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Abstract—We address the problem of enforcing the zero-
divergence constraint in data assimilation for two-dimensional
magnetohydrodynamic flow. Using a finite-volume computa-
tional model, we compare the performance of the localized
unscented Kalman filter with the localized equality-constrained
unscented and projected localized unscented Kalman filters,
which enforce the zero-divergence constraint.

I. INTRODUCTION
Magnetohydrodynamics (MHD) describes plasma dynam-

ics as a fluid moving under the influence of electromagnetic
and pressure-gradient forces [6]. MHD involves continuous-
time coupled partial differential equations for which it is
generally difficult to obtain closed-form solutions. Com-
putational methods for MHD are based on finite-volume
spatial and temporal discretization schemes [10]. In addition
to difficulties associated with high nonlinearity and large
dimension of the discretized equations, there is the con-
cern about maintaining the zero-divergence property of the
magnetic field [2, 13] as determined by the finite-difference
approximation of the corresponding continuum quantity.
Three approaches are popular for handling the zero-

divergence constraint in MHD simulation, namely, (i) the
eight-wave formulation [13], (ii) constrained transport and
central difference discretizations [13], and (iii) the projection
scheme [2]. The first approach employs a nonconservative
formulation of the MHD equations, where terms proportional
to the divergence are added, resulting in a more numer-
ically robust discretized model. Constrained transport and
central difference methods use special finite-difference dis-
cretizations to maintain the zero-divergence property. In the
projection approach, the numerical solution of the nonzero-
divergence finite-volume discretization scheme is projected
onto the subspace of zero divergence.
Data assimilation for MHD is of interest for space weather

forecasting applications [3, 7]. Similar to the simulation prob-
lem, data assimilation for MHD [3, 4] may violate the zero-
divergence constraint, even if the injected data and the model
satisfy this equality constraint. However, zero-divergence
data-assimilation algorithms have not been applied to MHD.
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The contribution of the present paper is to demonstrate two
data-assimilation techniques that enforce the zero-divergence
constraint in the magnetic field.
To begin, we briefly review the field-interpolated central

difference [13] and projection [2, 13] approaches for MHD
simulation. Next, for data assimilation, to enforce the zero-
divergence constraint while estimating the flow variables, we
present the localized equality-constrained unscented Kalman
filter (LECUKF), a reduced-order application of the equality-
constrained unscented Kalman filter [11, 12], as well as
the projected localized unscented Kalman filter (PLUKF), a
reduced-order extension of the projected unscented Kalman
filter [11, 12]. Results are compared with the (unconstrained)
localized unscented Kalman filter (LUKF) [3, 4], whose
estimates do not satisfy the zero-divergence constraint.
We use a two-dimensional numerical example to illustrate

and compare LUKF, LECUKF, and PLUKF. First, we briefly
compare MHD simulated data regarding the zero-divergence
property using the unconstrained second-order Russanov
scheme [10] and the field-interpolated central difference and
projection approaches. Then we use zero-divergence mag-
netic field data and the field-interpolated central difference
model to perform data assimilation using LUKF and show
that the estimates do not satisfy the zero-divergence property.
We employ LECUKF to guarantee that the estimates in
the localized region have zero divergence within numerical
precision. Finally, we employ PLUKF to obtain estimates in
the full grid satisfying zero divergence, but without feeding
these constrained estimates back into the next time step.

II. MHD SIMULATION
The ideal MHD equations are given by [6]
∂ρ

∂t
= −∇ · (ρ�v) , (2.1)

∂ρ�v

∂t
= −∇ ·

[
ρ�v�v

T

+

(
p +

1

2
| �B|2

)
I3×3 − �B �B

T

]
, (2.2)

∂ �B

∂t
= −∇ ·

(
ρ�v �B

T

− �B�v
T
)

, (2.3)

∂�E

∂t
= −∇ ·

[(
E + p +

1

2
| �B|2

)
�v − �B(�v · �B)

]
, (2.4)

together with the zero-divergence constraint

∇ · �B = 0, (2.5)

where ρ > 0 is the mass density, �v
�
= [vx vy vz]

T

∈ R
3

is the velocity, �m
�
= ρ�v ∈ R

3 is the momentum, �B
�
=

[Bx By Bz]
T

∈ R
3 is the magnetic field, E > 0 is the
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total energy, and the hydrodynamic pressure p ∈ R is given
by p = (γ − 1)

