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Abstract—This paper addresses the state-estimation problem
for nonlinear systems in a context where prior knowledge, in
addition to the model and the measurement data, is available
in the form of an equality constraint. Three novel suboptimal
algorithms based on the unscented Kalman filter are devel-
oped, namely, the equality-constrained unscented Kalman filter,
the projected unscented Kalman filter, and the measurement-
augmented unscented Kalman filter. These methods are com-
pared on two examples: a quaternion-based attitude estimation
problem and an idealized flow model involving conserved
quantities.

I. INTRODUCTION

Under Gaussian noise and linear dynamics assumptions,
the equality-constrained Kalman filter (ECKF) [19] is the
optimal solution to the equality-constrained state-estimation
problem. ECKF takes advantage of prior knowledge of the
state vector provided by an equality constraint and uses this
information to obtain better estimates than would be provided
by the classical Kalman filter (KF) [9] in the absence of such
information.
Although it is difficult to make correspondingly precise

statements in the case of nonlinear systems, the same
principles and objectives apply. For example, in undamped
mechanical systems, such as a system with Hamiltonian
dynamics, conservation laws hold. In the quaternion-based
attitude estimation problem, the attitude vector must have
unit norm [4]. Additional examples arise in optimal control
[6], parameter estimation [1, 22], and navigation [23].
However, the solution to the equality-constrained state-

estimation problem for nonlinear systems is complicated by
the fact that the random variables are not completely char-
acterized by their first-order and second-order moments [5].
Thus, suboptimal solutions based on the extended KF (EKF)
[9] are generally used. One of the most popular techniques
is based on measurement augmentation, in which a perfect
“measurement” of the constrained quantity is is appended to
the physical measurements [22, 23]. In addition, the estimate-
projection method [17] has also been considered. A two-
step projection algorithm for handling nonlinear equality
constraints is presented in [10].
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In this context, two contributions are presented in this
paper. First, we present and compare three suboptimal al-
gorithms for state estimation for equality-constrained non-
linear systems, namely, the equality-constrained unscented
KF (ECUKF), the projected unscented KF (PUKF), and
the measurement-augmented unscented KF (MAUKF). These
methods, which extend algorithms for equality-constrained
state estimation developed for linear systems [19], are based
on the unscented Kalman filter (UKF) [11, 12], which is a
specialized sigma-point Kalman filter (SPKF) [21]. Recent
work [7, 12, 14, 21] reports the improved performance of
SPKFs compared to EKF, which is prone to numerical
problems such as sensitivity to initialization, divergence, and
instability for strongly nonlinear systems [16]. A quaternion-
based attitude estimation problem [4] is addressed to illus-
trate ECUKF, PUKF, MAUKF, and UKF. Although the state
of the process model satisfies the unit norm constraint, this
constraint is violated by the state estimates obtained from
unconstrained Kalman filtering [4].
Second, we use equality-constrained Kalman filtering

techniques to improve estimation when an approximate
discretized model is used to represent a continuous-time
process. According to [15], constraints can also be used
to correct model error. The problem of using UKF with
discrete-time models obtained from black-box identification
to perform state estimation for continuous-time nonlinear
systems is treated in [2]. We illustrate the application of
equality-constrained unscented Kalman filter techniques to
this problem through an example of a one-dimensional
inviscid and compressible hydrodynamic model discretized
by means of a finite-volume scheme [3]. The boundary
conditions are chosen such that density and energy are
conserved, and this knowledge is used to improve the state
estimates. A detailed version of this paper appear as [18, 20].

