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Abstract— Invariance control is a novel approach from con-
trol theory for constrained control of nonlinear systems. This
paper extends the invariance control method to multi-input
systems subject to nonlinear constraints.

Experimental results of two robotic applications demonstrate
the flexibility of the invariance control approach. The first
scenario is trajectory supervision. The second one is haptic
rendering of rigid surfaces. Experiments are conducted on a
3 DOF robot arm.

I. INTRODUCTION

A standard problem in robot control is to restrict the

position of the manipulator to its workspace, which size and

shape are determined by the requirements of the application.

This problem can be addressed by methods from robotics

and constrained control.

In a path tracking scenario, collision avoidance can be

achieved by a local strategy treating the problem as a control

problem. Common approaches for collision avoidance are

artificial potential field [1] methods, virtual force method [2]

or escape velocities [3]. These methods avoid collisions with

obstacles not only for the endeffector but for the complete

robot arm.

In haptic rendering, the user perceives forces in response

to interaction with objects of a virtual environment. Free-

space motion and contact with rigid objects are the most

challenging problems. The standard approach for rendering

virtual walls is to switch to a spring-damper model on impact

[4]. Impulse-based methods improve the realism of rigid

objects by transmitting an impulse on impact [5]. While

haptic rendering focuses on the perception of the virtual

environment, rendering of rigid walls can be interpreted as

a position constraint.

From the control theory perspective, the described robotic

control problems are constrained control problems, where

the state, the output and the input of a control system are

subject to time-domain constraints. Established methods to

address this problem are anti-windup/override control [6],

the theory of constraint admissible/invariant [7], optimal

control/model predictive control [8], the reference governor

approach [9], backstepping using barrier functions [10] and

invariance control [11], [12].

The basic idea of invariance control is to render a state

space region positively invariant by switching the control

input on its boundary. A subset of state-space is said to be

nominal

controller
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Fig. 1. Structure of Invariance Control

positively invariant with respect to a dynamical system if a

trajectory with initial condition in the set remains therein for

all future times [7]. Statements concerning invariance proper-

ties will subsequently always refer to positive invariance, as

only the future system evolution is of interest for controller

design.

Invariance control was originally developed for nonlinear

systems with unstable internal dynamics, for example under-

actuated robots [13]. The switching control strategy allowed

to control the output dynamics while keeping the internal

dynamics bounded in an invariant set. Further research on

invariance control for nonlinear control affine systems that

are subject to state constraints lead to a different approach

[11], which allowed to design an admissible invariant set

from the constraints.

The basic structure of the control loop is depicted in Fig. 1.

A nominal controller is assumed to achieve the main control

objectives when the constraints are neglected. The invariance

controller monitors the state of the system and modifies

the control signal on the boundary of the invariant set. For

single input systems, this can be interpreted as switching

between two control modes: the nominal control mode

and the corrective control mode. Consideration of multiple

constraints requires to switch the scalar input between the

nominal controller and different corrective controllers [12].

Continuous control mode transitions are investigated in [14],

which increase the robustness with respect to parameter

perturbations and disturbances. Other previous work includes

control of humanoid robot knee with backlash [15] and

balance control of a legged robot [16].

The main contribution of this paper is to extend invariance

control to nonlinear affine systems with multiple inputs. In

this case, switching in the control algorithm is replaced

by an optimization problem. The requirement of invariance

poses side conditions to the optimization problem. The

objective function can be chosen freely. For two applications,

results from experiments conducted on a 3 DOF robot arm

are shown. In the first one, invariance control is used to
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supervise a trajectory tracking controller. In the second one,

invariance control is used for haptic rendering by displaying

the constraints as stiff surfaces to the human operator.

The advantages of the proposed invariance control ap-

proach lie in its low computational effort for nonlinear

systems and nonlinear constraints and its applicability to

systems with an unknown future reference input. The last

advantage makes the approach especially suitable for robotic

scenarios with human interaction.

The remainder of the paper is organized as follows. In

section 2, after giving the formal problem statement, the

reader is introduced to the theory of invariance control for

nonlinear multi-input systems under multiple constraints.

