
 
 

 

  

Abstract—This paper discusses application of dynamic 
output feedback linearization algorithm for adaptive control of 
nonlinear MIMO systems. Neural Network based Simplified 
Additive Nonlinear AutoRegressive eXogenous (NN-SANARX) 
structure is used for identification of nonlinear MIMO systems. 
This structure imposes a restriction on model adaptation. The 
model is divided into adaptable and nonadaptable parts. After 
that history-stack adaptation with dynamic output feedback 
linearization is used for adaptive control of nonlinear MIMO 
systems. The effectiveness of the adaptive control technique 
proposed in the paper is demonstrated on numerical example. 

I. INTRODUCTION 
YNAMIC output feedback linearization algorithm 
proposed in [9] was specified for the case of  NN-based 

ANARX structure in [3] and [6]. In [1] and [2] it was 
applied to control of nonlinear SISO systems. Two methods 
for application of this algorithm to control of nonlinear 
MIMO systems were shown in [4] and [5]. The technique 
proposed in [4] introduces a simplified  NN-ANARX model. 
It imposes restrictions on the model, but calculation of a 
vector of control signals comes down to a solution of a 
system of linear equations. The technique proposed in [5] is 
based on introducing an additional neural network into the 
closed loop control system without simplification of the 
model. Our experiments have shown higher robustness of 
the first approach. That is why adaptive controller 
considered in this paper is based on this method. 

While there are many sophisticated training methods for 
neural networks based nonlinear autoregressive exogenous 
models (NN-NARX), the NARX structure itself suffers from 
several drawbacks. First is that in general NARX structure is 
not always linearizable. Second drawback is that in general 
it is not realizable in the classical state-space form [6]-[8]. 
Since the majority techniques for system analysis and 
control design are based on classical state-space description, 
such structure is highly undesirable for the further analysis 
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and control design. Additive NARX (ANARX) and Neural 
Network based Additive NARX (NN-ANARX) structures 
(the structures with reduced coupling) with dynamic output 
feedback linearization algorithm based on these models [3], 
[9] were proposed to bridge the gap. 

This paper gives a brief overview of previous researches 
on NN ANARX model based control of nonlinear MIMO 
systems and designs an adaptive controller for a wide class 
of nonlinear MIMO systems. All the calculations and 
simulations shown in this paper are performed in 
MATLAB/Simulink environment. 

The main contribution of this paper is devoted to 
identification and adaptive control of nonlinear MIMO 
systems. An adaptive control technique based on dynamic 
output feedback linearization of Neural Network based 
Simplified ANARX model with history-stack adaptation is 
proposed in the paper. 

A. Outline of the Paper 
The paper is organized as follows. An overview of 

previous research of NN-ANARX structure and dynamic 
output feedback linearization based control is given in 
section II. Methods for application of this algorithm to 
control of nonlinear MIMO systems are shown in section III. 
Adaptive control of nonlinear MIMO systems is discussed in 
section IV and the effectiveness of the proposed technique is 
demonstrated on numerical example in section V. 
Conclusions are drawn in the last section. 

II. NN-ANARX STRUCTURE BASED DYNAMIC OUTPUT 
FEEDBACK LINEARIZATION OF NONLINEAR SYSTEMS 

Discrete time Nonlinear AutoRegressive eXogenous 
(NARX) models are represented by high order difference 
equation.  

 
))(,),1(),(,),1(()( ntutuntytyfty −−−−= KK .  (1) 

 
This model can be obtained by training a multilayer 

perceptron and is capable of modeling a wide class of 
nonlinear systems, but from the control system point of 
view, this structure has several serious drawbacks. This 
structure can not be represented in classical state-space 
form, there is no possibility to separate different time steps 
and it is not always linearizable by a dynamic feedback. 

The idea of separating time-instances was proposed in 
[10]. ANARX model, presented in [8] and [3] for nonlinear 
SISO systems and in [4] and [5] for nonlinear MIMO 
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systems, is a subclass of NARX models having all time 
instances separated 
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where for SISO systems ( ) ( ) ( )[ ]TtutytZ ,=  and for MIMO 

systems ( ) ( ) ( ) ( ) ( )[ ]T
m

trututytytZ ,,,,
11

KK= . Here r is the 

number of inputs and m is the number of outputs of the 
model. 
 It is very convenient to obtain ANARX model (2) by 
training a neural network of the structure depicted in 
figure 1.  

