎜ ⎟∂⎝ ⎠
 and 

ˆ

( )

k

k
x x

h xH
x =

⎛ ⎞∂= ⎜ ⎟⎜ ⎟∂⎝ ⎠
. 

It is obvious that there always exist residuals of state 
prediction. In order to take these residuals into account and 
obtain a more exact equality, the unknown instrumental 
diagonal matrices [15] 1, 2 , ,diag( , , , )k k k N kβ β β β= "  and 

1, 2, ,diag( , , , )k k k M kγ γ γ γ= " are introduced, so that the nonlinear 
system can be transformed into the equivalence linear system 
as follow. 

1
x

k k k k k k kx x B b wβ+ = Φ + +                        (12a) 
1

b
k k k kb A b w+ = +                                (12b) 

k k k k k k kz H x D b vγ= + +                          (12c) 
Here, if ( )kx i and ( )kb i  are augmented as the system state, 

we can sample the system as follow. 
1

a a a a
k k k kx x w+ = Φ +                             (13a) 

a a a
k k k kz H x v= +                             (13b) 

where ( )kx i  represents the estimate of the modified bias-free 
filter of the TUKF of Definition 1, ( )kb i  represents the 
estimate of the bias filter of the TUKF of Definition 1. 

ka
k

k

x
x

b
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 
0

k k ka
k

k

B
A

β Φ⎡ ⎤
Φ =⎢ ⎥

⎣ ⎦
, [ ]a

k k k kH H Dγ= , 
x

a k
k b

k

w
w

w
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 0
0

x
a k
k b

k

Q
Q

Q
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

And the augmented-state TUKF can be given by the 
following coupled equations when the information of the 
nonlinear stochastic system given by (1) is partially known. 
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( )
( )

( )
ka

k
k

x
x

b
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

i
i

i
, 

x
a k
k b

k

K
K

K

∗
∗

∗

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

                       (14a) 

T T

( ) ( ) ( ) ( )
( )

( ( )) ( ) ( ( )) ( )

x xb x xb
a ak k k k

k kxb b xb b
k k k k

P P P P
P

P P P P

∗ ∗ ∗ ∗
∗

∗ ∗ ∗ ∗

⎡ ⎤ ⎡ ⎤
= = Λ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

i i i i
i

i i i i
        (14b) 

( )
0

x x b
k n k k ka

k b
k p

I U
I

λ λ λ
λ

⎡ ⎤− −
Λ = ⎢ ⎥

⎢ ⎥⎣ ⎦
, 1x

kλ ≥ , 1b
kλ ≥             (14c) 

1( )[ ( )]xb b
k k kU P P∗ ∗ −≡ − −                          (14d) 

We use the following two-stage U-V transformation. Two- 
stage U-V transformation [13] is 

ˆ ( ) ( ) ( )a a
k k kx T U x− = − , ˆ ( ) ( ) ( )a a

k k kx T U x+ = +               (15a) 
Tˆ ( ) ( ) ( ) ( )a a

k k k kP T U P T U∗− = − , Tˆ ( ) ( ) ( ) ( )a a
k k k kP T V P T V∗+ = +      (15b) 

ˆ ( )a a
k k kK T V K ∗=                                (15c) 

where , ( )
0
I M

T M
I

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

,  1( )[ ( )]xb b
k k kV P P∗ ∗ −≡ + + . 

Two-stage U-V transformation has a good advantage as 
1( ) ( )T M T M− = − . 

B. Stability Analysis 
For stability analysis of the TUKF, some standard results 

[16]-[17] about should be recalled. 
Lemma 1. If the system given by (2) with complete 
information is stochastically controllable and stochastically 
observable, the system 1

1( )[ ( )] ( , 1)a a
k k k ky P P k k y−

−= + − Φ −  is 
uniformly asymptotically stable. 
Lemma 2. The augmented-state TUKF (14) is equivalent to 
the TUKF of Definition 1 with 

1
1

( ) ˆ ˆ ˆˆ ˆ( ) ( )[ ( )] ( , 1) ( )
( )

ka a a a a
k k k k k k

k

x
x P P k k x K z

b
−

−

+⎡ ⎤
+ = = + − Φ − + +⎢ ⎥+⎣ ⎦

     (16) 

To show that the augmented-state TUKF (14) is uniformly 
asymptotically stable, Theorem 1 is proposed below. The 
system given by (12) is said to be stochastically controllable if 
there exist positive numbers 1μ  and 2μ , 1 20 μ μ< < < ∞ , and a 
positive integer N  such that, for all k N≥ , 

