
 
 

 

  

Abstract—This paper develops a new method to robust ∞H  
control problem for a class of uncertain switched systems by 
constructing single robust ∞H  sliding surface. The method 
consists of two phases. One is to construct a single sliding 
surface which the reduced-order equivalent sliding motion is 
forced into, and to have the sliding motion robustly stabilized 
with ∞H  disturbance attenuation level γ  under a hysteresis 
switching law to be designed; the other phase is to design 
variable structure controllers of the subsystems to thus drive the 
state of the switched system to reach the single sliding surface in 
finite time and remain on it thereafter. A numerical example is 
given to illustrate the effectiveness of the proposed method. 

I. INTRODUCTION 
Switched systems consist of a family of continuous-time or 

discrete-time systems and certain rules of logic specifying at 
each instant of time which subsystem is activated along the 
system trajectory, thus represent a rather important class of 
hybrid systems. As a result, switched systems and switching 
control have recently gained a great deal of attention [1-8] 
mainly because many real-world systems such as chemical 
processes and transportation systems can be modeled as 
switched systems under certain reasonable assumptions. In 
the literature, switched linear systems without uncertainties 
have been extensively investigated; for instance, see [3-5] 
and references therein. Since uncertainties are ubiquitous in 
system models due to the complexity of the system itself, 
exogenous disturbance and so on, from a practical point of 
view, the study of uncertain switched systems is relatively 
more important.  

Among the existing results of switched systems with 
uncertainties, [6] considered quadratic stabilization of 
switched systems with norm-bounded time varying 
uncertainties. In [7], 2L  induced norm of switched systems 
with external disturbances was considered under the 
condition of large dwell time. Robust ∞H  control and 
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stabilization of uncertain switched linear systems were 
addressed in [8] based on multiple Lyapunov functions 
approach. 

On the other hand, the sliding mode control (SMC) is one 
of most important methods in robust control domain, since it 
possesses various attractive features such as robustness, fast 
response, and good transient response [9, 10]. Over the years, 
there are many available papers [11-16] on SMC. Among the 
results concerning SMC, they are mainly partitioned into two 
ways, one is to develop SMC theory [11-13]; the other is to 
fuse SMC technique into other methods or other systems 
rather than the traditional ones, where there are already some 
exciting and significant results [14-16]. 

Along the latter, we will apply SMC to switched system. 
There are very few results focusing this interest except 
[17-20]. The authors of [17] proposed a SMC method to make 
a class of switched systems exponentially stable. [18] 
addressed the sliding mode control for planar switched 
systems under an arbitrary switching sequence. In [19], the 
sliding motion of switched systems without control input was 
analyzed and an approach was proposed to estimate the 
domain in which the sliding motion may occur. A variable 
structure controller with sliding mode sector for a hybrid 
system was presented which switches the hybrid system 
among subsystems to ensure its quadratic stability in [20]. As 
for tackling ∞H  control problem with resort to SMC 
technique, to the best of our knowledge, there are almost no 
results in the current literature, which is indeed our 
motivation. 

In this paper, we investigate and solve the robust ∞H  
sliding mode variable structure control problem for a class of 
uncertain switched linear systems. The outline of this paper is 
as follows. Section II presents the problem formulation and 
the necessary preliminaries. In Section III, the novel design is 
theoretically developed. In Section IV, the developed control 
design is applied to an illustrative example and numerical and 
simulation results are given to illustrate the effectiveness of 
the proposed design. Conclusion and references follow 
thereafter. 

Throughout this paper, •  denotes the Euclidean norm for 
a vector or the matrix induced norm for a matrix. 

II. PROBLEM FORMULATION AND PRELIMINARIES 
Consider the following uncertain switched system 
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where nRtx ∈)(  is the system state, Ξ→∞),0[:)(tσ  
},,2,1{ l…=  is the piecewise constant switching signal that 

may depend on either time t  or state x , m
i Ru ∈  is the 

control input of the thi −  subsystem, )(tz  is the controlled 
output, ),0[)( 2 ∞∈Ltω  is the external disturbance input, B , 

1B , C  and iA  are constant matrices with appropriate 
dimensions, iAΔ  denote system parameter uncertainties, 

),( txfi  represent nonlinearities of the system. The following 
assumptions are introduced. 
Assumption 1. The parameter uncertainties can be represented 
and emulated as  

Ξ∈Σ=Δ iFtEA ii ,)( , 
where E  and F  are known constant matrices with 
appropriate dimensions, )(tiΣ  are unknown matrices with 

Lebesgue measurable elements and satisfy Itt ii ≤ΣΣ Τ )()( .  
Assumption 2. There exist known nonnegative scalar-valued 
functions ),( txiφ , Ξ∈i  such that ),(),( txtxf ii φ≤  for 
all t . 
Assumption 3. There exists a known nonnegative constant ϖ  
such that ϖω ≤)(t  for all t . 
Assumption 4. The input matrix B  has full rank m  and 

nm < . 
Remark 1. Assumptions 1~4 are standard assumptions in the 
study of variable structure control. 