 
 
Fig. 1. Structure of neural network representing MIMO ANARX model 
 

It can be seen from the figure that neural network 
representing ANARX model is a restricted connectivity 
neural network. Its hidden layer consists of n sub-layers 
corresponding to the n-th order of the model. This model is 
called NN-based ANARX or NN-ANARX and can be 
represented by the following high order difference equation. 
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where ( )⋅iϕ  is an activation function of neurons of the 
corresponding sub-layer, Wi and Ci are matrixes of synaptic 
weights of inputs and outputs of i-th sub-layer. 

 ANARX model (2) can always be linearized by using 
the following dynamic output feedback [9] 
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and the dynamics of the feedback linearization is 
represented by the following system of n-1 first order 
difference equations. 
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Here ( )tv  is the desired output of the system (reference). 
 If ANARX model is obtained in the form of neural 
network (3), equations (5)-(6) can be rewritten by using 
parameters of the neural network as follows [3] 
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 Dynamic linearization (7)-(8) can be used as an output 
feedback controller for nonlinear identified by NN-ANARX 
model (3). The problem of practical application of this 
control technique is calculation of values of control signal 

( )tu  or, in case of MIMO systems, vector of controls 

( ) ( )[ ]tutu r,,1 K  from (7).  
 Control technique (7)-(8) was successfully applied to 
control of nonlinear SISO systems by using Newton’s 
method for numerical calculation of (4) in [1] and [2]. Our 
experiments have shown that 3 iterations guarantee 
sufficient precision [1], [2], but when we have to calculate 
numerous controls this task becomes extremely complex. 
Inverse of the function of several arguments can not be 
calculated numerically fast enough to satisfy the needs of the 
control system. Practically it means that numerical 
algorithms do not converge or the result is not precise and 
can not be used as a control signal. Because of the problem 
described above the algorithm can not be applied to systems 
with multiply inputs. Also, numerical calculation of control 
signal slows down the speed of the control system, which 
may be critical in real time applications. Two methods were 
proposed to overcome these problems and to apply dynamic 
linearization (7)-(8) to control of nonlinear MIMO systems 
in [4] and [5]. To show  the restrictions imposed by these 
methods on adaptive control, NN-ANARX based control of 
nonlinear MIMO systems will be briefly discussed in the 
next section. 

III.  CONTROL OF NONLINEAR MIMO SYSTEMS 
 In [5], dynamic output feedback linearization algorithm 
(7)-(8) was applied to control of nonlinear MIMO systems 
by an additional static neural network approximating 
function (4). According to Stone-Weirstrass theorem [11], 
[12], a two-layer perceptron with nonlinear sigmoid 
activation functions of its hidden layer neurons is capable of 
approximating any arbitrary continuous map to within a 

n-th sub-layer

1st sub-layer
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desired accuracy. 
 First sub-network of neural network depicted in figure 1 
can be simulated as a separate system with random inputs 
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By using this training data set, an additional neural network 
(10) approximating (4) can be trained 
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System (8), (10) is then used as an output feedback 
controller for nonlinear systems identified by NN-ANARX 
model (3).  
 An alternative approach to application of dynamic output 
feedback linearization algorithm (7)-(8) to control of 
nonlinear MIMO systems was proposed in [4]. This method 
is based on Simplified NN-ANARX model and allows exact 
calculation of the vector of control signals (not 
approximation). 
 NN-based Simplified ANARX model (NN-SANARX) 
has linear activation functions on the first sub-layer of the 
hidden layer of the network (3) depicted in figure 1 and can 
be formalized by the following equation 
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 It can be seen from (11) that in order to identify a 
nonlinear system, neural network representing NN-
SANARX model (11) has to have at least two sub-layers of 
the hidden layer. It means that the order of the nonlinear 
model is two or greater ( 2≥n ). 
 NN-SANARX model (11) is a sub-class of ANARX 
models (2) and NN-ANARX models (3). Consequently, it 
also can always be linearized by dynamic output feedback 
(7)-(8). This algorithm can be used model based dynamic 
output feedback control of nonlinear systems identified by 
(11). It has to be mentioned that for MIMO systems ( )tZ , 