1
T

1 2( , 1) ( , 1)
k

a
i

i k N
I k i Q k i Iμ μ

−

= −

≤ Φ + Φ + ≤∑                (17) 

and the system given by (12) is said to be stochastically 
observable if there exist positive numbers 1η  and 2η , 

1 20 η η< < < ∞ , and a positive integer N such that, for all k N≥ , 
T T 1

1 2( , ) ( , )
k

a a
i i i

i k N
I i k H R H i k Iη η−

= −

≤ Φ Φ ≤∑                (18) 

where the transition matrix ( 1, )k kΦ +  has the following chara- 
cteristics. ( 1, ) a

kk kΦ + =Φ , ( , ) ( , 1) ( 1, 2) ( 1, )k i k k k k i iΦ = Φ − Φ − − Φ +" , 
1( , ) ( , )i k k i−Φ = Φ  and ( , )k k IΦ = . Here, 1 2M M≥  means 

1 2( ) 0M M− ≥ , i.e. 1 2( )M M−  is positive semidefinite. 
The system ky  is assumed as 1

1( )[ ( )] ( , 1)a a
k k k ky P P k k y−

−= + − Φ − . If 
there exist real scalar functions ( , )kV y k , 1(|| ||)kyξ , 2 (|| ||)kyξ  and 

3 (|| ||)kyξ such that for some finite 0N ≥  
1 20 (|| ||) ( , ) (|| ||)k k ky V y k yξ ξ< ≤ ≤ , T 1( , ) ( )a

k k k kV y k y P y−= + , 0ky ≠   (19) 

1 2(0) (0) 0ξ ξ= = , 1lim ( )
ρ

ξ ρ
→∞

= ∞                      (20) 

3( , ) ( , ) (|| ||) 0k k N kV y k V y k N yξ−− − ≤ < , k N≥ , 0ky ≠     (21) 
then the system 1

1( )[ ( )] ( , 1)a a
k k k ky P P k k y−

−= + − Φ −  is uniformly 
asymptotically stable. These equations (19)-(21) are the 
requirement for ( , )kV y k  to be a Lyapunov function.  

From Lemma 1, if the system given by (12) with complete 
information is stochastically controllable and stochastically 
observable, then the system ky  for (14) is uniformly asympto- 
tically stable. Also, the upper bound of ( )a

kP + is  
2 1

T T 1 1 T2 2

1 1

( ) [ ( , ) ( , )] ( , 1) ( , 1)
k k

a a a a
k i i i i

i k N i k N

NP i k H R H i k k i Q k iμ η
μη

−
− −

= − = −

+ ≤ Φ Φ + Φ + Φ +∑ ∑  

2
2 2

1 1 1

1( )N Iμ η
η μ η

≤ +                                                           (21) 

and a lower bound on ( , )kV y k is 
2

T 1 1 22 2
1

1 1 1

1( , ) [ ( )] ( ) || || (|| ||)a
k k k k k k

NV y k y P y y yμ η ξ
η μ η

− −= − ≥ + =      (22) 

Also the upper bound of 1[ ( )]a
kP −+  is 

21
1 T 1 T T 12 2

1 1

[ ( )] [ ( , 1) ( , 1)] ( , ) ( , )
k k

a a a a
k i i i i

i k N i k N

NP k i Q k i i k H R H i kμ η
μη

−
− − −

= − = −

+ ≤ Φ + Φ + + Φ Φ∑ ∑  

2
2 2

1 1 1

1( )N Iμ η
μ μ η

≤ +                                                        (23) 

and an upper bound on ( , )kV y k  is 
2

T 1 1 22 2
2

1 1 1

1( , ) [ ( )] ( ) || || (|| ||)a
k k k k k k

NV y k y P y y yμ η ξ
μ μ η

− −= − ≤ + =      (24) 

Finally, we can obtain 
T T 1 T 1

1
( , ) ( , ) [ [ ( )] ]

k
a a a

k k N i i i i i i k i
i k N

V y k V y k N y H R H y u P u− −
−

= − +

− − ≤ − + −∑  
2

1 3|| || (|| ||) 0m k kJ y yϑ ξ≤ − ≤ − ≤ <          (25) 
The bound conditions of (21)-(25) are used for Theorem 1. 
Additionally, the following equations are needed to obtain the 
upper bounds of ( )a a

k kP ∗Λ − and ( )a a
k kP ∗Λ + : 

2
,1F

( ) ( ) ( ) ( ) ( ) ( )n pa a a a a a a
k k k k k i k k k ki

P P P P Pσ λ+∗ ∗
=

− = Λ − ≤ Λ − = − = −∑   (26) 

2
,1F

( ) ( ) ( ) ( ) ( ) ( )n pa a a a a a a
k k k k k i k k k ki

P P P P Pσ λ+∗ ∗
=

+ ≤ Λ + ≤ Λ + = + = +∑   (27) 

where F|| ||i is Frobenius norm and ,i kσ is a singular value of a
kΛ . 

