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Abstract— We present two methods to estimate bounds of
parameter uncertainty in state-space systems. In the first
method, we minimize the l∞-norm of the perturbation and
its derivative. In the second method, an estimate of the
perturbation is produced based on a quantized approximation
of the uncertainty and the sparse structure of its derivative. Less
sensitivity to increased noise and changed model parameters is
achieved by the second method. We use an overhead crane as
an illustrative example.

Index Terms— Model quality estimation, time-varying pa-
rameter uncertainty, MILP, sparsity, perturbation, uncertainty,
optimization.

I. INTRODUCTION

THE uncertainties associated with the nominal process

model is a concern in most approaches to feedback

control. The question is how to achieve a tight bound or

shape of the uncertainty by using a set of measurement

data. This active research area is known as model quality

estimation. In the existing approaches to model quality esti-

mation, the true system, see e.g. [1], [2], [3], [4] and [5], is a

linear time-invariant system (where uncertainty is considered

in both H∞ and L1). A time varying linear system is a

more realistic assumption, since nonlinear behavior can then

also be accounted for. However, model quality estimation of

time-varying perturbations appears to be difficult. Here, we

consider a linear system with time-varying parameters as the

model uncertainty. The prime drawback of assuming a para-

metric, time-varying uncertainty description is its possible

shortcoming for describing unmodeled dynamics. However,

if the process physics is reasonably well-known, then the

unmodeled dynamics can be limited to high frequencies,

which then can often be described by a parametric model.

We will assume a state-space system with affine de-

pendence on the uncertain time-varying parameters. This

structure is frequently used in robust control and estimation

[9] and [10], and can be expressed by using the Kronecker

product as [6]

x(k + 1) = Ax(k) + Bu(k) + P (π(k) ⊗ x(k)) +

Dπ(k) + Q(π(k) ⊗ u(k))

y(k) = Cx(k) + η(k) (1)

where ⊗ denote the Kronecker product and A ∈ Rn×n, B ∈
Rn×p, C ∈ Rl×n, D ∈ Rn×q, P ∈ Rn×nq, Q ∈ Rn×qp

are constant matrices. The vector x(k) ∈ Rn represents the

state, y(k) ∈ Rl is the measured output and u(k) ∈ Rp is

the input while η(k) ∈ Rl is some additive disturbance. The
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vector π(k) ∈ Rq represents the parameter uncertainties, i.e.

the deviation from the nominal parameter values. Note that

they are allowed to enter both linearly and and bilinearly

with the state x as well as with the input u.

Here, we will present two methods for estimating upper

bounds for the uncertainties (|π(k)| ≤ ρ ∈ Rq). The first

method minimizes the l∞-norm of the uncertainty and its

derivative, and the second method is based on optimization of

the sparsness of the derivative of the quantized perturbation.

An approximation of (1) is given in Section II. In Sec-

tion III, we define a bound for the disturbance. An l∞-

optimization method is presented in Section IV. A MILP

(Mixed Integer Linear Programming) algorithm to minimize

the sparsity of a matrix is introduced in Section V, and

in Section VI, we use the MILP-optimization method to

estimate the perturbation. An overhead crane process is

represented in Section VII, and the methods are applied

to this process in Section VIII. Section IX gives some

concluding remarks and directions for future work.

II. THE BIAFFINE INPUT/OUTPUT SYSTEM

In this section, we give an approximation of (1) whose

output is affine in the input u and perturbation π. It is derived

in [11] as a 1’st order Taylor approximation of y with respect

to π and may be expressed as

ζ(k + 1) = Aζ(k) + Bu(k)

ξ(k + 1) = Aξ(k) + P (π(k) ⊗ ζ(k)) +

Dπ(k) + Q(π(k) ⊗ u(k))

ŷ(k) = C(ζ(k) + ξ(k)) (2)

with initial state ζ(0) = x(0) and ξ(0) = 0. By defining the

disturbance ν = r + η , where r denotes the linearization

error, the output of (1) may be expressed as

y(k) = ŷ(k) + ν(k)

Furthermore, by collecting the signals into vectors as

Π = [π(0)T π(1)T · · ·π(N − 1)T ]T

Y = [y(0)T y(1)T · · · y(N)T ]T

V = [ν(0)T ν(1)T · · · ν(N)T ]T

(2) may also be formulated [11] as

Y = Υ + ΞΠ + V (4)

where Ξ = Ω + Ψ + Φ, and Ω, Φ, Ψ and Υ are defined in

(3).
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

(3)