( )tu  and ( )ty  are the following vectors: 
 

( ) ( ) ( )[ ]tututu r,,1 K= ,           (12) 

( ) ( ) ( )[ ]tytyty m,,1 K= ,          (13) 

( ) ( ) ( ) ( ) ( )[ ]tututytytZ rm ,,,,, 11 KK= .     (14) 
 

( )rml
i

iW +×ℜ∈ and ilm
iC ×ℜ∈  are input and output matrixes 

of synaptic weights of the corresponding i-th sub-layer of 
the hidden layer of the network depicted in figure 1 and 
representing ANARX structure. Here il  is the number of 
neurons in the i-th sub-layer. 

 Lets define matrix T as  
 

11 WCT ⋅= .            (15) 
 
 It follows from definition (15) that ( )rmmT +×ℜ∈ . It has 
m+r columns and can easily be separated into two matrixes 
T1 and T2 such that 
 

( ) ( ) ( )tuTtyTtZT ⋅+⋅=⋅ 21 ,      (16) 
 

where mmT ×ℜ∈
1

 is a square matrix and rmT ×ℜ∈
2

. 

Equation (7) takes now the following form 
 

( ) ( ) )(121 ttuTtyTF η=⋅+⋅= .       (17) 
 

 In case of MIMO systems, ( )tu  and ( )ty  are vectors and 

vector of control signals ( )tu  has to be calculated on each 
sample by solving system of linear equations (17). It has a 
solution if and only if ( ) rTrank ≥2 . It is possible only if 

mr ≥ . Systems with mr =  were considered in [4]. For this 
class of nonlinear MIMO systems identified by 
NN-SANARX model, mmT ×ℜ∈

2
 is a square matrix. If 

matrix T2 is a nonsingular matrix, system (17) has a unique 
solution, which can be found as 
 

( ) ( )( )tyTtTtu ⋅−= −
11

1
2 )(η .        (18) 

 
 System (8), (18) can now be used as a dynamic output 
feedback controller for systems identified by NN-based 
Simplified ANARX structure (11). Nonsingularity of matrix 
T2 is the criterion of applicability of the model for model 
based control [4] and can be very easily checked after 
identification of NN-SANARX model (11) by using 
obtained matrixes of synaptic weights (15)-(16) of the 
model. 
 Neural Networks based structure of the model makes 
possible to use on-line training as the controller’s adaptation 
technique, but both control algorithms (8), (10) and (8), (18)
  discussed in this section impose an important restriction 
on model adaptation.  

In case of control based on dynamic output feedback 
linearization of NN-ANARX model with additional neural 
network (8), (10), parameters W1 and C1 of the first sub-
layer of model (3) are used for off-line training of network 
(11). Matrixes of parameters W0 and C0 of network (11) 
depend on W1 and C1 and can not be retrained on-line. 

In case of control based on dynamic output feedback 
linearization of NN-SANARX model (8), (18), parameters 
W1 and C1 of the first sub-layer of model (11) should 
guarantee nonsingularity of matrix T2 and therefore can not 
be changed when control system is running. 
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Our experiments have also shown much higher robustness 
of NN-SANARX model based control (8), (18) in 
nonadaptive case. That is why this approach was chosen for 
designing of a dynamic output feedback linearization based 
adaptive controller for nonlinear MIMO systems, which will 
be discussed in detail in the next section of the paper. 

IV. NN-SANARX MODEL BASED ADAPTIVE CONTROL OF 
NONLINEAR MIMO SYSTEMS 

The aim of the adaptive controller is to modify its 
behavior in response to changes in the dynamics of the 
process and disturbances. A real-time estimator is a central 
part in most adaptive controllers [13]. In case of model 
based neurocontrollers, parameters of neural network based 
model have to be adjusted. Thus, classical dynamic output 
linearization can be combined with neural networks based 
adaptation. 

