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Abstract— A new force field for geometric active contour,
called inertia, is proposed in this paper. Based on analyzing the
evolution process of geometric active contour and constructing
extension velocities in level set method, it is found that geometric
active contour can inherit its evolution velocities at the previous
time step and has a tendency to keep its original movement
state through integrating inertia force field into it. As an useful
complementarity to the force field family for geometric active
contour, inertia force can be integrated with other force fields
to compose the coupling force field. Experimental results with
several test images reveal that, compared with geodesic active
contour integrated with gradient vector flow, geodesic active
contour integrated with inertia and gradient vector flow, can
enter into long, thin indention of the objects’ edge.

I. INTRODUCTION

Active contours [1] are curves defined within an image

domain that can move under the influence of the internal

forces within the curve itself and external forces computed

from the image data. They have been widely studied and their

applications mainly include boundary extraction, shape mod-

elling, segmentation of objects and motion tracking. There

are two general types of active contour models: parametric

active contours [1] (or snakes) and geometric active contour

[2][3] (or geodesic active contour [3]).

The internal and external forces need be defined so that

active contours will conform to an object boundary or other

desired features within an image. The traditional force field

has small capture range and is sensitive to the initial curve.

In order that the curves converge the edges of objects well

and truly, many improved force fields were put forwarded.

Cohen [5] presented the balloon force, which enlarges the

capture range of active contour, but can not enter into the

concavities of the objects’ edge. Xu and Prince [6] proposed

gradient vector flow external force field, known as GVF,

which solves the problem of small capture range and can go

into the concavities of the objects’edge in principle. Chan

and Vese proposed C-V method in [7]. It depends on the

image information derived from homogenous regions and

therefore it can obtain favorable results in fuzzy or discrete

cases. However, in spite of these advantages, C-V method has

an unavoidable restriction. That is, there are only two classes,

the objects and the background. Paragios [9] integrated

GVF into the geodesic active contour and proposed new
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geometric flows for boundary extraction, which improved the

segmentation effects of geodesic active contour.

Though gradient vector flow and other force fields were

proposed to enlarge the capture range of external force field,

it still seems difficult for contour curves to enter into long,

thin intention of the objects’ edge. In this paper we proposed

inertia for geodesic active contour to address this problem.

Inertia is constructed on the base of GVF force field. In the

inertia force field, the evolving curves implicitly inherit their

velocities at the previous time step and have the tendency to

keep their original movement state.

This paper is organized as follows: In section 2, geodesic

active contour and geometric flow integrated with GVF for

boundary extraction are analyzed. In section 3, the proposed

inertia force field and geometric flows integrated with in-

ertia force for boundary extraction are explained and their

numerical implementation is given. Section 4 describes the

experimental results and gives an analytical discussion. Some

concluding remarks are made in section 5.

II. BACKGROUND

A. Front Evolution and Level Set Theory

Let C(p, t), defined as {x(p, t),y(p, t)} in 2D, denote a

family of closed contours (i.e. curves) generated by evolving

an initial contour C0(p) = C(p,0). where t parameterizes

the family and p parameterizes the given contour. The basic

result from the front evolution theory is that the geometric

shape of the contour is determined by the normal component

of the evolution velocity, while the tangential component

affects only the parameterization. Hence, after a possible

reparameterization, the evolution equation can be written as:

{

∂C(p,t)
∂ t

= F(C(p, t))~n(C(p, t)),

C(p,0) = C0(p),
(1)

where F(C(p, t)) is a scalar function and ~n(C(p, t)) is the

unit normal vector along the contour C(p, t).
The level set technique represents the contour C(p,t)

implicitly as the zero level set of a smooth, Lipschitz-

continuous scalar function Φ(x, t), also known as level set

function, where x ∈ ℜ2 in 2D. The implicit contour at any

time t is given by C(·, t) = {x|Φ(x, t) = 0}. By differentiating

Φ(x, t) = 0 with respect to t and substituting (1), the follow-

ing associated equation of motion for the level set function

Φ(x, t) can be derived:

{

∂Φ(x,t)
∂ t

= F(x, t)|∇Φ(x, t)|,

Φ(C0(p),0) = C0(p),
(2)
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where ∇ is the gradient operator and |∇Φ(x, t)| denotes

the norm of the gradient of Φ.