II. STATE ESTIMATION FOR NONLINEAR SYSTEMS

For the stochastic nonlinear discrete-time dynamic system

xk = f (xk−1, uk−1, wk−1, k − 1) , (2.1)
yk = h (xk, k) + vk, (2.2)

where f : R
n×R

p×R
q×N → R

n and h : R
n×N → R

m are,
respectively, the process and observation models, the state
estimation problem can be described as follows. Assume that,
for all k ≥ 1, the known data are the measurements yk ∈ R

m,
the inputs uk−1 ∈ R

p, and the probability density functions
(PDFs) ρ(x0), ρ(wk−1) and ρ(vk), where x0 ∈ R

n is the
initial state vector, wk−1 ∈ R

q is the process noise, and
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vk ∈ R
m is the measurement noise. Next, define the profit

function
J(xk)

�
= ρ(xk|(y1, . . . , yk)), (2.3)

which is the conditional PDF of the state vector xk ∈ R
n

given the past and present measured data y1, . . . , yk. Under
the stated assumptions, the maximization of (2.3) is the state
estimation problem, while the maximizer of J is the optimal
state estimate.
However, the solution to this problem is complicated by

the fact that, for nonlinear systems, ρ(xk|(y1, . . . , yk)) is not
completely characterized by its mean x̂k|k and covariance
P xx

k|k

�
= E

[
(xk − x̂k|k)(xk − x̂k|k)

T
]
[5]. We thus use an

approximation based on the classical Kalman filter (KF)
for linear systems [9] to provide a suboptimal solution to
the nonlinear case, specifically, the unscented Kalman filter
(UKF) [11]. To accomplish that, UKF propagates only ap-
proximations to x̂k|k and P xx

k|k using the initial mean x̂0|0 and

the covariance P xx
0|0

�
= E

[
(x0 − x̂0)(x0 − x̂0)

T
]
of ρ(x0).

We assume that the maximizer of J is x̂k|k. Furthermore, we
assume that the mean and covariance of ρ(wk−1) and ρ(vk)
are known and equal to zero and Qk−1, Rk, respectively.
Also, wk−1 and vk are assumed to be uncorrelated.

A. Unscented Kalman Filter
Instead of analytically linearizing (2.1)-(2.2) and using the

KF equations [9], UKF employs the unscented transform
(UT) [12], which approximates the posterior mean ŷ ∈ R

m

and covariance P yy ∈ R
m×m of a random vector y obtained

from the nonlinear transformation y = h(x), where x is
a prior random vector whose mean x̂ ∈ R

n and covariance
P xx ∈ R

n×n are assumed known. UT yields the actual mean
ŷ and the actual covariance P yy if h = h1 + h2, where h1

is linear and h2 is quadratic [12]. Otherwise, ŷk is a pseudo
mean and P yy is a pseudo covariance.
UT is based on a set of deterministically chosen vectors

known as sigma points. To capture the mean x̂a
k−1|k−1 of

the augmented state vector xa
k−1

�
=

[
xk−1

wk−1

]
, where

xa
k−1 ∈ R

na and na
�
= n+ q, as well as the augmented error

covariance P xxa
k−1|k−1

�
=

[
P xx

k−1|k−1 0n×q

0q×n Qk−1

]
, the sigma-

point matrix Xk−1|k−1 ∈ R
na×(2na+1) is chosen as

Xk−1|k−1 = x̂
a
k−1|k−111×(2na+1) +

√
(na + λ)

×

[
0na×1

(
P

xxa
k−1|k−1

)1/2
−

(
P

xxa
k−1|k−1

)1/2
]

, (2.4)

with weights


γ
(m)
0

�
=

λ

na + λ
,

γ
(c)
0

�
=

λ

na + λ
+ 1− α

2
+ β,

γ
(m)
i

�
= γ

(c)
i

�
= γ

(m)
i+na

�
= γ

(c)
i+na

�
=

1

2(na + λ)
, i = 1, . . . , na,

(2.5)

where (·)1/2 is the Cholesky square root, 0 < α ≤ 1, β ≥ 0,
κ ≥ 0, and λ

�
= α2(κ + na) − na > −na. We set α = 1

and κ = 0 [7] such that λ = 0 [11] and set β = 2 [7].
Alternative schemes for choosing sigma points are given in

[11]. The notation x̂k|k−1 indicates an estimate of xk at time
k based on information available up to and including time
k − 1. Likewise, x̂k|k indicates an estimate of xk at time k

using information available up to and including time k.
The UKF forecast equations are given by (2.4)-(2.5)

together with
X

x
i,k|k−1 = f(X

x
i,k−1|k−1, uk−1,X

w
i,k−1|k−1, k − 1), i = 0, . . . , 2na,(2.6)

x̂k|k−1 =

2na∑
i=0

γ
(m)
i X

x
i,k|k−1, (2.7)