We now recall the concept of asymptotic stability with ∞H  
disturbance attenuation level γ . 
Definition 1 ([21]). Consider the following uncertain 
switched linear system 
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For a given positive constant 0>γ , if there exists a 
switching law )(xσσ =  and a positive definite matrix P , 
such that the inequality  

0)( 2 <+++ ΤΤ−ΤΤ xCCPPBBPAPAx γσσ              (3) 
holds, then system (2) is called asymptotically stable and 
satisfied ∞H  disturbance attenuation level γ . 
Lemma 1 ([22]). Given real matrices 1R  and 2R  with 
appropriate dimensions and an unknown matrix )(tΣ  with 

Lebesgue measurable elements such that Itt ≤ΣΣΤ )()( , then 
we have 

22
1

112121 RRRRRRRR Τ−ΤΤΤΤ +≤Σ+Σ ββ , 
where 0>β . 

Now, we introduce a convex combination of the system (1) 
without the matched uncertainties ),( txfi  as follows 
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Lemma 2. Given a constant 0>γ , if there exist matrix 

0>P , state feedback gain K , constant 0>λ  and scalars 

0≥iα ,  1
1∑ =

=
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then the system (4) is robustly stabilized with ∞H  
disturbance attenuation level γ . 
Proof. Let  

.  
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Hence, we have 
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which implies that the system (4) is robustly stabilized with 
∞H  disturbance attenuation level γ . This completes the 

proof. 
Remark 2. The inequality (5) can be converted into a linear 
matrix inequality (LMI) by using Schur complement and the 
change of variable such that 1ˆ −= KPK . Hence, the feasible 
solutions can be globally found by the LMIs method [16]. 

To get a regular form of the system (1), we define a 
nonsingular matrix T  and an associated vector ξ  as follows 
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with mnR −∈1ξ , mR∈2ξ , where B~  is an orthogonal 
complement of the matrix B . We can easily show  
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[ ]111 )()~~(~ −Τ−Τ− = BBBBBBT .                    (8) 
By means of the state transformation )()( tTxt =ξ , the system 
(1) is transformed into the following regular form  
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�
. The system (9) is equivalent to the following form 
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where  
11

11 )~~(~)(~)~~(~~ −ΤΤ−ΤΤ Σ+= BBBFtEBBBBABA σσσ

�
, 

11
12 )()(~)(~ −ΤΤ−ΤΤ Σ+= BBFBtEBBBBABA σσσ

�
, 

11
21 )~~(~)()~~(~ −ΤΤ−ΤΤ Σ+= BBBFtEBBBBABA σσσ

�
, 

11
22 )()()( −ΤΤ−ΤΤ Σ+= BBFBtEBBBBABA σσσ

�
. 

Without loss of generality, we assume that the single robust 
∞H  sliding surface is given as follows 

 ,0)( 21 =+= ξξζ Mt                      (11) 

where )( mnnRM −×∈  is a matrix to be chosen. Then it follows 
that )()~()()( txBBMtSxt ΤΤ +==ζ . Substituting 12 ξξ M−=  
into (10) yields the following sliding motion 
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The objective of this paper is to determine the matrix M , 
the switching law )(tσ , and the variable structure controllers 

Ξ∈iui ,  such that  
i). the sliding mode (12) restricted to the single sliding surface 
(11) is robustly stabilized with ∞H  disturbance attenuation 
level γ  under the switching law )(tσ . 
ii). the state of the system (1) can reach the single sliding 
surface (11) in finite time and subsequently remain on it. 
Remark 3. The single sliding surface 0)()( == tSxtζ  is 
designed such that the switched system (1) is asymptotically 
stable with an ∞H  norm bound based on the single Lyapunov 
function approach in the sliding surface. The purpose of 
designing the single sliding surface for the switched system is 
to reduce the reaching phase in which systems are sensitive to 
uncertainties and perturbations, and improve the transient 
performance and robustness. 
Remark 4. We can see that the matched uncertainties ),( txfi  
disappear in the sliding motion (12) and the order of the 
switched system (1) is reduced in the sliding surface (11). 
Therefore, we only need to study the stability of the mn −  
dimensional switched system (12). 

III. MAIN RESULT 
In this section, the variable structure control design 

comprises two steps. Firstly, to construct the sliding surface, 
such that the controlled system yields the desired dynamic 
performance in the sliding surface. Secondly, design the 
variable structure controller to drive the trajectory of the 
system reaches the sliding surface and remains on it for all 
subsequent time. 

