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Abstract— This paper presents a detailed analysis of a model
for military conflicts where the defending forces have to
determine an optimal partitioning of available resources to
counter attacks from an adversary in two different fronts in
an area fire situation. Lanchester linear law attrition model
is used to develop the dynamical equations governing the
variation in force strength. Here we address a static resource
allocation problem namely, Time-Zero-Allocation (TZA) where
the resource allocation is done only at the initial time. Numerical
examples are given to support the analytical results.

I. INTRODUCTION

This paper addresses an optimal resource allocation prob-

lem based on Lanchester linear model of attrition. The

Lanchester linear law models an unaimed fire situation in

which a shooter fires upon an area in which the enemy

force is assumed to be, as in the case of mass anti-aircraft

barrages, artillery bombardment of enemy positions, etc.

Here the fire power remains directed to the whole area [1].

Lanchester models are deterministic differential equations

that model attrition to forces in conflict. Lanchester models

have been widely used to analyze real wars [2] and determine

tactics for deploying forces in war game simulations as they

produce reasonably good predictions. Alternative approaches

to Lanchester models have been proposed in the literature

but till date the Lanchester model still remains a popular

paradigm for modeling attrition in conflicts involving mili-

tary forces. In the modern scenario, with significant advances

in technology related to communication and computation,

sophisticated decision-making in these situations has become

feasible. This has generated renewed interest in formulating

decision-making problems in these areas and seeking op-

timal solutions. Our paper addresses one such problem in

which the defending forces need to optimally partition their

resources between two attacking forces of differing strengths.

The basic model used in this paper is the Lanchester (2,1)

linear model introduced in [3]. The (2,1) model represents

a battle between an attacker with two weapon types and a

defender with one weapon type. The attacker’s weapon types

causes attrition to the defenders weapon type at two different

attrition rates, each of which is attrited by the defender’s

weapon at different rates. A resource partitioning problem for

the Lanchester square law (n,1) model is developed in [4]. In

[5], Taylor analyzed the victor’s optimal initial commitment

decision as an one-sided static optimization problem for
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three decision criteria (victor’s losses, loss ratio, and loss

difference) and for two battle termination conditions. Roberts

and Conolly [6] considered an optimization problem of min-

imizing the attackers’s initial resources using the Lanchester

square law model. However, they do not address the optimal

partitioning of resources by the defending force. Kaup et al.

[7] considered a problem in which a heterogeneous force of

n different troop types is in conflict with a homogeneous

force. They address some limited cases of optimizing the

resource partitioning problem based on square law model.

Another related paper is by Colegrave and Hyde [8] where a

Lanchester (2,2) model, where 2 forces are in conflict with

2 other forces, is analyzed. In [3], we presented only the

preliminary results for the Lanchester (2,1) model. Here we

present the detailed analysis of the model developed in [3].

In this paper we address a static resource allocation problem

where the allocation is done only at the initial time (Time

Zero Allocation (TZA)). For the linear law the resources get

destroyed completely only at infinite time, hence a situation

for redistribution of resources does not arise for this law.

II. LANCHESTER LINEAR LAW ATTRITION MODEL

Consider a military conflict between two opposing forces.

Let Y denote the defending force and X denote the attacking

force. It is assumed that the defending force consists of only

one type of force and the attacking force consists of two

types of forces. Let y denote the strength of the defending

force and x1 and x2 denote the strength of each type of

attacking force. Let the initial values of y, x1, x2 be N , M1

and M2, respectively. The initial strength y is partitioned into

two parts, ηN and (1 − η)N so that ηN interacts with x1

and (1− η)N interacts with x2 (Figure 1). This paper deals

with the problem of optimally choosing η to maximize some

objective of the defending forces. Since this is a decision

making problem for the defending force Y , we select an

objective of maximizing a weighted mean of the surviving

resource strength of the Y force and the annihilated resource

strength of the X force. Hence, the objective function is

defined as,

J = γ ×
[

Surviving resources of Y
]

+ (1 − γ) ×
[

Destroyed resources of X1

+ Destroyed resources of X2

]

(1)

where, γ ∈ [0, 1].
The classical Lanchester Linear Law is given by,

ẋ(t) = −αx(t)y(t), ẏ(t) = −βx(t)y(t) (2)
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Fig. 1. Time-Zero-Allocation (TZA)

where, x(t) and y(t) are the strengths of the two opposing

forces surviving at time t in conflict, and α and β are the

attrition constants independent of time.