P
xx
k|k−1 =

2na∑
i=0

γ
(c)
i [X

x
i,k|k−1 − x̂k|k−1][X

x
i,k|k−1 − x̂k|k−1]

T
, (2.8)

Yi,k|k−1 = h(X
x
i,k|k−1, k), i = 0, . . . , 2na, (2.9)

ŷk|k−1 =

2na∑
i=0

γ
(m)
i Yi,k|k−1, (2.10)

P
yy
k|k−1

=

2na∑
i=0

γ
(c)
i [Yi,k|k−1 − ŷk|k−1][Yi,k|k−1 − ŷk|k−1]

T
+Rk, (2.11)

P
xy
k|k−1

=

2na∑
i=0

γ
(c)
i [X

x
i,k|k−1 − x̂k|k−1][Yi,k|k−1 − ŷk|k−1]

T
, (2.12)

where Xi is the ith column of X ,

[
X x

k−1|k−1

Xw
k−1|k−1

]
�
=

Xk−1|k−1, X x
k−1|k−1 ∈ R

n×(2na+1), Xw
k−1|k−1 ∈

R
q×(2na+1), P xx

k|k−1 is the forecast error covariance, P
yy
k|k−1

is the innovation covariance, P xy
k|k−1 is the cross covariance,

and P xx
k|k is the data-assimilation error-covariance.

The data-assimilation equations are given by

Kk = P
xy
k|k−1(P

yy
k|k−1)

−1, (2.13)
x̂k|k = x̂k|k−1 + Kk(yk − ŷk|k−1), (2.14)

P xx
k|k = P xx

k|k−1 −KkP
yy
k|k−1K

T

k , (2.15)

where Kk ∈ R
n×m is the Kalman gain matrix. Model

information is used during the forecast step, while measure-
ment data are injected into the estimates during the data-
assimilation step.

III. STATE ESTIMATION FOR EQUALITY-CONSTRAINED
NONLINEAR SYSTEMS

Assume that, for all k ≥ 1, the state vector xk satisfies
the equality constraint

g (xk, k − 1) = dk−1, (3.1)

where g : R
n × N → R

s and dk−1 ∈ R
s are assumed

known. Then, the objective of the equality-constrained state-
estimation problem is to maximize (2.3) subject to (3.1). That
is, we look for the maximizer of J that satisfies (3.1).
In addition to nonlinear dynamics, the solution to this

problem is complicated due the inclusion of (3.1). We thus
extend algorithms derived in the linear scenario to provide a
suboptimal solution to the nonlinear case.

IV. KALMAN FILTERS FOR EQUALITY-CONSTRAINED
LINEAR SYSTEMS

In this section, we briefly review three state-estimation al-
gorithms for equality-constrained linear systems. For details
the reader is referred to [19].
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Assume that f , h, and g are linear functions, respectively,
given by

xk = Ak−1xk−1 + Bk−1uk−1 + Gk−1wk−1, (4.1)
yk = Ckxk + vk, (4.2)

Dk−1xk = dk−1, (4.3)

where Ak−1 ∈ R
n×n, Bk−1 ∈ R

n×p, Gk−1 ∈ R
n×q,

Ck ∈ R
m×n, andDk−1 ∈ R

s×n. Then, the recursive solution
x̂

p
k|k to the equality-constrained state-estimation problem is
given by the equality-constrained Kalman filter (ECKF) [19],
whose forecast step is given by

x̂k|k−1 = Ak−1x̂
p
k−1|k−1 + Bk−1uk−1, (4.4)

P xx
k|k−1 = Ak−1P

xxp
k−1|k−1A

T

k−1 + Gk−1Qk−1G
T

k−1,(4.5)
ŷk|k−1 = Ckx̂k|k−1, (4.6)

P
yy
k|k−1 = CkP xx

k|k−1C
T

k + Rk, (4.7)