III. DISTURBANCE BOUND

To bound the disturbance ν(k) we will use the window

norm, which for continuous time signals is defined as [13]

‖ν‖ω = sup
t≥0

∫ t

0

ω(t − τ) |ν(τ)| dτ

where ω(t) is nonnegative and bounded by an exponentially

decreasing function. In [11] a discrete time window norm is

defined as follows

Definition 1: A window sequence is a sequence ω ∈ Z+ →
R+, which is not identically zero and satisfies ω(k) ≤ ce−ak

for all k ≥ 0 and some positive c and a.

Given a window sequence ω(k), the window norm for a

discrete time signal v(k) may then be defined as [11]

‖ν‖ω = sup
k≥0

k
∑

i=0

ω(k − i) |ν(i)| (5)

It is remarked that (5) satisfies all properties of a norm,

but the proof is omitted. It is straightforward to see that the

window norm is equal to the l∞-norm by choosing ω as

the unit pulse function. The drawback of l∞-norm is that

it only considers the peak value of the signal without any

averaging and may therefore be conservative. This problem is

handled in the window norm by choosing a window function

that averages over a suitable time interval, i.e. a pulse

function with non-unit duration or a decaying exponential

function.The window norm actually approaches the l1-norm

by letting ω approach a unit step function. An assumption

on the disturbance ν = [ν1, ..., νl] may now be expressed as

‖νj‖ω ≤ ǫj , j = 1, . . . , l (6)

We assume that each ω(k) is monotone decreasing for k > 0.

Then, as showed in [11] for scalar ν, the condition (6) can

be expressed as

W |V | ≤ 1N+1 ⊗ ǫ (7)

where

W =











ω(0) 0 . . . 0
ω(1) ω(0) . . . 0

...
...

. . .
...

ω(N) ω(N − 1) · · · ω(0)











where ω = diag(ω1, ω2, . . . , ωl) and ǫ = [ǫ1, ǫ2, . . . , ǫl]
T

IV. THE l∞-OPTIMIZATION METHOD

We assume that the purturbation is small and slowly

varying and that the disturbance ν is also small. Here, we

try to find the tightest bound for the perturbation. The size

of the perturbation π is measured with supk ‖Fπ(k)‖∞,

where ‖.‖∞ is the l∞ vector norm and F is a diagonal

weight matrix. The time-derivative of π is approximated by

(∆π)(k) = π(k) − π(k − 1) and its size is measured with

supk ‖G∆π(k)‖∞, where G is a diagonal weight matrix.

Scaling of the vectorized perturbation Π and its derivative

∆Π = [∆π(0)T ∆π(1)T · · ·∆π(N −1)T ]T is accomplished

by

(I ⊗ F )Π = [(Fπ(0))T (Fπ(1))T · · · (Fπ(N − 1))T ]T

(I ⊗ G)∆Π = [(G∆π(0))T (G∆π(1))T ..(G∆π(N − 1))T ]T

The l∞-optimization problem is formulated as follows:

minimize
Π,ǫ

‖(I ⊗ F )Π‖∞ + ‖(I ⊗ G)∆Π‖∞ + hǫ

subject to: W |Ym − Υ − ΞΠ| ≤ 1N+1 ⊗ ǫ
(8)
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where Ym = [ym(0)T ym(1)T · · · ym(N)T ]T , and ym(k)
is the measured outputs of (1) for k = 0, · · · , N and h is a

weight for the disturbance.

V. SPARSE MATRIX

In numerical analysis, a sparse matrix is a matrix popu-

lated primarily with zeros. The concept of sparsity is useful

in complex systems and many application areas such as

network theory. Huge sparse matrices often appear in science

or engineering when solving partial differential equations.

One common approach to seeking a sparse description

is based on l1-norm regularization [7] which produces an

approximation with a sparse structure.

In this article, we present an exact solution of sparsity

by using MILP (Mixed Integer Linear Programming) to

minimize the number of non-zero elements in a matrix or

vector.

We consider the logical variable δij ∈ {0, 1} and the

matrix S = (sij)i,j=1...N
to be related as

δij = 1 ↔ sij 	= 0

δij = 0 ↔ sij ≡ 0 (9)

and we aim to minimize
∑N

i,j=1
δij for i, j = 1, . . . , N .