The requirement to learn from incidents or samples from 
the environment has parallels with human learning and 
memory. There are two types of memories: short-term 
memory and long-term memory. The theory says that all 
new information to be memorized must first be processed 
through the short-term memory [14]. 

History-stack adaptation (HSA) algorithm [14] was used 
to adapt the model. It retains a short history of process 
patterns (short-time memory) that can represent an 
approximation to the nonlinear process dynamics. This 
information containing in the History Stack (HS) is then 
transferred into the long-time memory by means of training 
algorithm. 

The control system consists of unknown nonlinear plant 
preceded by the linearizing feedback (8), (18). Unknown 
plant is modeled by the NN-SANARX structure (11). At 
each time-step the plant model is adjusted by HSA 
algorithm. The HS operates as a First-In-First-Out (FIFO) 
stack containing np patterns. At each time-step k HS accepts 
(memorizes) a net pattern ( )tZ  from the process and 
discards (forgets) the oldest pattern ( )pntZ − . These 

elements ( ) ( ) ( )1,,1, +−− pntZtZtZ K  constitute the 

training set and are used in nc cycles to update the weights 
[14], [15]. To achieve a good process performance the 
proper choice of the parameters np and nc is essential [15]. 

It was shown in the previous section that if the neural 
network is adjusted on-line by an adaptation algorithm, 
matrix T2 may become singular or close to singular that 
according to (16)-(18) leads to extreme growth of control 
signal u(t). That is why first sub-layer of the network shown 
in figure 1 and representing SANARX model of a nonlinear 
MIMO system has to be excluded from the adaptation 
procedure. Two matrixes of synaptic weights of the model 
W1 and C1 should remain constant after checking 
nonsingularity of matrix T2 when the model is trained 
off-line. 

It has to be mentioned that following from (3) and (7), 
NN-ANARX  model can be represented as 

( ) ( ) ( )( )∑
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n
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where, from the control point of view, vector ( )t1η  comes at 
each time step from the dynamics (8) of the controller. 
 From the other hand, for NN-based SANARX model (11) 
 

( ) ( )tZWCt ⋅⋅= 111η .          (20) 
  
Now model (11) can be separated into adaptive ya(t) and 
nonadaptive yn(t) parts so that 
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 According to (19), etalon vectors for training of network 
(23) representing adaptable part of the model can always be 
very easily found as 
 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]tttytytyty mm
a
m

a
,11,111 ,,,,,, ηη KKK −= . (24) 

 
Here vector ( ) ( )[ ]tyty m,,1 K  is obtained from the output of 
the controlled system and vector ( ) ( )[ ]tt m,11,1 ,, ηη K  is 
computed by the dynamic feedback controller (8). 
 History-stack adaptation technique is proposed for  
adaptation of (23). Set of vectors 

( ) ( ) ( ){ }p
a niityituity ,,1,,, K=−−−  is used as the 

training set for model adaptation by on-line training of (23). 
Vector ( )tya  is defined by (24) and np is the number of 
patterns in the stack (size of the history-stack). 

The structure of the control scheme for adaptive control 
of nonlinear MIMO systems based on dynamic output 
feedback linearization of NN-SANARX model with history-
stack adaptation is presented in figure 2. 

 
Fig. 2. Adaptive control of nonlinear MIMO systems 
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 It can be seen from the figure that the adaptation 
algorithm (HSA) utilizes current inputs and outputs from the 
controlled system together with the vector of inner states of 
the controller. Thus, adaptation is based on the following 
vectors 
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and adaptation is applied to only a part of the model - to 
adaptive sub-network (23). 
 Closed loop control system with adaptation was simulated 
on a nonlinear MIMO test system with input/output 
disturbances. Our experiments have shown high 
effectiveness and robustness of the proposed technique. 
Consider the following numerical example. 