P
xy
k|k−1 = P xx

k|k−1C
T

k , (4.8)

where P
xxp
k|k

�
= E

[
(xk − x̂

p
k|k)(xk − x̂

p
k|k)

T
]
, whose data-

assimilation step is given by (2.13)-(2.15), and whose pro-
jection step is given by

d̂k−1|k = Dk−1x̂k|k, (4.9)

P dd
k|k = Dk−1P

xx
k|kD

T

k−1, (4.10)

P xd
k|k = P xx

k|kD
T

k−1, (4.11)

K
p
k = P xd

k|k(P dd
k|k)−1, (4.12)

x̂
p
k|k = x̂k|k + K

p
k (dk−1 − d̂k−1|k), (4.13)

P
xxp
k|k = P xx

k|k −K
p
kP dd

k|kK
p
k

T

. (4.14)

Note that the projection step is absent in the KF algorithm.
For all k ≥ 1, the projected Kalman filter by estimate

projection (PKF-EP) [17] projects x̂k|k given by (2.14) onto
the hyperplane (4.3) yielding the projected estimate x̂

p
k|k.

However, unlike ECKF, x̂
p
k|k of PKF-EP is not recursively

fed back in the next iteration. That is, PKF-EP equations are
equal to ECKF equations except for (4.4)-(4.5), which are
replaced by

x̂k|k−1 = Ak−1x̂k−1|k−1 + Bk−1uk−1, (4.15)

P xx
k|k−1 = Ak−1P

xx
k−1|k−1A

T

k−1 + Gk−1Qk−1G
T

k−1. (4.16)
Finally, the measurement–augmentation Kalman filter

(MAKF) [23] treats (4.3) as perfect measurements. That is,
we replace (4.2) by the augmented observation

ỹk
�
= C̃kxk + ṽk, (4.17)

where ỹk
�
=

[
yk

dk−1

]
, C̃k

�
=

[
Ck

Dk−1

]
, and ṽk

�
=[

vk

0s×1

]
. With (4.17), MAKF uses (4.15)-(4.16) together

with the augmented forecast equations
ˆ̃yk|k−1 = C̃kx̂k|k−1, (4.18)

P̃
ỹỹ
k|k−1 = C̃kP xx

k|k−1C̃
T

k + R̃k, (4.19)

P̃
xỹ
k|k−1 = P xx

k|k−1C̃
T

k , (4.20)

where R̃k
�
=

[
Rk 0m×s

0s×m 0s×s

]
, and the augmented data-

assimilation equations given by

K̃k = P̃
xỹ
k|k−1(P̃

ỹỹ
k|k−1)

−1, (4.21)

x̂k|k = x̂k|k−1 + K̃k(ỹk − ˆ̃yk|k−1), (4.22)

P xx
k|k = P xx

k|k−1 − K̃kP̃
xỹ
k|k−1K̃

T

k . (4.23)

For the linear case, MAKF and ECKF estimates are equal
[19, 20].

V. EQUALITY-CONSTRAINED UKFS
In this section, by using UT, we extend PKF-EP, ECKF,

and MAKF to the nonlinear case. Unlike the linear case
(Section IV), these approaches do not guarantee that the
nonlinear equality constraint (3.1) is exactly satisfied by the
state estimates, but they provide approximate solutions.

A. Equality-Constrained Unscented Kalman Filter
The projection step of ECKF given by (4.9)-(4.14) is now

extended to the nonlinear case by means of UT.
Using (2.4)-(2.5) to choose sigma points and associated

weights, we have
X

x
k|k = x̂k|k11×(2n+1) +

√
(n + λ)

[
0n×1

(
P

xx
k|k

)1/2
−
(

P
xx
k|k

)1/2
]
,(5.1)

where x̂k|k and P xx
k|k are given by (2.14) and (2.15), and with

weights given by (2.5), replacing na by n. Then the sigma
points X x

i,k|k ∈ R
n, i = 0, . . . , 2n, are propagated through

(3.1) yielding

Di,k|k = g(X x
i,k|k, k − 1), i = 0, . . . , 2n, (5.2)

such that d̂k−1|k, P dd
k|k, and P xd

k|k are given by

d̂k−1|k =
2n∑

i=0

γ
(m)
i Di,k|k, (5.3)