First, we assume δij = δ1
ij + δ2

ij and (9) is re-written as

(δ1
ij , δ

2
ij) = (1, 0) ↔ sij > 0

(δ1
ij , δ

2
ij) = (0, 0) ↔ sij = 0

(δ1
ij , δ

2
ij) = (0, 1) ↔ sij < 0

We establish a more practical link between logical and real

variables by

mδ1
ij − Mδ2

ij ≤ sij ≤ Mδ1
ij − mδ2

ij

δ1
ij + δ2

ij ≤ 1 (10)

where m = mini,j(|sij |) and M = maxi,j(|sij |). Then, a

MILP for maximizing sparsity of S is formulated as

minimize
∑N

i,j=1
(δ1

ij + δ2
ij)

subject to: (10)
(11)

Here, we also present an approximaion method which is

more practical in a numerical sense. This method instead

minimizes the number of elements of a matrix which are

larger than a certain threshold. If we consider µ as threshold,

the logical variables are changed into

δij = 1 ↔ |sij | > µ

δij = 0 ↔ |sij | ≤ µ

Then, the inequalities in (10) are substituted in (11) by

2µδ1
ij − Mδ2

ij − µ ≤ sij ≤ Mδ1
ij − 2µδ2

ij + µ

δ1
ij + δ2

ij ≤ 1 (12)

where M = maxi,j(|sij |) + µ.

VI. METHOD BASED ON MILP AND THE DERIVATIVE OF

UNCERTAINTY

Quantization as a means of approximating signals is

widely used in digital control and other areas. The differen-

tiation of a quantized signal produces a lot of zero samples

and thus, it has a sparse structure.

Our basic assumption is that the perturbations are due to

deterministic physical phenomenae and thus have a non-

random nature. In particular, we assume that the pertur-

bations can be approximated by quantization. Then, the

following sparsity property of its derivative is used for

estimating the uncertainties and bounds for them. With the

definitions

σi = [δ1
1i, δ

2
1i, · · · , δ1

qi, δ
2
qi] for i = 0, · · · , N − 1,

ΣN = [σ0, σ1, · · · , σN−1]
T , U = INq ⊗ [M,−2µ],

L = INq ⊗ [2µ,−M ] and Λ = INq ⊗ [1, 1]

the sparsity constraint (12) applied to the derivative ∆Π may

be expressed as

LΣN − 1Nqµ ≤ ∆Π ≤ UΣN + 1Nqµ

ΛΣN ≤ 1Nq (13)

We use the constraint (13), and MILP-optimization is

formulated as

minimize
ΣN ,Π

12NqΣN + ‖(I ⊗ F )Π‖∞

subject to: (13)
W |Ym − Υ − ΞΠ| ≤ 1N+1 ⊗ ǫ

(14)

where we use the ǫ which is computed in (8) to increase the

accuracy in this algorithm. Alternatively, ǫ may be computed

using the sample l1-norm method in [12].

VII. APPLICATION TO A PENDULUM PROCESS

We will apply the two methods to an overhead crane

process with the position of the load xp as measurement yc.

The process is modeled as a pendulum where the horizontal

velocity of the suspension point is proportional to the

control signal u. With xs as the position of the suspension

point the linearized process is formulated as





ẋp

ẍp

ẋs



 =





0 1 0
−g/l −c/m g/l

0 0 0









xp

ẋp

xs



 +





0
0
b



u

yc =
[

1 0 0
] [

xp ẋp xs

]T

where g is the acceleration of gravity, l is the length of the

pendulum, c is a friction coefficient, and b is the proportion-

ality factor converting the control signal into the speed of

the suspension point. The friction coefficient is not exactly

known and will vary with the speed of the load. The length

of the pendulum l will also vary and we assume that the

proportionality factor b is poorly known and possibly time-

varying. We introduce the notations λ = g/l and κ = c/m
which are thus functions of time.
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A simple Euler approximation gives the following

discrete-time system

x(k + 1) =





1 h 0
−hλ(k) 1 − hκ(k) hλ(k)

0 0 1



x(k) +





0
0

hb(k)



uc(k)

y(k) =
[

1 0 0
]

x(k) (15)

where uc(k) = u(kh) and y(k) = yc(kh) while η(k) is

supposed to capture both the continuous-time noise term

ηc(kh) and the error introduced by the approximation.