The experimental setup is presented in section 3. In sec-

tion 4, the trajectory supervision application is introduced

and experimental results are presented. In section 5, the

haptic rendering application is presented similarly. Finally,

conclusions on the proposed control method are given in

section 6.

II. INVARIANCE CONTROL

A. Notation

To ease notation, time derivatives of low order are denoted

by ẏ := dy

dt
and ÿ := d2y

dt2
, whereas time derivatives of higher

order are denoted by y(i) := diy

dti . The Lie-Derivative Lf h(x )
is the directional derivative of the scalar function h(x ) in the

direction of f :

Lf h(x ) =
∂h

∂x
f .

Higher-order Lie-Derivatives are defined recursively:

L0
f h(x ) := h(x ) Li+1

f h(x ) :=

(
∂

∂x
Li

f h

)

f

B. Problem Statement

The considered class of dynamic systems are nonlinear

control affine systems with order n and input dimension m:

ẋ = f (x ) + G(x )u = f (x ) +

m∑

i=1

g iui . (1)

x ∈ R
n , u ∈ R

m
G = [g1, . . . , gm ]

The functions f and g i are smooth vector fields of appro-

priate dimension: f , g i : R
n → R

n. A nominal controller

unom = knom(x ,w) is assumed to exist which stabilizes

(1) with respect to a reference trajectory w(t).
The state constraints are represented by a set of p nonlin-

ear output functions hi : R
n → R. A point x in state-space

is called admissible if all hi are non-positive:

∀1≤i≤p : yi = hi(x ) ≤ 0 . (2)

The maximal admissible set X , which contains all admissible

states, is the intersection of the zero-sublevel sets of the

output functions hi:

X = {x | hi(x ) ≤ 0, ∀i : 1 ≤ i ≤ p} (3)

Each output function hi is required to have well defined

relative degree ri [17] in the maximal admissible set X .

C. Invariant Set Design

This section summarizes some of the results on invariance

controller design from [11] and [12]. These results are

extended to multi-input systems in the next section.

The maximal admissible set X can only be kept invariant

with finite control input for constraints with relative degree

r = 1. For a single constraint, [11] describes a procedure

to determine an admissible set G that can be kept invariant

by switching of the control on its boundary ∂G for arbitrary

relative degree. In the following, the index i, which specifies

the respective constraints, is omitted for the sake of clarity.

The set G is defined as the zero sublevel set of the

invariance function Φ(x ):

G = {x | Φ(x ) ≤ 0} . (4)

Its boundary ∂G is given the zero level set of Φ(x ):

∂G = {x | Φ(x ) = 0} . (5)

The invariance function is a function of the output y and

its derivatives y(k) with k < r and a design parameter γ. As

r is the relative degree, the y(k) can be calculated from the

state x alone. The value of γ is restricted to negative values

for r ≥ 2 and γ = 0 for r = 1. Larger absolute values for

γ lead to larger admissible sets, but usually also to larger

absolute values of the control input u .

Explicit expressions for Φ(x ) can be calculated for low

relative degrees, for example:

r = 1 : Φ(x ) = y

r = 2 : Φ(x ) =

{

y ẏ ≤ 0

− 1
2γ

ẏ2 + y ẏ > 0.

(6)

A main result of [11] is a sufficient condition for invariance

of the set G. The set G is positively invariant for system (1),

if at least one of the following two conditions is satisfied for

each point on its boundary ∂G:

a) y(k)(x ) < 0 for 1 ≤ k ≤ r − 1 (7)

b) y(r)(x , u) ≤ γ. (8)

This condition exploits special properties of the invariance

function Φ(x ) and allows to keep the set G invariant by

suitable choice of the control u on the boundary such that

condition b) is fullfilled wherever a) is not. Equation b) can

be fulfilled by use of an input-output-linearizing control law.