The following theorem shows that the system (1) in the 
sliding surface (11) is robust asymptotically stabilized with 

∞H  disturbance attenuation level γ  via switching. 
Theorem 1. Suppose that (5) is solvable i.e., the system (4) is 
robustly stabilized with ∞H  disturbance attenuation level γ . 
Then the sliding motion (12) with 111 ))()(( −−ΤΤ−Τ= BBPBBBBM   

11 )~~(~)( −ΤΤ−Τ× BBBPBBB is robust stabilized with ∞H  
disturbance attenuation level γ  via switching and the single 
robust ∞H  sliding surface is 
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where P  satisfies (5) in Lemma 2. 
Proof. The sliding motion (12) can be rewritten equivalently 
as 
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where 1
11 )~~(~~ˆ −ΤΤ= BBBABA σσ , 1

12 )(~ˆ −ΤΤ= BBBABA σσ , 
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with 1
11 )~~(~~ −ΤΤ= BBBABA , 1

12 )(~ −ΤΤ= BBBABA , and 
calculate  
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Then, the inequality (5) in Lemma 2 can be rewritten as 
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By multiplying (17) with ],[ 1
2212
−

− − PPI mn  and Τ−
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from left and right, respectively, we have 
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where Τ−−= 12
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and substituting 1
11 )~~(~~ −ΤΤ= BBBABA , 1

12 )(~ −ΤΤ= BBBABA  
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α  into inequality (19) gives 
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The hysteresis switching law for the sliding motion (12) is 
designed as follows 
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  (22) 
By virtue of Definition 1, we conclude that sliding motion 

(12) is robust stabilized with ∞H  disturbance attenuation 
level γ  under the switching law (22). The proof is thus 
completed.  

In the end, we give the following result. 
Theorem 2. Assume that the conditions of Theorem 1 are 
satisfied and the sliding surface of system (1) is given by (13). 
Then under the control laws  
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the state of the system (1) can enters in finite time and 
subsequently remains on the sliding surface, where μ  is a 
positive scalar to adjust the convergent rate. 
Proof. The derivative of the sliding function )()( tSxt =ζ  
along the trajectory of the system (1) is  

)()()()( 1 tSBSBfSButxAASt iiii ωζ +++Δ+=� .     (24) 
With regard to Assumptions 1~3, substituting the control 
laws (23) into (24) yields )()()( ttt ζμζζ −≤� , which 
implies that the state of the system (1) reaches the sliding 
surface (13) in finite time and thereafter remains on it. This 
completes the proof. 

Remark 5. The single sliding surface is reached in finite time 
according to the reaching rate of sliding surface μ . The 

)()()( ttt ζμζζ −≤�  implies the decay rate of the sliding 

surface is no less than te μ− . 

IV. AN ILLUSTRATIVE EXAMPLE  
In this section, we present a numerical example to 

demonstrate the effectiveness of the proposed design method.  
Consider the following uncertain switched linear system 
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We choose the convex combination coefficients =1α  

5.02 =α  and the constant 
2

1
=λ . The disturbance 

attenuation level is given by 
2

1
=γ . 

Taking the matrix PBK Τ= , by solving the inequality 
(5), one can obtain the following solution  
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Then we obtain the matrix  
]..21950 ,0831.0[=M  

The single robust ∞H  sliding function is given as follows 

xSx Τ−−== ]0771.1 ,3458.0 ,1591.0[ζ .           (26) 

According to (23) the subsystem control laws are given by 
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The simulation results for system state responses of the 
two subsystems alone with the initial state vector 

[ ]Τ−= 1,2，10x  are shown in Fig. 1 and Fig. 2, respectively. 
We can easily see that both subsystems are unstable.   
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Fig. 1 The state response of the subsystem 1 
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Fig. 2 The state response of the subsystem 2 

 
 

It is easy to verify that the conditions of Theorem 1 and 2 
are satisfied.  

The hysteresis switching law is 
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9994.4 ,9988.9  ,2917.23

)()({2 <
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−=Ω Τ txtxtx . 

The simulation results are depicted in Fig. 3-Fig. 6. 
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Fig. 3 The system state responses of the switched system (25) 

 

0 1 2 3 4 5 6 7 8 9 10
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

 
Fig. 4. The input signal of the switched system (25) 
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Fig. 5. The trajectory of the sliding function (26) 
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Fig. 6. The switching signal (28) 

The simulation results for the system states in the 
closed-loop and with the same initial state vector  

[ ]Τ−= 1,2，10x  are shown in Fig. 3. It is clearly seen that the 
closed-loop system of the switched system (25) with the 
designed controller (27) and the switching law (28) is 
asymptotically stable. Fig. 4 is the input signal of the 
switched system (25). The trajectory of the sliding function 
(26) is shown in Fig. 5. The switching signal is given by Fig. 
6. 

V. CONCLUSION 

This paper has developed the new method to robust ∞H  
control problem for a class of uncertain switched systems by 
constructing single robust ∞H  sliding surface. The sufficient 
condition for the existence of the single robust ∞H  sliding 
surface has been derived in terms of Riccati inequality 
associated with the convex combination of the switched 
system. The switching law has been constructed such that the 

mn −  dimensional sliding motion is robustly stabilized with 
∞H  disturbance attenuation level γ . Variable structure 

controllers have been designed to drive the state of the 
switched system to reach the single robust ∞H  sliding 
surface in finite time.  
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