(
E − 1

2ρ|�v|2 − 1
2 |

�B|2
)
, where γ is the

specific heat ratio. For simplicity we consider only the two-
dimensional case, where vz = 0 and Bz = 0. However, the
techniques that we employ can readily be extended to the
three-dimensional case.
We apply finite-volume-based spatial and temporal dis-

cretization to (2.1)-(2.4) [10]. Assume that the channel
consists of nx × ny identical cells. For all i = 1, . . . , nx,
j = 1, . . . , ny , let ρ[i,j], m[i,j]

x , m[i,j]
y , B[i,j]

x , B[i,j]
y , and E [i,j]

denote, respectively, the density, the momentum components
in the x and y directions, the magnetic field components in
the x and y directions, and the energy in cell [i, j]. Define
U [i,j] ∈ R

6 by

U [i,j] =
[
ρ[i,j] m[i,j]

x m[i,j]
y B[i,j]

x B[i,j]
y E [i,j]

]T
. (2.6)

We use a second-order Rusanov scheme [10] to discretize
(2.1)-(2.4) and obtain a discrete-time model that enables us
to update the flow variables at the center of each cell. The
discrete-time state update equation [10] is given by

U
[i,j]
k = U

[i,j]
k−1 −

T

∆x

[
F

[i,j]

Rus,k−1 − F
[i−1,j]

Rus,k−1

]
−

T

∆y

[
F

[i,j]

Rus,k−1 − F
[i,j−1]

Rus,k−1

]
, (2.7)

where T > 0 is the sampling time, ∆x and ∆y are the
width and height of each cell, respectively, and F

[i,j]

Rus,k−1

is a nonlinear function of U
[i−1,j−1]
k−1 , . . . , U

[i+2,j+2]
k−1 ; see

[10]. Hence, U
[i,j]
k depends on U

[i−2,j−2]
k−1 , . . . , U

[i+2,j+2]
k−1 ,

as expected for a spatially second-order scheme. Henceforth,
we refer to (2.7) as the base scheme for MHD simulation.
Likewise, for i = 2, . . . , nx − 1, j = 2, . . . , ny − 1, define

∇B
[i,j]
k

�
=

1

∆x
∇B

[i,j]
x,k +

1

∆y
∇B

[i,j]
y,k , (2.8)

where ∇B
[i,j]
x,k

�
=

B
[i+1,j]
x,k −B

[i−1,j]
x,k

2 and B
[i,j]
y,k

�
=

B
[i,j+1]
y,k −B

[i,j−1]
y,k

2 , as an approximation for ∇ · �B.
Next, define the state vector xk ∈ R

n, where n
�
= 6(nx−

4)(ny − 4), by
xk

�
=
[
(U

[3,3]
k )

T
· · · (U

[3,ny−2]

k )
T
· · · (U

[nx−2,3]
k )

T

· · · (U
[nx−2,ny−2]

k )
T
]T

. (2.9)

Let the input vector uk−1 ∈ R
p, where p

�
= 24(nx +ny−4),

denote the boundary conditions for the left, right, bottom,
and right cells, that is,

uk−1
�
=

[
uT

1,k−1 uT
2,k−1

]T
, (2.10)

where p1
�
= 12(nx+ny−2), p2

�
= p−p1, and u1,k−1 ∈ R

p1 ,
u2,k−1 ∈ R

p2 are given by
u1,k−1

�
=

[
(U

[1,1:ny ]

k−1 )
T

(U
[nx,1:ny ]

k−1 )
T

(U
[2:nx−1,1]
k−1 )

T

(U
[2:nx−1,ny ]

k−1 )
T
]T

, (2.11)

u2,k−1
�
=

[
(U

[2,2:ny−1]

k−1 )
T

(U
[nx−1,2:ny−1]

k−1 )
T

(U
[3:nx−2,2]
k−1 )

T
(U

[3:nx−2,ny−1]

k−1 )
T
]

. (2.12)

We now rewrite (2.7) as the nonlinear discrete-time model

xk = f(xk−1, uk−1), (2.13)

where f : R
n × R

p → R
n. We assume zero-divergence

boundary conditions, that is, for i = 1, 2, nx − 1, nx and
j = 1, 2, ny − 1, ny , we assume that