P
dd
k|k =

2n∑
i=0

γ
(c)
i [Di,k|k − d̂k−1|k][Di,k|k − d̂k−1|k]

T
, (5.4)

P
xd
k|k =

2n∑
i=0

γ
(c)
i [X

x|k
i,k − x̂k|k][Di,k|k − d̂k−1|k]

T
, (5.5)

and K
p
k , x̂

p
k|k , and P

xxp
k|k are respectively given by (4.12),

(4.13), and (4.14).
Now define x

ap
k−1

�
=

[
x

p
k−1

wk−1

]
, and P

xxap
k−1|k−1

�
=[

P
xxp
k−1|k−1 0n×q

0q×n Qk−1

]
, such that the sigma points

Xk−1|k−1 = x̂
ap
k−1|k−1

11×(2na+1) +
√

(na + λ)

×

[
0na×1

(
P

xxap
k−1|k−1

)1/2
−

(
P

xxap
k−1|k−1

)1/2
]
(5.6)

are chosen based on x̂
p
k−1|k−1 (4.13). Then, by appending

the projection step given by (5.1)-(5.5), (4.12)-(4.14) to (5.6),
(2.5)-(2.15), we obtain the equality-constrained unscented
Kalman filter (ECUKF).

B. Projected Unscented Kalman Filter
If, unlike ECUKF, we append the projection step given

by (5.1)-(5.5),(4.12)-(4.14) to UKF equations given by (2.4)-
(2.15) without feedback recursion, we obtain the projected
unscented Kalman filter (PUKF). PUKF is the nonlinear
extension of PKF-EP.

41



C. Measurement-Augmentation Unscented Kalman Filter
To extend the MAKF to the nonlinear case, we replace

(2.2) by the augmented observation

ỹk
�
= h̃(xk, k) + ṽk, (5.7)

where h̃(xk, k)
�
=

[
h(xk, k)

g(xk, k − 1)

]
. With (5.7), the

measurement-augmented unscented Kalman filter (MAUKF)
combines (2.4)-(2.8) with the augmented forecast equations
Ỹi,k|k−1 = h̃(X

x
i,k|k−1, k), i = 0, . . . , 2na, (5.8)

ˆ̃yk|k−1 =

2na∑
i=0

γ
(m)
i Ỹi,k|k−1, (5.9)

P̃
ỹỹ
k|k−1

=

2na∑
i=0

γ
(c)
i [Ỹi,k|k−1 − ˆ̃yk|k−1][Ỹi,k|k−1 − ˆ̃yk|k−1]

T
+R̃k,(5.10)

P̃
xỹ
k|k−1

=

2na∑
i=0

γ
(c)
i [X

x
i,k|k−1 − x̂k|k−1][Ỹi,k|k−1 − ˆ̃yk|k−1]

T
, (5.11)

and the data-assimilation equations given by (4.21)-(4.23).

VI. NUMERICAL EXAMPLES
A. Attitude Estimation
Consider an attitude estimation problem [4], whose kine-

matics is modeled as

ė(t) = −
1

2
Ω(t)e(t), (6.1)

where the state vector is the quaternion vector e(t)
�
=

[e0(t) e1(t) e2(t) e3(t)]
T

, the matrix Ω(t) is given by

Ω(t) =




0 r(t) −q(t) p(t)
−r(t) 0 p(t) q(t)
q(t) −p(t) 0 r(t)
−p(t) −q(t) −r(t) 0


 , (6.2)

and the angular velocity vector u(t) = [p(t) q(t) r(t)]
T

is a known input. Since ||e(0)||2 = 1 and Ω(t) is a skew-
symmetric matrix, it follows that, for all t > 0,

||e(t)||2 = 1. (6.3)

We set e(0) = [0.9603 0.1387 0.1981 0.1387]
T

, and
u(t) =

[
0.03 sin

(
2π
600 t

)
0.03 sin

(
2π
600 t− 300

)
0.03 sin

(
2π
600 t− 600

) ]T
.