III. TIME-ZERO-ALLOCATION (TZA)

In this case, the initial strength y(0) of Y is partitioned

into y1(0) and y2(0) using the decision parameter η. No

redistribution of resources takes place when any of the

resources is completely destroyed. Thus, allocation is done

at the initial time (that is, at time zero) only.

The attrition equations are given by,

ẋi = −αixiyi, xi(0) = Mi (3)

ẏi = −βixiyi, yi(0) = ηiN, i = 1, 2. (4)

where, η1 = η, η2 = 1 − η; Also, η ∈ [0, 1] and (αi, βi >
0, i = 1, 2). From (4), after some standard manipulations,

we get,

ẋi = −βix
2
i + kixi, ẏi = −αiy

2
i − kiyi (5)

where, ki =
[

βixi(0) − αiyi(0)
]

, i = 1, 2.

Solutions to these equations when βixi(0) 6= αiyi(0) are

given by,

xi(t) =
[

xi(0)−1e−kit + βik
−1
i (1 − e−kit)

]

−1

yi(t) =
[

yi(0)−1ekit + αik
−1
i (ekit − 1)

]

−1

(6)

When βixi(0) = αiyi(0), the solutions are given by,

xi(t) =
xi(0)

βixi(0)t + 1
, yi(t) =

yi(0)

αixi(0)t + 1
(7)

With Lanchester linear law, the termination time is always

at infinity. Define,

ζi =
Miβi

Nαi

(8)

Now, the following results hold:

(i) If ηi > ζi, then as t → ∞,

lim
t→∞

xi(t) = 0; lim
t→∞

yi(t) = ηiN −

(

βi

αi

)

Mi (9)

(ii) If ηi = ζi, then as t → ∞,

lim
t→∞

xi(t) = 0; lim
t→∞

yi(t) = 0 (10)

(iii) If ηi < ζi, then as t → ∞,

lim
t→∞

yi(t) = 0; lim
t→∞

xi(t) = Mi −

(

αi

βi

)

ηiN (11)
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Fig. 2. Time-Zero-Allocation (TZA) events in (ζ1, ζ2) and (η1, η2) space

When t → ∞, the objective function is given by,

(a) If ηi ≥ ζi, i = 1, 2.

J = γ [N − (β1/α1)M1 − (β2/α2)M2]

+ (1 − γ) (M1 + M2) (12)

(b) If ηi ≤ ζi, i = 1, 2.

J = (1 − γ) [ηN {(α1/β1) − (α2/β2)} + N(α2/β2)] (13)

(c) If η1 ≥ ζ1 and η2 < ζ2,

J = γ

[

ηN −
β1

α1
M1

]

+ (1 − γ)

[

M1 + (1 − η)N
α2

β2

]

(14)

(d) If η1 ≤ ζ1 and η2 ≥ ζ2,

J = γ

[

(1 − η)N −
β2

α2
M2

]

+ (1 − γ)

[

M2 + ηN
α1

β1

]

(15)

Note that in (a)-(d) if ηi = ζi, i = 1, 2, then

J = (1 − γ)(M1 + M2) (16)

The above cases can be graphically represented as shown

in Figure 2. We use the variables P, Q,R and S to divide the

regions. For example, 0 < η1 < ζ1 and 1 − ζ2 < η2 < 1 is
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represented by the region [P, Q]. Similarly the other regions.

This gives rise to the following cases:

A. Case A: Let ζ1 + ζ2 ≤ 1

For this case we get the following three regions as shown

in Figure 2(a): (i) In the segment [P,Q], (15) holds, (ii) In the

segment [Q,R], (12) holds, (iii) In the segment [R,S], (14)

holds.

The objective functions in the region [P,Q], [Q,R] and

[R,S] are given by,

J[P,Q](η) = γ [(1 − η)N − (β2/α2)M2]

+ (1 − γ) [M2 + ηN(α1/β1)] (17)

J[Q,R](η) = γ [N − (β1/α1)M1 − (β2/α2)M2]

+ (1 − γ) [M1 + M2] (18)

J[R,S](η) = γ [ηN − (β1/α1)M1]

+ (1 − γ) [M1 + (1 − η)N(α2/β2)] (19)

Lemma 1: The function J[P,Q](η), given in (17) and de-

fined for η ∈ [0, ζ1], has a maximum at (i) η = 0, if
γ

1−γ
> α1

β1

(ii) at η = ζ1, if γ
1−γ

< α1

β1

and (iii) at all

η ∈ [0, ζ1], if γ
1−γ

= α1

β1

.