∇B
[i,j]
k = 0 (2.14)

is satisfied. However, the discretized model (2.13) does
not guarantee that (2.14) is satisfied for all k ≥ 1, i =
3, . . . , nx − 2, and j = 3, . . . , ny − 2.
To account for unknown disturbances wk−1 ∈ R

q, let
(2.13) be rewritten as the truth model

xk = f(xk−1, uk−1) + Gk−1wk−1, (2.15)

where Gk−1 ∈ R
n×q and wk−1 is a zero-mean, white,

Gaussian process noise with covariance Qk−1. Like (2.13),
Gk−1wk−1 in (2.15) can violate (2.14).

III. ZERO-DIVERGENCE MHD SIMULATION
A. Field-Interpolated Central Difference Scheme
Let Ω

[i,j]
z,k ∈ R denote the time-centered approximation of

the z-component of the electric field at cell [i, j],

Ω
[i,j]
z,k = row3


−�v

[i,j]
k−1 ×

�B
[i,j],cd
k−1 + �v

[i,j]
k × �B

[i,j]
k

2


 , (3.1)

where �v
[i,j]
k

�
=

[
v
[i,j]
x,k v

[i,j]
y,k 0

]T
and �B

[i,j]
k

�
=[

B
[i,j]
x,k B

[i,j]
y,k 0

]T
are given by the base scheme (2.7),

and, for i = 3, . . . , nx − 2 and j = 3, . . . , ny − 2, the
components of �B

[i,j],cd
k−1 are recursively updated as

B
[i,j],cd
x,k = B

[i,j],cd
x,k−1 −

T

2∆y

(
Ω

[i,j+1]
z,k − Ω

[i,j−1]
z,k

)
, (3.2)

B
[i,j],cd
y,k = B

[i,j],cd
y,k−1 +

T

2∆x

(
Ω

[i+1,j]
z,k − Ω

[i−1,j]
z,k

)
. (3.3)

Then, by appending (3.1)-(3.3) to (2.7), we have the field-
interpolated central-difference scheme (CD) [13], which, in
order to satisfy (2.14), employs central differencing for the
induction equation (2.4) on the original grid.

B. Projection Scheme

Let B
[i,j]
k

�
=

[
B

[i,j]
x,k B

[i,j]
y,k

]
and Bk

�
=[

B
[2,2]
k · · ·B

[2,nx−1]
k · · ·B

[nx−1,1]
k · · ·B

[nx−1,ny−1]
k

]T
∈

R
nB , where nB

�
= (n+ p2)/6, denotes the numerical values

of the magnetic field provided by (2.7) plus the cells of the
boundary conditions given by (2.12) at time k. Furthermore,
for E ∈ R

(n/6)×nB , rewrite (2.8) in the matrix form

∇Bk
�
= EBk. (3.4)

The projection scheme [2, 13] projects Bk orthogonally
onto the subspace of zero-divergence solutions by mini-
mizing the cost function J(Bp

k )
�
= (Bp

k −Bk)
T

(Bp
k −Bk)

subject to EBp
k = 0(n/6)×1. The solution is given by

Bp
k = Bk + K(0(n/6)×1 −EBk) = PBk, (3.5)
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where the gain matrix is given by K
�
= E

T

(EE
T

)−1 ∈

R
nB×(n/6) and the orthogonal projector is given by P �

=
InB×nB

−KE ∈ R
nB×nB . The projected magnetic field Bp

k

is used at k + 1. Note that K and P need to be computed
only once.
This direct approach (3.5) is restricted to moderate grid

sizes due to large memory demand [13]. Also, density,
moment components, and energy are not affected by the
projection scheme at the current time step.

IV. MHD DATA ASSIMILATION
For the process model (2.15), we assume that, for all

k ≥ 1, in addition to inputs uk−1 ∈ R
p given by (2.10),

measurements yk ∈ R
m of flow variables are available in

certain cells. We represent yk as

yk = Ckxk + vk, (4.1)

where Ck ∈ R
m×n and vk ∈ R

m is a zero-mean, white,
Gaussian measurement noise with covariance Rk. Assume
that wk−1 and vk are mutually independent. Also, rewrite
the zero-divergence constraint (2.14) as

D

[
xk

u2,k

]
= 0(n/6)×1, (4.2)

where D ∈ R
(n/6)×(n+p2) and u2,k is given by (2.12).