To perform attitude estimation, we assume that

ŭk−1 = u((k − 1)T ) + βk−1 + wu
k−1 (6.4)

is measured by rate gyros, where T is the discretization step,
wu

k−1 ∈ R
3 is zero mean, Gaussian noise, and βk−1 ∈ R

3 is
drift error. The discrete-time equivalent of (6.1) augmented
by the gyro drift random-walk model [4] is given by[

ek

βk

]
=

[
Ak−1 04×3

03×4 I3×3

] [
ek−1

βk−1

]
+

[
04×1

w
β
k−1

]
, (6.5)

where ek
�
= e(kT ), w

β
k−1 ∈ R

3 is process noise associated

to drift-error model, xk
�
=

[
ek

βk

]
∈ R

7 is the state vector,

wk−1
�
=

[
wu

k−1

w
β
k−1

]
∈ R

6 is the process noise, and

Ak−1
�
= cos(sk−1)I4×4 −

1

2

T sin(sk−1)

sk−1

Ωk−1, (6.6)

sk−1
�
=

T

2

∣∣∣∣ŭk−1 − βk−1 − w
u
k−1

∣∣∣∣
2

, (6.7)

Ωk−1
�
= Ω((k − 1)T ). (6.8)

The constraint (6.3) also holds for t = kT , that is,

x2
1,k + x2

2,k + x2
3,k + x2

4,k = 1. (6.9)

We set T = 0.1 s, βk−1 = [ 0.001 −0.001 0.0005 ]
T

rad/s,
and Qk−1 = diag

(
10−5I3×3, 10−10I3×3

)
. Attitude obser-

vations y
[i]
k ∈ R

3 for a direction sensor are given by [4]

y
[i]
k = Ckr[i] + v

[i]
k , (6.10)

where r[i] ∈ R
3 is a reference direction vector to a known

point, and Ck is the rotation matrix from the reference to the
body-fixed frame

Ck =


 (x2

1,k − x2
2,k − x2

3,k + x2
4,k) 2(x1,kx2,k − x3,kx4,k)

2(x1,kx2,k − x3,kx4,k) (−x2
1,k + x2

2,k − x2
3,k + x2

4,k)
2(x1,kx3,k + x2,kx4,k) 2(−x1,kx4,k + x2,kx3,k)

2(x1,kx3,k − x2,kx4,k)
2(x1,kx4,k + x2,kx3,k)

(−x2
1,k − x2

2,k + x2
3,k + x2

4,k)


 . (6.11)

We assume that two directions are available [4, 13], which
can be obtained using either a star tracker or a combined
three-axis accelerometer/three-axis magnetometer. We set
r[1] = [ 1 0 0 ]

T

, r[2] = [ 0 1 0 ]
T

, and Rk = 10−4I6×6.
These direction measurements are assumed to be provided
at a lower rate, specifically, at 1 Hz, which corresponds to a
sample interval of 10T s.
We implement Kalman filtering using UKF,

ECUKF, PUKF, and MAUKF with (6.5), (6.10),
and constraint (6.9). We initialize these algorithms
with x̂0 = [ 1 0 0 0 0 0 0 ]

T

and P xx
0 =

diag (0.5I4×4 0.01I3×3). Table I shows the results
obtained from a 100-run Monte Carlo simulation. Note
that, though the state vector of the model (6.5) satisfes
(6.9), UKF estimates do not satisfy (6.9). Nevertheless, with
the usage of prior knowledge, more informative (smaller
trace of error covariance) estimates are produced compared
to the unconstrained estimates given by UKF. However,
a slight increase in the root-mean-square (RMS) error is

TABLE I: Average of percent RMS constraint error, trace of error
covariance matrix, and RMS estimation error for 100-run Monte Carlo
simulation for attitude estimation using UKF, ECUKF, PUKF, and MAUKF.