Proof. This follows directly from Eqn. (17). ¤

Lemma 2: The function J[R,S](η), given in (19) and de-

fined for η ∈ [1 − ζ2, 1], has a maximum at (i) η = 1 − ζ2,

if γ
1−γ

< α2

β2

(ii) at η = 1, if γ
1−γ

> α2

β2

and (iii) at all

η ∈ [1 − ζ2, 1], if γ
1−γ

= α2

β2

.

Proof. This follows directly from Eqn. (19). ¤

Theorem 1: If ζ1 + ζ2 ≤ 1, the optimum partitioning of

the defending force Y will be given by,

η∗ =












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
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


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









































































0, if
[

γ
1−γ

> α1

β1

]

∧

[

{

γ
1−γ

≤ α2

β2

}

∨

{

γ
1−γ

> α2

β2

∧

(

γ
1−γ

)

(ζ1 − ζ2) >
(

ζ1
α1

β1

− ζ2
α2

β2

)}

]

[0, 1 − ζ2], if γ
1−γ

= α1

β1

∧ γ
1−γ

< α2

β2

[ζ1, 1 − ζ2], if γ
1−γ

< α1

β1

∧ γ
1−γ

< α2

β2

1, if
[

γ
1−γ

> α2

β2

]

∧

[

{

γ
1−γ

≤ α1

β1

}

∨

{

γ
1−γ

> α1

β1

∧

(

γ
1−γ

)

(ζ1 − ζ2) <
(

ζ1
α1

β1

− ζ2
α2

β2

)}

]

[ζ1, 1], if γ
1−γ

= α2

β2

∧ γ
1−γ

< α1

β1

[0, 1], if γ
1−γ

= α1

β1

= α2

β2

(20)

Here ’
∧

’ stands for ’and’ and ’
∨

’ stands for ’or’.

Proof. From Eqn. (18), we know for η = [ζ1, 1 − ζ2], the

objective function is independent of η. Also, from Lemmas

1 and 2, we can get (20). We omit details. ¤

The optimal values of η in (α1

β1

, α2

β2

) space for this case

are shown in Figure 3.

B. Case B: ζ1 + ζ2 > 1, ζ1 < 1 and ζ2 < 1

For this case we get the regions as shown in Figure 2(b).

Note that (i) In the segment [P,Q], (15) holds. (ii) In the
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Fig. 3. Optimal values of η for Case A

segment [Q,R], (13) holds. (iii) In the segment [R,S], (14)

holds.

The expressions for J[P,Q] and J[R,S] are same as Eqns.

(17) and (19), respectively, while the objective function in

the region [Q,R] is given by,

J[Q,R](η) = (1 − γ) [ηN (α1/β1 − α2/β2) + Nα2/β2] (21)

Lemma 3: The function J[P,Q](η), given in (17) and de-

fined for η ∈ [0, 1 − ζ2], has a maximum at (i) η = 0, if
γ

1−γ
> α1

β1

(ii) at η = 1 − ζ2, if γ
1−γ

< α1

β1

and (iii) at all

η ∈ [0, 1 − ζ2], if γ
1−γ

= α1

β1

.

Proof. This follows directly from Eqn. (17). ¤

Lemma 4: The function J[Q,R](η), given in (21) and de-

fined for η ∈ [1− ζ2, ζ1], has a maximum at (i) η = 1 − ζ2,

if α1β2 < α2β1 (ii) at η = ζ1, if α1β2 > α2β1 and (iii) at

all η ∈ [1 − ζ2, ζ1], if α1β2 = α2β1.

Proof. This follows directly from Eqn. (21). ¤

Lemma 5: The function J[R,S](η), given in (19) and de-

fined for η ∈ [ζ1, 1], has a maximum at (i) η = ζ1, if
γ

1−γ
< α2

β2

(ii) at η = 1, if γ
1−γ

> α2

β2

and (iii) at all

η ∈ [ζ1, 1], if γ
1−γ

= α2

β2

.