Assume that we know only the initial estimate x̂0|0 and the
error-covariance P xx

0|0 � E
[
(x0 − x̂0|0)(x0 − x̂0|0)

T
]
of the

initial state vector x0, which is assumed to be Gaussian.
Next, define the profit function J(xk) � ρ(xk|(y1, . . . , yk)),
which is the conditional probability density function of xk

given the past and present measured data y1, . . . , yk. Under
the stated assumptions, the maximization of J(xk) subject to
(4.2) is the equality-constrained data-assimilation problem.
The solution to this problem is complicated by the ex-

istence of the zero-divergence constraint and by the fact
that ρ(xk|(y1, . . . , yk)) is not completely characterized by
its first-order and second-order moments since (2.15) is non-
linear [5]. Therefore, approximate unconstrained solutions
based on the Kalman filter (KF) [8] are commonly used, for
example, the unscented Kalman filter (UKF) [9]. Moreover,
since the dimension of xk for MHD applications is large,
reduced-order algorithms are generally employed [4].
To obtain a reduced-order estimator, we partition xk ∈ R

n

as xk =
[

xT
L,k xT

E,k

]T, where xL,k ∈ R
nL accounts for

the localized region where measurements are available, while
xE,k ∈ R

nE accounts for the exterior part of the grid without
measurements. In this case, (4.1) can be expressed as

yk = CL,kxL,k + vk, (4.3)

where CL,k ∈ R
m×nL is formed by the columns of Ck

associated with xL,k. Similarly, from (4.2), we have

DLxL,k = 0(nL/6)×1, (4.4)

where DL ∈ R
(nL/6)×nL . Let nxL0

, nxLf
, nyL0

, and nyLf

denote the coordinates of the localized region of the grid.
The objective is to directly inject the measurement data yk

into only the states corresponding to the estimate of xL,k.
We thus use the localized (unconstrained) unscented Kalman
filter (LUKF) [4] to provide a suboptimal solution to the
data-assimilation problem. Moreover, to enforce the zero-
divergence constraint into the estimates of the localized re-
gion, we present the localized equality-constrained unscented
Kalman filter (LECUKF). Also, we present the projected
localized unscented Kalman filter (PLUKF) to enforce the
zero-divergence constraint in the full grid.

V. LOCALIZED UNSCENTED KALMAN FILTER
Instead of analytically or numerically linearizing (2.15)

and using the KF equations [8], UKF employs the unscented
transform (UT) [9], which is a numerical procedure for
approximating the mean and covariance of a random vector
obtained from a nonlinear transformation.
Regarding system given by (2.15) and (4.3), LUKF is a

two-step algorithm, whose forecast equations are given by
XL,k−1|k−1

�
= x̂L,k−1|k−111×(2nL+1) +

√
(nL + λ) (5.1)

×

[
0nL×1

(
P

xx
L,k−1|k−1

)1/2
−
(

P
xx
L,k−1|k−1

)1/2
]
,

Xk−1|k−1
�
=

[
XL,k−1|k−1

x̂E,k−1|k−111×(2nL+1)

]
, (5.2)

coli(Xk|k−1)
�
= f(coli(Xk−1|k−1), uk−1), i = 0, . . . , 2nL, (5.3)

x̂k|k−1
�
=

2nL∑
i=0

γ
(m)
i coli(Xk|k−1), (5.4)

P
xx
L,k|k−1

�
=

2nL∑
i=0

γ
(c)
i [coli(XL,k|k−1)− x̂L,k|k−1] (5.5)

×[coli(XL,k|k−1)− x̂L,k|k−1]
T
+GL,k−1QL,k−1G

T

L,k−1,

ŷk|k−1
�
= CL,kx̂L,k|k−1, (5.6)

P
yy
L,k|k−1

�
= CL,kP

xx
L,k|k−1C

T

L,k + Rk, (5.7)