Multiple constraints can be handled by designing a set

Gi for each of the constraints hi separately and regarding a

combined invariant set G [12]. The set G is defined as the

zero sublevel set of the combined invariance function Φ(x ):

Φ(x ) = max
i

(Φi(x )) (9)

Thus, G is the intersection of the sets Gi and is admissible

with respect to all constraints.
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D. Determining Corrective Control

After having defined the invariant set G, a corrective

control input ucor is now derived which keeps the system

invariant with respect to G. This task consists of finding

constraints for which condition (8) needs to hold and de-

termining an input ucor which complies with the set of

inequalities.

The first subtask can be dealt with using the concept of

active constraints, i.e. outputs which have left or are about to

leave the invariant set X under nominal control. A constraint

is active, if the state x is in G+
i :

G+
i =

{

x | Φi(x ) ≥ 0 ∧ ∃1≤j≤ri−1 y
(j)
i > 0

}

. (10)

The set of active constraints I is then given as

I =
{

i | x ∈ G+
i ∧ y

(r)
i (x , unom) > γi , 1 ≤ i ≤ p

}

(11)

containing those indices for which the invariance condition

(8) needs to hold.

In order to obtain explicit conditions on u , the derivatives

of yi are now analyzed for multiple inputs. From the relative

degree assumption, it is known that the first ri−1 derivatives

y
(k)
i do not depend on u [17]:

y
(k)
i = Lk

f hi(x ) +
[

Lg
1

Lk−1
f hi(x ) . . . Lgm

Lk−1
f hi(x )

]

︸ ︷︷ ︸

=0T

u ,

while the ri-th derivative y
(r)
i does depend on u :

y
(ri)
i = Lri

f hi(x )
︸ ︷︷ ︸

bi(x)

+
[

Lg
1

Lri−1
f hi(x ) . . . Lgm

Lri−1
f hi(x )

]

︸ ︷︷ ︸

aT

i
(x)

u .

Rewriting the set of equations (with not necessarily equal

relative degrees ri) in matrix-vector notation we obtain

AI(x )ucor � bI(x ) (12)

with AI(x ) = [aT
i ] and bI(x ) = [γi − bi(x )] with i ∈ I.

The operator � denotes here the inequality ≤ for all elements

of the vectors. The existence of at least one solution ucor

of (12), implying compliance with the constraints, can be

ensured here by the following requirement on the outputs:

Proposition 1: The system (1) can be made invariant with

respect to the set G, if

∀i, j ∈ I and ∀x ∈ G : aT
i aj ≥ 0

holds with a i from (12).

Proof: Consider an input vector u∗ that is a linear

combination of the vectors a i, i ∈ I.

u∗ = −
∑

i∈I(x)

λia i λi ∈ R, λi > 0∀i

Hence, for all j ∈ I the inequality aT
j u∗ < 0 holds, as the

sum contains at least the nonzero element aT
j aj . In matrix

vector notation, this results in

AI(x )u∗ ≺ 0

Fig. 2. The ViSHaRD3 device

Now it is possible to find a scalar κ such that the inequality

AI(x )κu∗ − bI � 0, κ > 0

holds and ucor = κu∗ is a solution to (12).

As the problem of finding appropriate ucor can be un-

derdetermined remaining degrees of freedom can be used to

choose ucor such that it is equal to unom in the unconstrained

directions:

min
ucor

‖ucor − unom‖2
2

s.t. AI(x )ucor − bI(x ) � 0 .
(13)

An advantage of this optimization approach is that ucor

equals unom if no constraints are active.

In the experimental setup described in the subsequent

section, a robot arm with 3 DOF is subject to position

constraints. Hence, a maximum of three constraints can be

simultaneously active, i.e. dimu ≥ dim bI ∀ I. Then, if

AI has full row rank, an analytical solution exists for (13).

For the projection of unom on the polyhedral set of side

conditions in (13), the solution is found on the boundary of

the polyhedron, where invariance is still guaranteed:

ucor = AI

(

AIA
T
I

)−1

(bI − AIunom) + unom . (14)

III. EXPERIMENTAL SETUP

The robot used in our experiments is the ViSHaRD31, a

3 DOF arm with fixed end-effector shown in fig. 2. The

three revolute joints are each actuated by a Maxon RE40

DC motor coupled with a harmonic drive gear (gear ratio

1:100). Digital encoders HEDL-5540 (2000 counts per turn)

mounted on the motor side measure the joint angles. A 6 axis

JR3 force-torque sensor measures force interaction from an

operator at the end-effector for haptic rendering.