Proof. This follows directly from Eqn. (19). ¤

Theorem 2: If ζ1 + ζ2 > 1, ζ1 < 1 and ζ2 < 1 the

optimum partitioning of the defending force Y will be given

by,

η∗ =


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
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
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
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
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
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








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






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
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

























0, if
[

γ
1−γ

> α1

β1

]

∧

[

{

γ
1−γ

≤ α2

β2

}

∨

{

γ
1−γ

> α2

β2

∧

(

γ
1−γ

)

(ζ1 − ζ2) >
(

ζ1
α1

β1

− ζ2
α2

β2

)}

]

1 − ζ2, if γ
1−γ

< α1

β1

∧

α1

β1

< α2

β2

[0, 1 − ζ2], if γ
1−γ

= α1

β1

∧

α1

β1

< α2

β2

ζ1, if γ
1−γ

< α2

β2

∧

α1

β1

> α2

β2

[1 − ζ2, ζ1], if γ
1−γ

< α1

β1

∧

α1

β1

= α2

β2

1, if
[

γ
1−γ

> α2

β2

]

∧

[

{

γ
1−γ

≤ α1

β1

}

∨

{

γ
1−γ

> α1

β1

∧

(

γ
1−γ

)

(ζ1 − ζ2) <
(

ζ1
α1

β1

− ζ2
α2

β2

)}

]

[ζ1, 1], if γ
1−γ

< α1

β1

, α1

β1

> α2

β2

∧ γ
1−γ

= α2

β2

(22)

Proof. From Lemmas 3 − 5 we immediately get (22). ¤

The optimal values of η in (α1

β1

, α2

β2

) space for this case are
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shown in Figure 4.

C. Case C: Let ζ1 < 1 and ζ2 ≥ 1

For this case we get the regions as shown in Figure 2(c).

Note that, (i) In the segment [Q,R], (13) holds. (ii) In the

segment [R,S], (14) holds.

The expressions for J[Q,R] and J[R,S] are same as Eqns.

(21) and (19), respectively.

Lemma 6: The function J[Q,R](η), given in (21) and de-

fined for η ∈ [0, ζ1], has a maximum at (i) η = 0 if

α1β2 < α2β1 (ii) at η = ζ1 if α1β2 > α2β1 and (iii) at

all η ∈ [0, ζ1] if α1β2 = α2β1.

Proof. This follows directly from Eqn. (21). ¤

Theorem 3: If ζ1 < 1 and ζ2 ≥ 1 the optimum partition-

ing of the defending force Y will be given by,

η∗ =


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






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
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























0, if
[

α1

β1

< α2

β2

]

∧

[

{

γ
1−γ

≤ α2

β2

}

∨

{

γ
1−γ

> α2

β2

∧

(

1−γ
γ

)(

α2

β2

− ζ1
α1

β1

)

> 1 − ζ1

}

]

ζ1, if α1

β1

> α2

β2

∧ γ
1−γ

< α2

β2

[0, ζ1], if α1

β1

= α2

β2

∧ γ
1−γ

< α2

β2

1, if
[

γ
1−γ

> α2

β2

]

∧

[

{

α1

β1

≥ α2

β2

}

∨

{

α1

β1

< α2

β2

∧

(

1−γ
γ

)(

α2

β2

− ζ1
α1

β1

)

< 1 − ζ1

}

]

[ζ1, 1], if γ
1−γ

= α2

β2

∧

α1

β1

> α2

β2

(23)

Proof. From Lemmas 5 and 6 we can immediately get (23).¤
The optimal values of η in (α1

β1

, α2

β2

) space for this case

are shown in Figure 5.
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Fig. 6. Optimal values of η for (a) Case D and (b) Case E

D. Case D: ζ1 ≥ 1 and ζ2 < 1

For this case we get the regions as shown in Figure 2(d).

Note that, (i) In segment [P,Q], (15) holds. (ii) In segment

[Q,R], (13) holds.

The expressions for J[P,Q] and J[Q,R] are same as Eqns.

(17) and (21), respectively.

Lemma 7: The function J[P,Q](η), given in (17) and de-

fined for η ∈ [0, 1 − ζ2], has a maximum at (i) η = 0, if
γ

1−γ
> α1

β1

(ii) at η = 1 − ζ2, if γ
1−γ

< α1

β1

and (iii) at all

η ∈ [0, 1 − ζ2], if γ
1−γ

= α1

β1

.

Proof. This follows directly from Eqn. (17). ¤

Lemma 8: The function J[Q,R](η), given in (21) and de-

fined for η ∈ [1 − ζ2, 1], has a maximum at (i) η = 1 − ζ2

if α1β2 < α2β1 (ii) at η = 1 if α1β2 > α2β1 and (iii) at all

η ∈ [1 − ζ2, 1] if α1β2 = α2β1.