P
xy
L,k|k−1

�
= P

xx
L,k|k−1C

T

L,k, (5.8)

where, for i = 1, . . . , nL, the weights are given by


γ
(m)
0 � λ

nL+λ ,

γ
(c)
0 � λ

nL+λ + 1− α2 + β,

γ
(m)
i � γ

(c)
i � γ

(m)
i+nL

� γ
(c)
i+nL

� 1
2(nL+λ) ,

(5.9)

(·)1/2 is the Cholesky square root, 0 < α ≤ 1, β ≥ 0,

κ ≥ 0, and λ � α2(κ + nL)− nL > −nL,
[
XL,k|k−1

XE,k|k−1

]
�
=

Xk|k−1,
[

x̂L,k|k−1

x̂E,k|k−1

]
�
= x̂k|k−1, P xx

L,k−1|k−1 is the localized
data-assimilation error covariance, P xx

L,k|k−1 is the localized
forecast error covariance, P yy

L,k|k−1 is the localized innovation
covariance, and P xy

L,k|k−1 is the localized cross covariance.
We set α = 0.6, β = 0, and κ = 0 [3]. The notation x̂k|k−1

indicates an estimate of xk at time k based on information
available up to and including time k − 1. Likewise, x̂k

indicates an estimate of xk at time k using information
available up to and including time k.
The data-assimilation equations are given by

KL,k = P xy
L,k|k−1(P

yy
L,k|k−1)

−1, (5.10)
x̂L,k|k = x̂L,k|k−1 + KL,k(yk − ŷk|k−1), (5.11)
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x̂E,k|k = x̂E,k|k−1, (5.12)

P xx
L,k|k = P xx

L,k|k−1 −KL,kP yy
L,k|k−1K

T

L,k, (5.13)

where KL,k ∈ R
nL×m is the localized Kalman gain. Model

information is used during the forecast step, while measure-
ment data are injected into the estimates during the data-
assimilation step.

VI. LOCALIZED EQUALITY-CONSTRAINED UKF
Now we consider LECUKF to provide a suboptimal solu-

tion to the equality-constrained data-assimilation problem.
LECUKF is based on the equality-constrained unscented
Kalman filter (ECUKF) [11, 12], which is a nonlinear exten-
sion of the equality-constrained Kalman filter (ECKF) [12]
Regarding the system given by (2.15), (4.3), and (4.4),

PLUKF is a three-step algorithm, whose forecast equations
are given by
X

p
L,k−1|k−1

�
= x̂

p
L,k−1|k−1

11×(2nL+1) +
√

(nL + λ) (6.1)

×

[
0nL×1

(
P

xx
L,k−1|k−1p

)1/2
−
(

P
xxp
L,k−1|k−1

)1/2
]
,

Xk−1|k−1 =

[
Xp

L,k−1|k−1

x̂E,k−1|k−111×(2nL+1)

]
, (6.2)

together with (5.3)-(5.8), where x̂p
L,k|k ∈ R

nL is the projected
localized state vector and P xxp

L,k|k is the localized projected
error covariance. The data-assimilation equations are given
by (5.10)-(5.13). Finally, the zero-divergence constraint is
enforced during the projection step whose equations are
given by

Kp
L,k = P xx

L,k|kD
T

L(DLP xx
L,k|kD

T

L)−1, (6.3)
PL,k = (InL×nL

−Kp
L,kDL), (6.4)

x̂p
L,k|k = PL,kx̂L,k|k, (6.5)

P xxp
L,k|k = PL,kP xx

L,k|k, (6.6)

where PL,k ∈ R
nL×nL is an oblique projector whose range

is the null space of DL. For the general case of a nonlinear
observation model and a nonlinear equality constraint, the
ECUKF equations are presented in [11].

VII. PROJECTED LOCALIZED UKF
PLUKF is based on the projected unscented Kalman filter

(PUKF) [11, 12]. Regarding the system given by (2.15), (4.3),
and (4.2), PLUKF is a three-step algorithm, whose forecast
equations are given by (5.1)-(5.8), whose data-assimilation
equations are given by (5.10)-(5.13), and whose projection
step is given by

Kp = D
T

(DD
T

)−1, (7.1)
P = (In×n −KpD), (7.2)

x̂p
k|k = Px̂k|k. (7.3)

Note that (7.1)-(7.2) need to be computed only once.
Note that LECUKF enforces the zero-divergence con-

straint only in the localized region because it requires the
calculation of the data-assimilation error covariance; see
(6.3). On the other hand, PLUKF performs projection on
the full grid. However, unlike LECUKF, PLUKF does not

recursively feed the projected estimate x̂p
k|k back in the

forecast step.