Theorem 1. Assume that the system given by (12) with 
incomplete information is stochastically controllable and 
observable. Then, the augmented-state TUKF (14) is 
uniformly asymptotically stable. 

Proof. From Lemma 2, A posteriori estimate of the 
augmented-state TUKF is derived as (16). 

1
1

( ) ˆ ˆ ˆˆ ˆ( ) ( )[ ( )] ( , 1) ( )
( )

ka a a a a
k k k k k k

k

x
x P P k k x K z

b
−

−

+⎡ ⎤
+ = = + − Φ − + +⎢ ⎥+⎣ ⎦

 

The homogeneous part of (16) is defined as 
1

1
ˆ ˆ( )[ ( )] ( , 1)a a

k k k ky P P k k y−
−= + − Φ − . From (14), the error covariance has 

a relation such as ˆ ( ) ( )a a
k kP P+ ≥ +  and ˆ ( ) ( )a a a

k k kP P+ ≤ Λ + . From (27), 
there exists kλ  where ˆ ( ) ( )a a

k kP P+ ≥ + and ˆ ( ) ( ) ( )a a a a
k k k k kP P Pλ+ ≤ Λ + ≤ + . 

As the forgetting factor a
kΛ is inserted into the error covariance 

equation, (22) and (24) are changed as 
2

T 1 1 22 2
1

1 1 1

1 1( , ) [ ( )] ( ) || || (|| ||)a
p k k k k k k

k

NV y k y P y y yμ η ξ
λ η μ η

∗ − −= + ≥ + =   (28) 

2
T 1 1 22 2

2
1 1 1

1( , ) [ ( )] ( ) || || (|| ||)a
p k k k k k k

NV y k y P y y yμ η ξ
μ μ η

∗ − −= + ≤ + =     (29) 

Therefore, conditions (19) and (20) are satisfied by (28) and 
(29). From (15), (25) and (26), 

T T 1 T 1

1
( , ) ( , ) [ [ ( )] ]

k
a a a

p k p k N i i i i i i k i
i k N

V y k V y k N y H R H y u P u− ∗ −
−

= − +

− − ≤ − + −∑  
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T 1
T T 1

1 max

21
3

max max

[ ( )][ ]

|| || (|| ||) 0

ak
a a i k i

i i i i i
i k N i

m
k k

i i

u P uy H R H y

J y y

λ
ϑ ξ

λ λ

−
−

= − +

−≤ − +

≤ − ≤ − ≤ <

∑
            (30) 

where max max( )i iλ λ= , 1k N i k− + ≤ ≤ . By (28), (29) and (30), 
the augmented-state TUKF (14) is uniformly asymptotically 
stable when the system given by (12) is stochastically 
controllable and stochastically observable.                          □ 
Remark 2. kβ and kγ are unknown instrumental diagonal 
matrices introduced to evaluate the residuals introduced by the 
UT. And the stability of the augmented-state TUKF (14) does 
not depend on the magnitude of kβ and kγ . According to (28), 
(29) and (30), although different kβ and kγ may change the 
value of a

kΦ , a
kH in (30), ( , ) ( , )p k p k NV y k V y k N−− −  will remain 

negative and the relationship shown in (30) will not be 
changed. 
Remark 3.  from lemma 2, the augmented-state TUKF (14) 
equivalent to the TUKF of Definition 1. Therefore, the 
stability of the augmented-state TUKF (14) means the stability 
of the TUKF when the system given by (12) is stochastically 
controllable and stochastically observable. Because the 
stability of the augmented-state TUKF (14) does not depend 
on the magnitude of kβ and kγ , the stability of the augmented- 
state TUKF (14) also means the stability of the TUKF when 
the system given by (1) is stochastically controllable and 
stochastically observable.  

V. SIMULATION RESULTS 
The results in the preceding two sections clarify the TUKF 

for Nonlinear Systems in the Presence of Unknown Random 
Bias and the stability analysis of the TUKF, respectively. 

In order to show the efficiency of the TUKF, it is applied to 
the high-update rate Wheel Mobile Robot (WMR) posture, 
velocities, and perturbation estimation using Real-time 
Kinematic Global Positioning System (RTK-GPS) and 
inertial sensors for WMR control in the presence of wheel 
skidding and slipping [18] in comparison with the TKF.  