B. Geodesic Active Contour

Let C : [0,1] → ℜ2 be a parametrized planar curve and

Let I : Z+ ×Z+ → ℜ+ be a given image in which we want

to detect the objects boundaries. Geodesic active contour, as

proposed by Caselles et al in [4], is given by

E[C(p)] =
∫ L

0
g(I)(|∇I(C(s))|)ds

=
∫ 1

0
g(I)(|∇I(C(p))|)|

∂C

∂ p
(p)|d p

(3)

Where g is a monotonically decreasing function:

g : [0,+∞] → ℜ+,g(0) = 1,g(x) → 0 as x → +∞.

ds is the Euclidean arc-length element and L the Euclidean

length of C(p). In this paper g is given as following:

g(I) =
1

1+ |∇Î|p
(4)

where Î is an enhanced version of I and p = 2. Î is obtained

through anisotropic selective inverse diffusion proposed by

Gilboa et al in [8].

In order to minimize (3), Caselles et al proposed the

following geodesic flow:

Ct = gk~n− (∇g ·~n)~n (5)

Where t denotes the time as the contour evolves, ~n is the

unit inward normal and k is the Euclidean curvature.

C. Gradient Vector Flow Geodesic Active Contour

In [6] Xu and Prince proposed gradient vector flow exter-

nal force field, known as GVF, which is defined to be the

vector field

ν(x,y) = [u(x,y),v(x,y)] (6)

It has large capture range and minimizes the energy function:

Q =
∫ ∫

µ(u2
x +u2

y + v2
x + v2

y)+ |∇ f |2|ν −∇ f |2dxdy (7)

where f is edge map of enhanced image Î and µ is weighting

parameter. GVF is a dynamic force field, which diffuses

along the directions of x and y of image gradient simul-

taneously, and could preserve the image’s edge information

well after numerous iterations.

Through integrating the normalized GVF (NGVF) into

geodesic flow, a new geometric flow for boundary extraction

was proposed in [8], given by

Ct = βgk~n+(1−β )g(ν̂ ·~n)~n (8)

Where β is a constant parameter that balances the contribu-

tion between regularity force and boundary attraction force.

g is defined in (4). ν̂ is the NGVF and ~n is unit inner normal

vector.

The balloon force can be integrated to the proposed flow

and be used to promote the evolution of active contour when

the NGVF is close to orthogonal to the inward normal. The

adaptive balloon force is defined as following:

Fballoon =
l

2
e−l|ν̂ ·~n|sign(ν̂ ·~n) (9)

where l is a scale factor and l ∈ ℜ+.

The new geometric flow integrated with NGVF and adap-

tive balloon force is given by:

Ct =βgk~n+(1−β )g

(

(1−
l

2
e−l|ν̂ ·~n|sign(ν̂ ·~n))(ν̂ ·~n)

+
l

2
e−l|ν̂ ·~n|sign(ν̂ ·~n))

)

~n

(10)

The above boundary-driven geometric flow can handle

a larger set of initial conditions compared to the geodesic

active contour and improves its segmentation effects.

III. GEODESIC ACTIVE CONTOUR MODEL INTEGRATED

WITH INERTIA

Inertia, a new force field for geodesic active contour, is

quite different from traditional force fields. Inertia has the

traits of internal force field and external force field. On one

hand, it comes from curves themselves represented with the

zero level set and is in direct ratio to their evolution velocities

at the previous time step. On the other hand, its influence on

the evolving curves is constrained by the friction computed

from NGVF and the unit normal vector along the contour.

A. Inertia Force Field

Inertia is used to drive the evolution of geodesic active

contours when they get ”trapped” by extraneous or undesir-

able edges due to the invalidation of other external forces.

In a way, that the curves evolve under the action of

Fig. 1. the function of inertia force

boundary-driven geometric flows defined in (8) and (10) is

similar to rolling a ball down a rough slope under the action

of gravitation and friction, as is shown in Fig.1. In order

to explain the function of inertia force field, We assume that

the tangent vector along the slope is equivalent to the normal

direction of the point on the evolving curves and the gravity

is equivalent to NGVF force. We also assume that the friction

is equivalent to the absolute value of the inner product of

NGVF and unit normal vector along the curve. The function

of inertia is explained as follows:

• Let the ball roll down the slope from the point A, as is

shown in Fig.1. When the ball is rolling from B to C,
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the gravity is close to orthogonal to the tangent vector

along the slope and fails to pull the ball from B to C.