UKF ECUKF PUKF MAUKF
Percent RMS constraint error (×10−4)

382.1 6.23 8.34 6.26
Trace of error covariance matrix for attitude (×10−5)

8.21 5.42 8.17 5.43
Trace of error covariance matrix for drift (×10−8)

9.214 9.204 9.213 9.209
RMS estimation error for e0, e1, e2, e3, β1, β2, β3 (×10−3)

1.388 8.523 1.384 8.517
1.387 3.069 1.385 3.067
1.367 5.548 1.365 5.544
1.289 2.283 1.284 2.282
0.126 0.375 0.126 0.375
0.127 0.380 0.127 0.380
0.125 0.302 0.126 0.302
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Fig. 1. Estimation errors of the quaternion vector norm using UKF, ECUKF,
PUKF-EP, and MAUKF algorithms. ECUKF and MAUKF estimates almost
coincide.

observed for algorithms ECUKF and MAUKF implying
loss of accuracy around 5% compared to UKF. The equality
constraint is more closely tracked whenever a constrained
filter is employed; see Figure 1. Percent errors around 10−4

are obtained and ECUKF exhibits the smallest error.

B. One-Dimensional Hydrodynamics
We consider state estimation for one-dimensional hydrody-

namic flow. The flow of an inviscid, compressible fluid along
a one-dimensional channel is governed by Euler’s equations
[8]

∂ρ

∂t
= −

∂

∂z
ρv, (6.12)

d

dt

(
p

ργ

)
= 0, (6.13)

ρ
∂v

∂t
= −ρv

∂v

∂z
−

∂p

∂z
, (6.14)

where ρ ∈ R is the density, v ∈ R is the velocity, p ∈ R is
the pressure of the fluid, z ∈ R is the spatial coordinate, and
γ = 5

3 is the ratio of specific heats of the fluid. A discrete-
time model of hydrodynamic flow is obtained by using finite-
volume-based spatial and temporal discretization [3].
Assume that the channel consists of l identical cells (see

Figure 2). For i = 1, . . . , l, let ρ[i], v[i], and p[i] be the
density, velocity, and pressure in the ith cell, and define
U [i] �=

[
ρ[i] m[i] E [i]

]T
∈ R

3, where m[i] = ρ[i]v[i]

is the momentum and E [i] = 1
2ρ[i](v[i])2 + p[i]

γ−1 is the energy
in the ith cell. We use a second-order Rusanov scheme [8]
to discretize (6.12)-(6.14) and obtain a discrete-time model
that updates the flow variables at the center of each cell.

1 2 3 l− 1 ll− 2
· · ·

Fig. 2. One-dimensional grid used in the finite volume scheme.

The discrete-time state update equation [8] is given by

U
[i]
k = U

[i]
k−1 −

T

∆z

[
F

[i]

Rus,k−1 − F
[i−1]

Rus,k−1

]
, (6.15)

where T > 0 is the sampling time, ∆z is the width
of each cell, and F

[i]

Rus,k−1 is a nonlinear function of

U
[i−1]
k−1 , . . . , U

[i+2]
k−1 whose equation is in [8]. Hence, U

[i]
k

depends on U
[i−2]
k−1 , . . . , U

[i+2]
k−1 , as expected for a spatially

second-order scheme.
Next, define the state vector xk

�
=[

(U
[3]
k )T · · · (U

[l−2]
k )T

]T

∈ R
3(l−4). Furthermore, we

assume reflective boundary conditions at cells 1, 2, l−1, and
l so that these mimic walls reflecting incident waves. Let
l = 54 so that n = 3(l − 4) = 150. It follows from (6.15)
that the second-order Rusanov scheme yields a nonlinear
discrete-time update model of the form xk = f(xk−1),
where f : R

n×R
n. To account for disturbances, we assume

that the truth model is given by xk = f(xk−1) + Gwk−1,
which is a special case of (2.1), where uk−1 = 0p×1,
wk−1 ∈ R, Qk−1 = I6×6, and G ∈ R

150×1, where

rowj(G) =

{
0.7, if j = 7, 22, 37, 67, 97, 127,

0, otherwise.
(6.16)