The discretized equations of the WMR are 
1 ( ) x

k k k k kx f x B b w+ = + + , 1
b

k k kb b w+ = +  
( )k k kz h x v= +  

where 
, ,

, ,

, , ,

,

,

cos( ) sin( )
sin( ) cos( )

( )

k l k k y k k

k l k k y k k

l k y k k X kk

y l k Y k

k m k

X tV tV
Y tV tV

V tV r taf x
V tVr ta

tr

θ θ
θ θ

θ

+ Δ −Δ⎡ ⎤
⎢ ⎥+ Δ − Δ⎢ ⎥
⎢ ⎥+ Δ + Δ=
⎢ ⎥

−Δ + Δ⎢ ⎥
⎢ ⎥+ Δ⎣ ⎦

, , ,

, ,

( ) cos sin
sin cos

k

k

k k l k k y k

k l k k y k

k

X
Y

h x V V
V V

θ θ
θ θ

θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= −
⎢ ⎥

+⎢ ⎥
⎢ ⎥⎣ ⎦

 

The state vector T
, ,[     ]k k k l k y k kx X Y V V θ=  uncorrelated with the 

bias kb and 2
0 N(2,0.05 )x ∼ . The observation vector   

T
, , , , ,[  z   z  z ]k X k Y k X k Y k kz z z θ′ ′=  consists of absolute position, 

velocity and orientation readings. The process noise vector 
T

, ,[0   0         ]x
k a X a Y rw t t tω ω ω= Δ Δ Δ and 2N(0,0.05 )x

kw ∼ . The observation 
noise T

, , , , ,[             ]x
k X k Y k X k Y k kv θυ υ υ υ υ′ ′= and 2N(0,0.05 )kv ∼ .  

The time-varying parameters , , ,{     }X k Y k m ka a r  at time k are 
provided by the accelerometer and gyroscope.  tΔ denotes the 
sample time of the discrete system. We assume the 

instantaneous yaw rate kr  is measurable by a low-noise 
gyroscope; hence, let k mr r= . 

To estimate the innovation covariance, a window size is 
selected as 20M = . To verify the performance of the TUKF, 
we assume that the information of a random bias is incomplete. 
The TKF and the TUKF use 1 0.02 b

k k kb b w+ = +  and 2N(0,0.5 )b
kw ∼ .  
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Figure 1. The comparison of true and estimated states 
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Figure 2. The comparison of the kinematic perturbations estimation 

Figure 1 shows the true state, a position posteriori estimate 
of the TKF and a position posteriori estimate of the TUKF. 
Figure 2 depicts the kinematic perturbations estimates. Figure 
3 shows the posteriori estimation error of the TKF and that of 
the TUKF. Totally, the TUKF well tracks the true state. The 
estimation error of the TUKF is smaller than that of the TKF. 
As a result, the tracking and the estimation performance of the 
TUKF are better than those of the TKF for the nonlinear 
systems that the information of a random bias is incomplete. 

The simulations on the high-update rate Wheel Mobile 
Robot (WMR) estimation using Real-time Kinematic Global 

3534



  

Positioning System (RTK-GPS) and inertial sensors in the 
presence of wheel skidding and slipping in this section verify 
the proposed TUKF and its performance from the view of 
experimentation. It is shown that the proposed algorithm has 
practicability to a certain extent. 
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Figure 3. The comparison of the posteriori estimation error 

VI. CONCLUSION 
This paper proposes the two-stage Unscented Kalman filter 

(TUKF) for nonlinear system with unknown random bias with 
incomplete bias information. Adaptive fading UKF is 
presented using the ratio between the calculated innovation 
covariance and the estimated innovation covariance. And it 
proposes the TUKF that is designed by using the adaptive 
fading UKF. The stability of the two-stage Unscented Kalman 

filter (TUKF) is analyzed. According to some standard results, 
it is pointed out that, the stability of the TUKF may be ensured 
when the system given by (1) is stochastically controllable and 
stochastically observable and do not depend on the magnitude 
of kβ and kγ which are unknown instrumental diagonal matrix 
introduced to evaluate the residuals introduced by the UT. 
Moreover, the high-update rate Wheel Mobile Robot (WMR) 
estimation using Real-time Kinematic Global Positioning 
System (RTK-GPS) and inertial sensors in the presence of 
wheel skidding and slipping are introduced to show the high 
performances of the UTKF. 
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