All experimental models were implemented in Mat-

lab/Simulink using the RTAI target for the Realtime Work-

shop. The dynamic model of the ViSHaRD3 robot arm was

1Virtual Scenario Haptic Rendering Device
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obtained using the Autolev software package and integrated

into the simulink models via s-functions. The control al-

gorithms run on an AMD Athlon 64X2 5200+ computer

equipped with a Sensoray 626 and a JR3 measurement card.

The sampling rate was set to 2 kHz for all the experiments.

IV. TRAJECTORY SUPERVISION

In the first application in this paper, the goal is to keep

the end-effector of the ViSHaRD3 within an admissible

region of the operational space while it follows a reference

trajectory. In the following, first the system description of the

manipulator under resolved acceleration control is derived.

Then the nominal controller is introduced, which achieves

the tracking objective. The chosen set of imposed position

constraints is shown, for which invariance control is applied.

Finally, experimental results are discussed.

A. System description

The end-effector is position controlled in the cartesian

world coordinate system x using resolved acceleration con-

trol [18]. The Lagrangian representation of the robot dynam-

ics is:

τ = M(q)q̈ + n(q , q̇) . (15)

Here, q ∈ R
3 denotes the vector of joint angles, τ ∈ R

3 the

actuation torques, M denotes the joint inertia matrix and n

represents the nonlinear influences. The relationship between

the joint and end-effector velocities and accelerations is given

by the Jacobian matrix J:

q̇ = J
−1(q)ẋ (16)

q̈ = d
dt

(
J
−1(q)

)
ẋ + J

−1(q)ẍ . (17)

Resolved acceleration control computes a torque input from

a commanded cartesian acceleration using (17) and (15). The

commanded cartesian acceleration ẍ c = u is then the input

to a linear system:
[
ẋ

ẍ

]

=

[
0 I

0 0

] [
x

ẋ

]

+

[
0

I

]

u . (18)

B. Nominal Controller

One way to design a trajectory tracking controller in

cartesian coordinates uses a simple PD Controller:

unom = ẍ c = KP (xd − x ) + KD (ẋd − ẋ ) + ẍd . (19)

Here, xd, ẋd, ẍd denote the reference motion in cartesian

coordinates and ẍ c denotes the commanded acceleration to

the resolved acceleration scheme. KP and KD are diago-

nal matrices containing the respective controller gains with

KP = kp · I, KD = 2
√

kp · I and kp = 200.

C. Constraints

The set of constraints chosen here form a 90◦ segment of a

cylindrical wall, which shall resemble a typical translational

workspace of an articulated manipulator with two parallel

rotary axes. The corresponding output functions are given in

the table below.

x1

x2

x
3

IC1

IC2

IC3

w/o IC w. IC

0

0.25

0.5

0
0.25

0.5

-0.25

0

0.25

x1

x2

x
3

IC1

IC2

IC3

w/o IC w. IC

0
0.25

0.5

0

0.25

0.5

-0.25

0

0.25

Fig. 3. Comparison of trajectories with and without invariance control.

left wall: y1 = −x1 + ŷ1

right wall: y2 = −x2 + ŷ2

top wall: y3 = x3 + ŷ3

bottom wall: y4 = −x3 + ŷ4

inner radius: y5 = −r2 + ŷ5

outer radius: y6 = r2 − ŷ6

(20)

As the input to our system is a desired acceleration, the

relative degree of the outputs is 2. Twice differentiating gives

the corresponding a i and bi which can be used to solve (14)

for ucor. The design parameters γi are chosen to have an

absolute value of 90% of the torque saturation of 8 1
3 Nm.