It follows from (2.1) and (6.16) that although the flow
variables in cells 5, 10, 15, 25, 35, and 45 are directly
affected by wk−1, the total density and the energy of cells
3, . . . , l − 2, is not altered by wk−1, that is,

l−2∑
i=3

ρ
[i]
k =

l−2∑
i=3

ρ
[i]
0 ,

l−2∑
i=3

E
[i]
k =

l−2∑
i=3

E
[i]
0 . (6.17)

Consequently, the linear equality constraint in (6.17) can be
expressed as (4.3) with

D =

[
1 0 0 · · · 1 0 0
0 0 1 · · · 0 0 1

]
, d =

[ ∑ l−2
i=3 ρ

[i]
0∑ l−2

i=3 E
[i]
0

]
. (6.18)

Next, for i = 3, . . . , l − 2, define C [i] �
=[

03×3(l−4−i) I3×3 03×3(i−1)

]
∈ R

3×3(l−4), so that the
linear measurement model given by (4.2), for yk ∈ R

m,
m = 6, corresponding to density, momentum and energy
at cells 24 and 26, has C =

[
(C [24])T (C [26])T

]T and
R = 0.01I6×6. That is, we have a nonlinear process model
with additive noise, a linear observation model, and a linear
equality constraint.
Next, we compare the performance of UKF, ECUKF,

PUKF, and MAUKF. Note that since the constraint in (6.18)

5 10 15 20 25 30 35 40 45 50
0
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0.1
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0.14

0.16

0.18

i

RM
SE

no data−assimilation
UKF
MAUKF
PUKF
ECUKF

Fig. 3. RMS energy-estimate error at each cell i. The error when no data
assimilation is performed is also shown for comparison. The performance
of ECUKF, PUKF, and MAUKF is better than the performance of UKF. The
performance of MAKF and ECUKF is very similar because the constraints
are linear with respect to the state. The cells where disturbance enters the
system is indicated by ’•’ and the cells where measurements are available
is indicated by ’�’.
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Fig. 4. Total density Σρ obtained using the estimates from UKF, ECUKF,
PUKF, and MAUKF. ECUKF, PUKF, and MAUKF provide estimates that
ensure that the estimates satisfy the constraint. However, since no constraints
are enforced in UKF, the total density or the total energy is not conserved.

and the observation model are linear, ECUKF and MAUKF
estimates are equal [19]. The RMS estimation error at cells
1, . . . , 54 is shown in Figure 3. The error in the energy
estimates from data-free simulation is shown for comparison.
Note that the performance of ECUKF, PUKF, and MAUKF
is better than the performance of UKF because of the en-
forcement of the constant total density and energy constraint.
Figure 4 shows the total density estimated by UKF, ECUKF,
PUKF, and MAUKF. The actual total density of the truth
model is also plotted for comparison. The total density of
the estimates of ECUKF, PUKF, and MAUKF is very close
to the truth model, but UKF does not conserve total density
or the total energy.

VII. CONCLUDING REMARKS

We have addressed the equality-constrained state-
estimation problem for nonlinear systems. Three novel
nonlinear extensions of equality-constrained linear state-
estimation algorithms based on the unscented Kalman fil-
ter (UKF) were presented, namely, the equality-constrained
UKF (ECUKF), the projected UKF (PUKF), and the
measurement-augmented UKF (MAUKF). These methods
were compared on two examples, including a quaternion-
based attitude estimation problem, as well as an idealized
flow model involving conserved quantities.
Numerical results suggest that, in addition to exactly (for

linear constraints) or very closely (nonlinear constraints)
satisfying a known equality constraint of the system, the
proposed methods can be used to produce more accurate and
more informative estimates. Considering the examples inves-
tigated, we recommend the user to test ECUKF, MAUKF,
and PUKF in this order for a given equality-constrained
state-estimation application. Recall that, since these methods
are approximate, their performance depends on the applica-
tion. Also, all equality-constrained approaches have required
similar processing time, which was competitive to UKF
processing time.
Finally, we have also addressed the case where an approx-

imate discretized model is used to represent a continuous-
time process in state estimation. Improved estimates were
obtained when equality-constrained Kalman filtering algo-
rithms were employed to enforce conserved quantities of
the original continuous-time model, but without the higher

computational burden required by more accurate integration
schemes.
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