The sampling interval in our simulation is h = 0.05
seconds. Nominal values of λ, κ and b and time-varying

deviations from these are introduced as

b(k) = b0 + π1(k), λ(k) = λ0 + π2(k), κ(k) = κ0 + π3(k)

Thus, with the definitions

A =





1 h 0
−hλ0 1 − hκ0 hλ0

0 0 1



 , B =





0
0

hb0





P =





0 0 0 0 0 0 0 0 0
0 −h 0 −h 0 h 0 0 0
0 0 0 0 0 0 0 0 0





D =





0 0 0
0 0 0
0 0 0



 , Q =





0 0 0
0 0 0
0 0 h





the process may be expressed as (1).

Since the process is oscillating, the disturbance η is

dominated by the oscillation frequency. The window function

ω in the norm ‖.‖ω is thus chosen as a pulse function whose

duration is one half oscillation period to provide averaging

of the disturbance. This means

ω(k) =

{

1/35 0 ≤ k ≤ 35
0 otherwise

VIII. SIMULATION RESULTS

To give some idea of the performance of the algorithms,

we apply them to the pendulum process as follows. The

output of (1) and (2) with an added white noise disturbance η
and the parameter perturbation is compared in Fig. 1 (lower).

The perturbations are also depicted in Fig. 1 (upper) where

λ0,κ0 and b0 are chosen as 3.3, 0.25 and 2, respectively.

The l∞- and MILP-optimization methods are implemented

in the YALMIP software [8] and applied to the pendulum

process. The weighting factors are chosen as F = G =
diag(1/b0, 1/λ0, 1/κ0) and h = 1/ ‖ym − Cζ‖ω in (8) for

the l∞-method, and F = diag(1/b0, 1/λ0, 1/κ0) in (14) for

the MILP-method.

The result of a simulation for the two methods is depicted

in Fig. 2 (λ0 = 3.3, b0 = 2, κ0 = 0.25), which shows

that although l∞-method estimates a tighter bound for the

perturbution π2, the MILP-method exhibits a better tracking

of the true perturbation. To illustrate the sensitivity of the

methods to the magnitude of the perturbation, four test

cases have been considered. The shape of the parameter

perturbations of the four cases is depicted in Fig. 1 (upper),

but the amplitude is given by Table I. It is seen that the

l∞-method in many cases estimates tighter bounds for the

perturbation but on the other hand frequently under-estimates

the bound.

The sensitivity of the algorithms to the changing of the pa-

rameters λ0, b0 and κ0 are showed in Table II. The sensitivity

of the methods to different noise levels is illustrated in Table

III for different ǫ which is the window norm of the white

noise. As noticed in Tables II and III, the estimated bounds

for the l∞-method are more sensitive to the changing of λ0,

κ0, b0 and the noise level ǫ. The sensitivity of the first algo-

rithm to different parameters may be accounted to the fact

that it does not consider the properties of the perturbations,

e.g. the assumption that the derivative is sparse. Furthermore,

the estimated perturbations are very often oscillating (Fig. 2

to Fig. 6), which is caused by the l∞-norm inherent property

to limit the upper-bound.

In the experiments so far, the algorithms have estimated

3 parameters (λ, κ and b) and in the case of the l∞-method

also noise. To test how the algorithms behave in a simpler

case, i.e. with fewer perturbations, we isolate one or more

perturbations.

First, we repeatedly omit one of the perturbations. The

results of simulations for the isolation of π1, π2 and π3 are

respectively depicted in Fig. 3 to Fig. 5, which shows tighter

bounds for both methods, and better tracking of uncertainties

for the MILP-method. We finally isolate two perturbations

and estimate the third. Fig. 6 shows tighter bounds for the

uncertainties in both methods and the best tracking for the

MILP-method.

In purpose to check how the methods behave for pertur-

bations with non-spiky derivative, we consider sinusoid per-

turbations. The results for the MILP- and l∞-algorithms are

depicted in Fig. 7, which shows a good tracking of sinusoid

uncertainties and tighter upper bounds for the MILP-method.

Even though the l∞-optimization method sometimes pro-

duces better bounds for the perturbations than the MILP-

optimization method (Table I), the less sensitivity to the

changing of parameters (compare the results in Table II),

smaller sensitivity to the increasing of noise (Table III),

better tracking and estimation of perturbations in MILP

method, and more realistic parameter estimates compared

to the rapid change of the l∞-optimization method, makes

the MILP method a better candidate for finding acceptable

uncertainty bounds. However, the disadvantage of the MILP-

optimization method is the longer run time of it in compar-

ison with the l∞-optimization method.