If there were no inertia, the ball would stop at B which

is a stable NGVF force balance point and corresponds

to the position without desirable boundary. If there is

inertia and the friction isn’t too large, the ball will get

across C and reach D which is also a stable NGVF

force balance point and corresponds to the point on the

desirable boundary.

• Let the ball roll down the slope from C and it will get

across D which corresponds to a stable NGVF force

balance point without desirable edge. When the ball is

rolling from D to E, the NGVF force tries to drag the

ball back to D. With the help of inertia force, the ball

gets across E and reaches F which is also a stable NGVF

force balance point and corresponds to the point on the

desirable boundary. It seems that the ball may leave F

and continue to roll toward G due to inertia. But it is

difficult for the evolving curves to get across the real

boundary with high gradient magnitude. The reason is

that the function value of g is very small near the real

boundary and the inertia is decreased acutely. Even if

the evolving curves get across the real boundary a little,

they would be dragged back by NGVF force pointing to

the real boundary from its both sides. Thus, the evolving

curves will stay at the real boundary in the end.

• It seems that it is the necessary condition for the ball

to get across E that point C is higher than point E and

inertia is sensitive to initial curve. But in fact, it is inertia

that may make the geometric active contour to be less

sensitive to initial curve. If the ball rolls down from C

with certain initial speed, it can get across E even if C

is lower than E.

Inertia force field constrained by friction is given as:

Ff riction = λ |ν̂ ·~n| (11)

Finertia =
C

t
′

1+Ff riction

=
C

t
′

1+λ |ν̂ ·~n|
(12)

Where λ is positive attenuation coefficient which is used

to adjust the attenuation speed of inertia force. C
t
′ is the

velocities of the evolving curves at the previous instant.

B. Geodesic Flow Integrated with Inertia

We integrate inertia and NGVF into geodesic flow and get

the following edge-driven geometric flow:

Ct = αgk~n+βg

(

ν̂ ·~n+
C

t
′

1+λ |ν̂ ·~n|

)

~n (13)

where α , β and λ are positive constant parameters that

balance the contribution among regularity force, boundary

attraction force and inertia force.

We can also integrate NGVF, adaptive balloon force and

inertia into geodesic flow and get the following edge-driven

geometric flow:

Ct =αgk~n+βg

(

(1−
l

2
e−l|ν̂ ·~n|sign(ν̂ ·~n))(ν̂ ·~n)

+
l

2
e−l|ν̂ ·~n|sign(ν̂ ·~n))+

C
t
′

1+λ |ν̂ ·~n|

)

~n

(14)

The interpretation of above geometric flows is as follows:

• When the contour curves are marching or counter-

marching toward object boundary, the NGVF and the

inward normal vector have nearly the same or opposite

directions (|v̂ ·n|→1), the friction is large and the inertia

is attenuated maximally. when the NGVF is close to

orthogonal to the normal(|v̂ ·n|→0) , the inertia force is

little attenuated and the evolving curves have a tendency

to keep original movement state. In this way, geodesic

active contour integrated with inertia force and NGVF

has the ability to enter into long, thin indention.

• The function value of g round the real boundary is

very small. When the curves approach the real bound-

ary, their evolving velocities are decreased acutely and

the inertia force has very small amount. Thus inertia

contributes little to the evolution of the curves. Here

geodesic active contour integrated with NGVF and

inertia has similar convergence quality with gradient

vector flow geodesic active contour .

• The force fields are defined for all level sets, not just

the zero level set corresponding to the interface contour

curve. But only the forces on the grid points around

the zero level set are computed from (13) (or (14)) and

the forces on all other grid points are computed through

constructing ’extension velocities’.

The evolution of the proposed flows is equivalent to

searching for a steady-state solution of the following equa-

tions:

Φt =F |∇φ |

=αgk|∇Φ|−βg

(

ν̂ ·∇Φ+
∆Φ

′
· |∇Φ|

1+λ |ν̂ · ∇Φ
|∇Φ| |

)

(15)

Φt =F |∇φ |

=αgk|∇Φ|−βg

(

(1− γ(ν̂ ·
∇Φ

|∇Φ|
))(ν̂ ·∇Φ)

+ γ(ν̂ ·
∇Φ

|∇Φ|
)sign(ν̂ ·

∇Φ

|∇Φ|
)|∇Φ|+

∆Φ
′
· |∇Φ|

1+λ |ν̂ · ∇Φ
|∇Φ| |

)

(16)

Due to integrating NGVF and inertia force into geodesic

flow, new boundary-driven geometric flows enable active

contour to enter into long, thin indention of the objects’

edge and further improve the segmentation effect of geodesic

active contour.