V. NUMERICAL EXAMPLE 
A nonlinear MIMO discrete-time system [16], [17], [4] is 

represented by the following input-output equation 
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System (21) was simulated and the obtained  set of input-

output data was used for training of MIMO NN-based 
SANARX structure (27) with two sub-layers corresponding 
to the second order of model (11). 
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(27) 
As it was shown in [4], minimal order of NN-SANARX 

model representing a nonlinear dynamic system is 2 (n=2), 
because of linearity of the first sub-layer. The first layer 
consisted of 2 linear neurons ( 21 =l ) and the second layer 
consisted of 5 nonlinear neurons ( 52 =l ) with hyperbolic 
tangent sigmoid activation functions. 

Levenberg-Marquardt (LM) training algorithm was 
chosen to perform off-line training of the model since neural 
network representing ANARX model is a restricted 
connectivity network and LM algorithm is much more 
efficient compared to other techniques when the network 
contains no more than a few hundred weights [18]. Also the 
training speed of LM algorithm is much higher and the feed 
forward neural network trained with it can better model the 
nonlinearity [19]. Identified parameters of model (27) can be 
found in [4] where nonadaptive control of system (26) by 
dynamic output feedback linearization of NN-SANARX 
model is demonstrated. 
 By using these parameters, NN-SANARX model based 

dynamic output feedback controller for system (26) can be 
represented by the following equations 
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where T1 and T1 are defined by (16) and [ ]Ttvtv )(),( 21  is 
the vector of reference signals corresponding to two 
controllable outputs of the system. See [4] for more details. 
 In [4] feedback controller (28) was successfully applied to 
nonadaptive control of nonlinear MIMO system (26). Our 
experiments have also shown that because of high 
robustness of the considered control technique, it is capable 
of compensating high input and output disturbances as well 
as flowing of parameters of the controlled system (up to 
100%) when these disturbances and changes in the dynamics 
of the system do not occur in the same time. Problems (high 
oscillations and big static errors) arise when they present in 
the control loop simultaneously. The aim of the following 
experiment is to show the effectiveness of the propose 
adaptive control technique in case of presence of high 
disturbances on inputs and outputs of the controlled system 
together with changing of its parameters. 
 For this experiment, (26) takes the following form 
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In (30)-(33), [ ]2500 ;0∈t . Changes of parameters in time 
corresponding to (30)-(33) are also illustrated in figure 3. 
Disturbances given to two inputs and two outputs of system 
(29)-(33) are depicted in figure 4. 
 NN-SANARX model based dynamic output feedback 
linearization with history-stack adaptation corresponding to 
the structure of the closed loop system depicted in figure 2, 
was used for adaptive control of system (29)-(33). 

We suggest to implement the gradient descent training 
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algorithm in adaptive control scheme. The main advantage 
of latter is that it consists of a higher number of shorter 
iterations. On each iteration updated weights can be 
calculated very fast that is critical in some real-time 
applications. The stack length of HSA was set to 200 
patterns (np = 200). 

The result of the control system simulation is depicted in 
figure 5. It can be seen from the figure that outputs y1(t) and 
y2(t) of system (29)-(33) are capable of simultaneous 
tracking the desired reference signals v1(t) and v2(t) 
compensating undesirable influences of disturbances and 
changes in the dynamics of the process thus meeting the aim 
of an adaptive control system. 
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Fig. 3 Changes of parameters of the controlled system in time 
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Fig. 4 Input and output disturbances of the controlled system 
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Fig. 5 NN-SANARX model based adaptive control of nonlinear MIMO 

system 

VI. CONCLUSION 
This paper designs an adaptive feedback controller for 

nonlinear MIMO system modeled by Neural Networks 
based Simplified ANARX structure. Classical dynamic 
output feedback linearization is combined with neural 
network based history-stack adaptation. 

Because of specific of NN-SANARX model based 
control, the model has to be divided into adaptable and 
nonadaptable parts in order to make the control algorithm 
adaptive. The proposed adaptation technique is based on the 
stack of controller’s input and output values as well as inner 
states of the dynamic feedback controller. 

Experiments have shown high robustness of the proposed 
control technique and capability the adaptive control system 
to modify its behavior in response to changes in the 

dynamics of the process and disturbances .. The control 
technique proposed in the paper can applied to control of a 
wide class of nonlinear MIMO systems. 
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