IX. CONCLUSIONS AND FUTURE WORK

Two optimization methods are presented to estimate

bounds of time-varying parameter uncertainty in state-space

system. An overhead crane was used as illustrative example.

The promising results of MILP-method shows that

exploiting the non-randomness of the perturbations is a

viable approach to the estimating time-varying parameter

uncertainty.
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Fig. 1. (a) Input signal uc (solid line), π1(..), π2(- -) and π3(-.). (b) Output
of model(solid line) and output of process (- -) with ǫ = 0.1
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Fig. 2. Estimates of perturbations π1, π2 and π3 in (a), (b) and (c),
respectively. True perturbations (solid line), l∞-method (...) and MILP-
method (-.-).

TABLE I

ESTIMATED UPPER-BOUNDS OF PERTURBATIONS FOR λ0 = 3.3,

κ0 = 0.25 AND b0 = 2

True upper-bound Upper-estimated Upper-estimated

for perturbation bound for l∞-method bound for MILP-method

[0.2,1.0,0.5] [0.60,1.40,0.27] [0.48,1.8,0.5]

[0.4,1.0,0.5] [0.90,1.75,0.25] [0.95,2.0,0.5]

[0.2,2.0,0.5] [0.70,2.20,0.30] [0.70,2.4,0.5]

[0.2,1.0,1.0] [0.60,1.25,0.70] [0.80,1.8,1.0]
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(a)
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−1
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(b)

Fig. 3. Estimates of perturbations π2 and π3 in (a), (b), respectively. True
perturbations (solid line), l∞-method (...) and MILP-method (-.-).
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Fig. 4. Estimates of perturbations π1 and π3 in (a), (b), respectively. True
perturbations (solid line), l∞-method (...) and MILP-method (-.-).
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Fig. 5. Estimates of perturbations π1 and π2 in (a), (b), respectively. True
perturbations (solid line), l∞-method (...) and MILP-method (-.-).
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Fig. 6. Estimates of one perturbation, when the other two perturbations are
isolated. π1, π2 and π3 for the two methods in (a), (b) and (c), respectively.
True perturbations (solid line), l∞-method (...) and MILP-method (-.-).
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Fig. 7. The estimation of sinusoid perturbations π1, π2 and π3 in (a), (b)
and (c), respectively. True perturbations (solid line), l∞-method (...) and
MILP-method (-.-).

TABLE II

THE SENSITIVITY OF UPPER-ESTIMATED BOUNDS TO DIFFERENT

VALUES OF λ0 , κ0 AND b0 , TRUE UPPER-BOUND IS [0.2, 1.0, 0.5]

[λ0, κ0, b0] Upper-estimated Upper-estimated

bound for l∞-method bound for MILP-method

[3.0,0.25,2.0] [0.70,0.70,0.26] [0.32 0.90 0.47]

[3.7,0.25,2.0] [0.48,1.90,0.35] [1.60,1.50,0.50]

[3.3,0.20,2.0] [0.85,1.50,0.23] [0.60,1.50,0.50]

[3.3,0.15,2.0] [1.70,3.80,0.00] [0.50,1.30,0.43]

[3.3,0.25,1.5] [0.40,1.60,0.30] [0.37,1.38,0.47]

[3.3,0.25,2.5] [0.90,1.60,0.20] [0.63,1.70,0.50]

TABLE III

THE SENSITIVITY OF UPPER-ESTIMATED BOUNDS TO THE CHANGING OF

ǫ, TRUE UPPER-BOUND IS [0.2, 1.0, 0.5]

Window norm Upper-estimated Upper-estimated

of white noise bound for l∞-method bound for MILP-method

0.05 [0.4,1.5,0.30] [0.40,1.1,0.50]

0.10 [0.6,1.4,0.27] [0.48,1.8,0.50]

0.20 [0.5,1.0,0.30] [0.40,1.6,0.45]

0.30 [0.5,1.2,0.30] [0.40,1.6,0.40]

For future research, other properties of noise and pertur-

bations may also be exploited, e.g. that the noise is expected

to be random and uncorrelated with the perturbations.

X. ACKNOWLEDGMENTS

The authors wish to thank Hjalmar Lundbohm Research

Center (HLRC) funded by LKAB for financing this research.

REFERENCES
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