C. Numerical Implementation

Denote a grid point by Xi and the discrete time scale by

tm , where i, m are integers. The resulting level set update

equation can be written as

Φ(Xi, tm+1) = Φ(Xi, tm)+∆t∆Φ(Xi, tm) (17)
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Fig. 2. the transfer of inertia force

Where ∆t = tm+1 − tm is the time-step size. Given an initial

level set function Φ(·, t0), (17) can be used to update the level

set function at successive time instants tm+1, m=0,1,..., until

convergence. Although not explicitly computed until the end,

the zero level set represents the evolving contour(s).

The forces are really only meaningful at the zero level set

of Φ. Yet, the update equation (17) applies to all values of

Φ, not just those around zero. In order to extend the force

field to all level sets and enable the evolving contours to

inherit their velocities at the previous time-step, ’extension

velocities’ proposed by Sethian and Adalsteinsson in [13]

was used in this paper. To initialize the process, the grid

points closest to the moving contour inherit the velocities of

the closest evolving contour points. Solve the PDE

Fτ + sign(φ)
∇Φ

|∇Φ|
∇F = 0 (18)

with initial condition F=0 except at these points. F is a

scalar function and specified in (15) and (16). Note that on

the contour represented with the zero level set, the force F

does not change, thus preserving the boundary condition. For

the implementation, this translates into conservation of the

values of F at these nearby grid points. At convergence, when

Fτ = 0 the solution satisfies ∇Φ ·∇F = 0 which means that

F is a constant along the normals to the level sets. Every

level set then evolves with the same speed. Therefore, the

velocities of the evolving curves are extended to all level sets.

This means that all grid points in the same normal direction

inherit the velocity of corresponding grid point closest to the

zero level set at the previous time step. After the level set

function Φ is updated, the grid point, which will become one

of the grid points closest to the zero level set at the current

time step, can inherit its velocity at the previous time step.

Fig.2 illustrates the transfer of inertia force. Cm denotes

the evolving curve at tm. A is one of the points on the contour

curve Cm. nm is the normal at point A on the curve Cm. B is

a point of intersection lying on the contour curve Cm+1 and

the normal nm. nm+1 is the normal at point B on the curve

Cm+1. (p,q) is the coordination of grid point B. F(XA, tm) is

the composition of forces acting on the grid point XA at tm
and is specified in (15) and (16). Inertia acting on the grid

point XB at tm+1 is given as following:

∆Φ
′
(XB, tm+1) = F(XA, tm)|∇φ(XA, tm)|

= F(XB, tm)|∇φ(XA, tm)|
(19)

(a) input image and initial curve (b) NGVF

(c) geodesic active contour inte-
grated with NGVF

(d) geodesic active contour inte-
grated with NGVF and inertia force

Fig. 3. U shape

Finertia(XB, tm+1) =
∆Φ

′
(XB, tm+1)

1+λ |ν(p,q) ·
∇Φ(XB,tm+1)
|∇Φ(XB,tm+1)| |

(20)

The transfer of inertia force is implemented when the

component of F(XA, tm) in the direction of the normal

nm is transferred to B. The direction of the component

of F(XA, tm) is changed from the direction of nm to the

direction of nm+1. The magnitude of the component of

F(XA, tm) is attenuated by the friction.

IV. EXPERIMENTAL RESULT

In this section, we present several experiments which

apply the geometric flows integrated with inertia force field.

Two synthetic images and two real images have been used for

the validation of the proposed inertia force field. Promising

experimental results were obtained. In the following figures,

the red thin curves denote the initial contour curves and

the evolving curves. The green thick curves denote the

convergence curve.