D. Stability

The sufficient condition for stability from [11] is not ap-

plicable, as the system trajectory cannot follow the reference

trajectory outside the invariant set G. Once the reference

reenters the invariant set, nominal control asymptotically
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t in s

y2
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0
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-0.4
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Fig. 4. Plot of output functions against time for trajectory supervision

t in s

y2

1 1.05 1.1 1.15

×10
−4 m

4

2

0

-2

-4

Fig. 5. Detail of output y2 at the start of corrective control.

stabilizes the system with respect to the reference trajectory.

E. Experiment

The reference trajectory in the experiment is composed

of cubic splines and partially leaves the admissible set.

Therefore, constraint violations take place for the system

under nominal control.

In Fig. 3 two 3D views of the trajectory of the end-effector

are shown. The trajectory of the system under nominal

control and invariance control are depicted in gray and black.

The intersections of the constraint surfaces are illustrated by

black lines as well. The starting and end points are marked by

a filled circle and triangle, respectively. The time spans when

invariance control is active are marked by hollow circles and

triangles and labeled IC1, IC2 and IC3.

The 3D plots in Fig. 3 show that the system under in-

variance control does not leave the admissible set and tracks

the trajectory inside the admissible set. On the boundary, the

invariance controlled system follows the projection of the

reference onto the constraint surface(s). An exception occurs,

if the reference trajectory approaches again the admissible

set from outside, as it can be seen at the end of phase

IC2. Nominal control input from the PD controller is then

constraint admissible through the error in velocity prior

to reference position being constraint admissible. Hence, a

tracking error is induced which vanishes with time.

In Fig. 4 the plots of those output functions are shown

which are once active. Circles and triangles mark the be-

ginning and end, respectively, of the time span when the

corresponding output is active. The time spans with invari-

ance control being active are depicted by gray shaded areas

being identical with those spans marked by IC1, IC2 and

IC3 in Fig. 3. The system stays invariant as the outputs are

kept within the zero sublevel set.

In Fig. 5, the output function y2 is shown when reaching

the boundary of the admissible set. This output represents the

worst case of all outputs. An overshoot of approx. 4 ·10−4 m

and a subsequent chattering around zero can be observed.

The overshoot and chattering result from model inaccuracies

and digital implementation and would not occur for an exact

model with infinite fast switching.

V. HAPTIC RENDERING

The second application uses constraints to create a virtual

environment for a haptic display. A human operator of the

haptic device perceives rigid walls on the virtual surfaces

specified by position constraints. In the admissible region,

an admittance controller, which reads force input to generate

a position reference, is used to render free space. In the

following, first the concept of position based admittance

control is introduced. Then, the constraints which generate

the virtual environment in the experiment are stated. Finally,

experimental results are discussed.

A. Admittance Control

In general, an admittance is defined by a dynamic relation-

ship between force and velocity. One possibility to define

such a relation uses (diagonal) matrices MVE and KVE

describing the translational mass and damping, respectively,

of a mass-damper system. Then the relation between force

and reference velocity is given by

f = MVE ẍd + KVE ẋd . (21)

For rendering free space the inertia matrix was chosen as

MVE = 3 · I kg with a damping of KVE = 5 · I kg
s .

The inner position control loop of the haptic device is

driven by the reference motion given in (21) which is gen-

erated through the operator force input. Not only reference

position and velocity will be used in the position controller,

but also the feedforward acceleration as it provides superior

closed loop bandwith [18].

ẍ = KP (xd − x ) + KD (ẋd − ẋ ) + ẍd (22)

The gain matrices KP = kp · I and KD = 2
√

kp · I of the

PD position controllers were set to kp = 500.

Furthermore, the resolved acceleration scheme used for the

position control loop is adapted for haptic rendering. The

commanded torque is adjusted to compensate the force f̂

applied from the operator:

τ = M(q)q̈c + n(q , q̇) + Ĵ
Tf̂ − J

Tf . (23)
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admittance
invariance

control

∫

∫

KP

KD

d
dt

resolved accel.

control

J
T

ViSHaRD3

Virtual Environment Motion Control Human System Interface

τ

f

f

x

x

ẋd

xd

ẍd

ẍ c

ẍd,nom

Fig. 6. Block diagram of the system under position based admittance control with an invariance controller.