Proof. This follows directly from Eqn. (21) . ¤

Theorem 4: If ζ1 ≥ 1 and ζ2 < 1 the optimum partition-

ing of the defending force Y will be given by,

η∗ =































































































0, if
[

γ
1−γ

> α1

β1

]

∧

[

{

α1

β1

≤ α2

β2

}

∨

{

α1

β1

> α2

β2

∧

(

1−γ
γ

)(

α1

β1

− ζ2
α2

β2

)

< 1 − ζ2

}

]

1 − ζ2, if α1

β1

< α2

β2

∧ γ
1−γ

< α1

β1

[0, 1 − ζ2], if α1

β1

< α2

β2

∧ γ
1−γ

= α1

β1

1, if
[

α1

β1

> α2

β2

]

∧

[

{

γ
1−γ

≤ α1

β1

}

∨

{

γ
1−γ

> α1

β1

∧

(

1−γ
γ

)(

α1

β1

− ζ2
α2

β2

)

> 1 − ζ2

}

]

[1 − ζ2, 1], if α1

β1

= α2

β2

∧ γ
1−γ

< α1

β1

(24)

Proof. From Lemmas 7 and 8 we get (24). ¤

The optimal values of η in (α1

β1

, α2

β2

) space for this case

are shown in Figure 6 (a).

E. Case E: ζ1 + ζ2 > 1, ζ1 ≥ 1 and ζ2 ≥ 1

For this case we get the region as shown in Figure 2(e).

Note that, (i) In the segment [Q,R], (13) holds.

The objective function in the region [Q,R] is same as Eqn.

(21).
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Fig. 7. Examples to illustrate Theorem 1

TABLE I

PARAMETERS FOR ILLUSTRATING THEOREM 1, SHOWN IN FIGURE 7,

γ = 0.5

Figure M1 M2 N α1 α2 β1 β2 η∗

7(a) 150 200 400 2 3 3 2 0
7(b) 100 150 400 2 2 3 3 1
7(c) 150 200 400 2 3 1 2 [0.1875, 0.6667]

Lemma 9: The function J[Q,R](η), given in (21) and de-

fined for η ∈ [0, 1], has a maximum at (i) η = 0, if

α1β2 < α2β1 (ii) at η = 1, if α1β2 > α2β1 and (iii) at

all η ∈ [0, 1], if α1β2 = α2β1.

Proof. This follows directly from Eqn. (21). ¤

Theorem 5: If ζ1 ≥ 1 and ζ2 ≥ 1 the optimum partition-

ing of the defending force Y will be given by,

η∗ =







1, if α1

β1

> α2

β2

0, if α1

β1

< α2

β2

[0, 1], if α1

β1

= α2

β2

(25)

Proof. From Lemma 9 we can immediately get (25). ¤

The optimal values of η in (α1

β1

, α2

β2

) space for this case

are shown in Figure 6 (b).

F. Case F: ζ1 < 1, ζ2 < 1, and ζ1 + ζ2 = 1

For this case we get the region as shown in Figure 2(f): (i)

In the segment [P,R], (15) holds, (ii) In the segment [R,S],

(14) holds.

The objective functions in the region [P,R] and [R,S] are

same as (17) and (19), respectively. The limiting case of

Theorem 1, with ζ1 + ζ2 = 1 holds for this case.

IV. SOME NUMERICAL RESULTS AND DISCUSSIONS

Simulation results to illustrate Theorem 1 with the param-

eter values as given in Table I are shown in Figure 7. In

Figure 7(a), ζ1 + ζ2 ≤ 1, γ
1−γ

> α1

β1

, γ
1−γ

< α2

β2

and so

according to Theorem 1, η∗ = 0, which is supported by

the numerical solution. Similarly, in Figure 7(b), γ
1−γ

> α1

β1

,
γ

1−γ
> α2

β2

, γ
1−γ

(ζ1− ζ2) < ζ1
α1

β1

− ζ2
α2

β2

, and hence η∗ = 1.

TABLE II

PARAMETERS FOR ILLUSTRATING THEOREM 2, SHOWN IN FIGURE 8,

γ = 0.5

Figure M1 M2 N α1 α2 β1 β2 η∗

8(a) 320 450 400 3 2 2 1 0.4375
8(b) 320 450 400 2 3 1 2 0.4
8(c) 150 200 400 2 2 3 3 1
8(d) 210 200 350 2 2 3 3 0

Similarly, in Figure 7(c), γ
1−γ

< α1

β1

and γ
1−γ

< α2

β2

and

hence η∗ = [ζ1, 1 − ζ2].
Simulation results to illustrate Theorem 2 with the pa-

rameter values as given in Table II are shown in Figure 8.