We test Fig.3(a) with 128×128 pixel. The Fig.3(b) shows

the NGVF force field. In the long, thin concavity, NGVF

force is nearly opposite, which implies that it can not

completely enter into the concavity. The Fig.3(c) shows

that geodesic active contour integrated with NGVF fails to

completely enter into the concavity. Inertia offers a force

pointing to the bottom of the concavity. In Fig.3(d) the initial

curve begins to evolve with zero initial speed. It is clearly

shown that geodesic active contour integrated with NGVF

and inertia force completely enters into the concavity .
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(a) input image and initial curve (b) geodesic active contour inte-
grated with NGVF

(c) geodesic active contour inte-
grated with NGVF and inertia force

(d) geodesic active contour inte-
grated with NGVF and inertia force

Fig. 4. U shape

In Fig.4 the curve begins to evolve from the new initial

position. The Fig.4(b) shows the convergence process of

geodesic active contour integrated with NGVF. It is obvious

that the curve converge the same position as is shown in

Fig.3(c). The influence of initial curve on the evolution of

contour curves is shown in Fig.4(c). Though inertia force

and NGVF were integrated into geodesic active contour, the

evolving curve still fails to enter into the concavity. In order

that the curve can completely enter into the concavity, initial

speed is given to initial curve. In Fig.4(d) the initial speed

of A is equal to 10 in the direction of inner normal and the

initial speed of B is equal to 0. The initial speed of the other

points on the initial curve is linearly interpolated between

A and B. Let the curve begin to evolve with initial speed

computed by above-mentioned method. It is clearly shown

that the curve completely enters into the concavity.

Fig.5(a) is a medical CT image with 256×256 pixel. We

test it to illustrate the difference segmentation performance

between the geodesic active contour integrated with NGVF

and the geodesic active contour integrated with NGVF and

inertia force. In Fig.5(d) the initial contour curve begins

to evolve with zero initial speed and extracts the boundary

successfully. In the above three experiments, the parameters

are set as follows: α = 0.02, β = 1, λ = 0.15.

Fig.6 shows a sheet metal gauge with many blob-like

concave regions. The original 240×240 pixels image and the

initial curve are shown in Fig.6(a). The Fig.6(b) shows the

NGVF force field. The Fig.6(c) shows that geodesic active

contour integrated with NGVF and adaptive balloon force

cannot extract any blob-like concave. In Fig.6(d) geodesic

(a) input image and initial curve (b) NGVF

(c) geodesic active contour inte-
grated with NGVF

(d) geodesic active contour inte-
grated with NGVF and inertia force

Fig. 5. Medical CT image

active contour integrated with NGVF, adaptive balloon force

and inertia force begins to evolve with initial speed which is

equal to 10 in the direction of inner normal on every initial

contour point. The geodesic active contour integrated with

NGVF, adaptive balloon force and inertia force overcomes

the resistance coming from NGVF when it tries to enter

into blob-like concaves. It is clearly shown that it extracts

most of them successfully in different directions around the

circular disc, except for those gaps which have increasingly

high curvature of those structures. In this experiment, the

parameters are set as following: l = 1, α = 0.02, β = 1,

λ = 0.1.

Fig.7(a) and Fig.7(c) shows two hexagram images blurred

by 20% and 30% impulse noise respectively. On one hand,

that inertia is integrated to geodesic active contour increases

the probability that active contour leaks through the weak

edge; On the other hand, inertia is constructed on the

base of NGVF force field so that its anti-jamming ability

highly depends on the quality of edge map which is used

to calculate NGVF. In order to avoid weak-edge leakage,

we use anisotropic selective inverse diffusion to enhance

edge in the presence of noise. It is shown in Fig.7(b) and

Fig.7(d) that despite that noise blurs the edge , geodesic

active contour integrated with NGVF, adaptive balloon force

and inertia force does not leak through the blurred boundary

and converges the real boundary successfully.

V. CONCLUSIONS AND FUTURE WORKS

We have introduced a new force field for geometric active

contours, which is called the inertia force field. The inertia

force field is in direct ratio to evolution velocities of contour
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(a) input image and initial curve (b) NGVF

(c) geodesic active contour inte-
grated with NGVF and adaptive bal-
loon force

(d) geodesic active contour inte-
grated with NGVF, adaptive balloon
force and inertia force

Fig. 6. Metal gauge

curves at the previous time step. Its effect on the evolving

contour curves is constrained by the friction computed from

image data and contour curves. We integrated both inertia

force field and other force fields into geodesic active contour

and gained new geometric flows for boundary extraction.

Experimental results show that the new geometric flows

enable contour curves to enter into into long, thin indention.

Further investigations into the character and use of inertia

force field are warranted. In particular, constructing the

inertia force in other force fields may be helpful to the

application of inertia force.
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