Here, f denotes the measured force input from the user and

the term Ĵ
Tf̂ accounts for the induced joint torques from

the force applied by the user.

If we assume a sufficiently good tracking of the position

reference, then we can set x ≈ xd. Thus, the system we have

to consider for invariance control is simplified to a system

of double integrators similar to (18). In this case, the states

are xd, ẋd and the input is the desired acceleration ẍd.

B. Constraints

The virtual environment which shall be displayed to the

human user in this application is a cuboid with a nonlinear

bottom surface. This surface is chosen to be a two dimen-

sional cosine wave as an example of a curved surface. Hence,

six constraints are needed to specify the admissible region:

lower xd,1 limit: y1 =−xd,1 + ŷ1

upper xd,1 limit: y2 = xd,1 − ŷ2

lower xd,2 limit: y3 =−xd,2 + ŷ3

upper xd,2 limit: y4 = xd,2 + ŷ4

upper xd,3 limit: y5 = xd,2 − ŷ5

lower xd,3 limit: y6 =−xd,3 + ŷ6

+µ cos (ω1(xd,1 − xd,1, min))
+ν cos (ω2(xd,2 − xd,2, min))

Again, the second derivatives of the output functions give

us the necessary terms which are needed to solve for (14).

Here, the design parameters γi are independent of the torque

saturation of 11 Nm and are set to γi = 40.

C. Stability

For haptic rendering, the stability argument is based on

passivity. It can be shown that invariance control is passive

for position and velocity constraints, as the corrective control

action always acts in the opposite direction of the velocity.

D. Experiment

In the experiment conducted for haptic rendering, the

human operator using the haptic device was moving the

end-effector along the nonlinear surface. As the objective

of the nominal controller is to render free space, only the

constraints support the end-effector. The run is shown in

Fig. 7, with the trajectory of the end-effector in black and

the constraint y6 illustrated by contour lines in gray.

x1x2

x
3

0
0.1

0.2
0.3

0.4

0.2

0.3

0.4

-0.1

0

0.1

0.2

Fig. 7. Run of Position of end-effector during haptic rendering

During the run, between zero and three constraints were

active, the latter case was given when the end-effector was

in the right lower corner of the admissible space. This can

be as well seen on the plots of the corresponding outputs,

which are given in Fig. 8. It is important to note, that these

plots show outputs as functions of the real coordinates x and

not of the reference coordinates xd, which are used by the

invariance controller.

Fig. 9 highlights the differences between the output func-

tion y6 in the two coordinate systems. Whereas in the

reference coordinates xd the output function shows only

a chattering behavior of a magnitude mostly less than

2.5 · 10−5 m, in the real cartesian coordinates x the output

function trajectory lies in between −5 · 10−3 m and 0 m.

Concerning the latter value, it has to be noted that the steady

state error of the position controlled robot is approx. 2 mm.

Altogether, the system stays compliant with the constraints

except for a few time instances corresponding to the peaks

in the lower plot of Fig. 9.

In the last plot given in Fig. 10, the output function y6

is shown for the time span when the nonlinear surface is

reached for the first time. The left plot shows an overshoot

probably due to a force input by the operator exceeding the
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t in s

y1
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y6
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Fig. 8. Relevant output functions in haptic rendering run as seen in Fig. 7

t in s

y6,des

y6

0

0

5

5

10

10

15

15

20

20

0

-2.5

-5

0

-5

-10

×10
−5

×10
−3

Fig. 9. Comparison of output function y6 in virtual and real coordinates

“braking” force γ6. However, the plot in the real coordinates

shows no overshoot and the value lies within the order of

magnitude of the steady state position error.

VI. CONCLUSION

The proposed extension to the invariance control method

allows constrained control of MIMO systems. The resulting

control law guarantees compliance with the constraints.

Its numerical simplicity makes it suitable for applications

requiring high sampling rates. The presented examples of

trajectory supervision and haptic rendering of rigid curved

surfaces show the flexibility of the presented approach.

Future research is directed at extending robustness results

from [14] to the MIMO case and a stability analysis of the

presented applications.
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