In Figure 8 (a), γ
1−γ

< α1

β1

, γ
1−γ

< α2

β2

, α1

β1

< α2

β2

and so,

according to Theorem 2, η∗ = 1 − ζ2 = 0.4375, which is

supported by the numerical solution. Similarly, in Figure 8
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Fig. 8. Examples to illustrate Theorem 2

(b), γ
1−γ

< α1

β1

, γ
1−γ

< α2

β2

, α1

β1

> α2

β2

and hence the optimum

value occurs at η∗ = ζ1 = 0.4. Similarly, in Figure 8 (c),
γ

1−γ
> α1

β1

, γ
1−γ

> α2

β2

, γ
1−γ

(ζ1 − ζ2) < ζ1
α1

β1

− ζ2
α2

β2

and

hence the optimum value occurs at η∗ = 1. In Figure 8 (d),
γ

1−γ
> α1

β1

, γ
1−γ

> α2

β2

, γ
1−γ

(ζ1 − ζ2) > ζ1
α1

β1

− ζ2
α2

β2

hence

the optimum objective value occurs at η∗ = 0.

The simulation results to illustrate Theorem 3 with the

parameter values as given in Table III are shown in Figure

9. In Figure 9 (a), α1

β1

> α2

β2

, γ
1−γ

< α2

β2

and so according to

Theorem 3, η∗ = ζ1 = 0.5333, which is supported by the

numerical solution. In Figure 9 (b), α1

β1

< α2

β2

and γ
1−γ

< α2

β2

TABLE III

PARAMETERS FOR ILLUSTRATING THEOREM 3, SHOWN IN FIGURE 9,

γ = 0.5

Figure M1 M2 N α1 α2 β1 β2 η∗

9(a) 320 500 300 2 3 1 2 0.5333
9(b) 320 550 250 3 2 2 1 0
9(c) 320 550 550 3 1 2 2 1

and hence the optimum objective value occurs at η = 0. In
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Fig. 9. Examples to illustrate Theorem 3
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Fig. 10. Examples to illustrate Theorem 4

Figure 9 (c), γ
1−γ

> α2

β2

and α1

β1

> α2

β2

and hence the optimum

value occurs at η∗ = 1.

The simulation results to illustrate Theorem 4 with the

parameter values as given in Table IV are shown in Figure

10. In Figure 10 (a), α1

β1

< α2

β2

, γ
1−γ

< α1

β1

and so according to

Theorem 4, η∗ = 1−ζ2 = 0.6429, which is supported by the

numerical solution. Similarly, in Figure 10 (b), γ
1−γ

> α1

β1

and α1

β1

< α2

β2

and hence η∗ = 0. In Figure 10 (c), γ
1−γ

< α1

β1

and α1

β1

> α2

β2

and hence the optimum value occurs at η∗ = 1.

The simulation results to illustrate Theorem 5 with the

parameter values as given in Table V are shown in Figure

11. In Figure 11 (a), α1

β1

> α2

β2

and so according to Theorem

5, η∗ = 1, which is supported by the numerical solution.

In Figure 11 (b), α1

β1

< α2

β2

and hence the optimum objective

value occurs at η∗ = 0.

V. CONCLUDING REMARKS

In this paper, a battle between a defender with only one

type of force and an attacker with two types of forces using

TABLE IV

PARAMETERS FOR ILLUSTRATING THEOREM 4, SHOWN IN FIGURE 10,

γ = 0.5

Figure M1 M2 N α1 α2 β1 β2 η∗

10(a) 550 250 350 3 4 2 2 0.6429
10(b) 550 250 350 2 4 3 2 0
10(c) 650 250 300 4 3 2 2 1
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Fig. 11. Examples to illustrate Theorem 5

TABLE V

PARAMETERS FOR ILLUSTRATING THEOREM 5, SHOWN IN FIGURE 11,

γ = 0.5

Figure M1 M2 N α1 α2 β1 β2 η∗

11(a) 650 500 300 4 3 2 2 1
11(b) 650 610 300 3 4 2 2 0

Lanchester linear model is analyzed in detail. The objective

of the defending force is to maximize the destruction of the

attacking force and the survival of its own force. With the

given initial values, the optimal partitioning of the defending

resources for TZA scheme are obtained both analytically

and numerically. Hence, by knowing the initial strengths

of the opposing forces and the rate at which resources get

destroyed, we can optimally partition the defending force

accordingly as defined by Theorems 1 to 5 for the TZA
scheme.
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