VIII. SIMULATION NUMERICAL EXAMPLE
We consider a two-dimensional grid with nx = 64, ny =

24, ∆x = 1, ∆y = 1, and T = 0.01 s. We set as initial
conditions U

[i,j]
0 = [2 10 0 0 1 1]

T

, i = 1, . . . , nx, j =
1, . . . , ny, which represent supersonic flow. For a given cell
[i, j], define G[i,j] �= diag (0.01, 0.05, 0.05, 0, 0, 0.05).
We consider the truth model (2.15), where we set Qk−1 =
In×n and
Gk−1 = diag

(
06×6, . . . , G

[14,30]
, . . . , 06×6, . . . , G

[14,32]
, . . . ,

06×6, . . . , G
[14,34]

, . . . , 06×6, . . . , G
[15,32]

, . . . , 06×6

)
.

Moreover, uk−1 (2.10) is defined as follows. For all k ≥ 1,
we assume floating boundary conditions for the bottom and
top cells, that is, U [i,j]

k−1 = U
[i,3]
k−1, i = 3, . . . , nx−2, j = 1, 2,

and U
[i,j]
k−1 = U

[i,ny−2]
k−1 , i = 3, . . . , nx − 2, j = ny −

1, ny . For the left cells, we set constant boundary conditions
U

[i,j]
k−1 = U

[i,j]
0 , i = 1, 2, j = 1, . . . , ny . Finally, for

the right cells, we set floating boundary conditions U
[i,j]
k−1 =

U
[nx−2,j]
k−1 , i = nx − 1, nx, j = 3, . . . , ny − 2, except for

m
[i,j]
x,k−1 =



−m

[nx−2,j]
x,k−1 , for i = nx − 1, nx,

j = ny/2− 1, . . . , ny/2 + 1,

m
[nx−2,j]
x,k−1 , for i = nx − 1, nx,

j = 3, . . . , ny/2, ny/2 + 2, . . . , ny − 2,

for which reflective boundary conditions are defined to create
a bowshock.
Figure 1 shows the y components of the magnetic field

at kT = 15 s for three simulated cases, namely, (i) using
second-order Rusanov scheme as the base scheme (Base),
(ii) combining the base scheme with the central difference
scheme (CD), and (iii) combining the base scheme with
the projection scheme (Proj). For i = 3, . . . , nx − 2 and
j = 3, . . . , ny − 2, data from cases (ii) and (iii) satisfy
(2.14). Though a bowshock wave is observed in all cases,
the results are different, especially for case (iii). Note that,
since the three numerical methods mentioned above provide
approximate solutions to the MHD equations, we do not have
a truth model for this example to compare our results with.
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Fig. 1. By components of magnetic field at kT = 15 s obtained from
two-dimensional MHD simulation using the base (Base), central difference
(CD), and projection (Proj) approaches.
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Fig. 2. RMSE index (8.1) evolving with time kT for simulated data using
the base (Base), central difference (CD), and projection (Proj) approaches.

The root-mean-square error (RMSE) index is defined as

RMSEk
�
=

√√√√√ 1

(if − i0 + 1)(jf − j0 + 1)

if∑
i=i0

jf∑
j=j0

(
∇B

[i,j]
k

‖ �B
[i,j]
k ‖2

)2

, (8.1)

where the indices i0, if , j0, jf indicate which part of
the grid is used to evaluate RMSE to quantify the mean
error associated with the zero-divergence constraint on the
grid. Figure 2 shows RMSEk as a function of time for
i0 = 3, if = nx − 2, j0 = 3, jf = ny − 2. While
RMSEk = 0.03 is observed for the base scheme, we see
roundoff RMSE around 7.0 × 10−8 for the CD case and
3.0×10−7 for the projection case. Furthermore, Proj requires
an increased processing time by about 20% compared to the
CD case. Therefore, we use the CD scheme rather than the
projection approach to provide zero-divergence measurement
data for data-assimilation.

IX. DATA-ASSIMILATION NUMERICAL EXAMPLE
We consider the grid of Section VIII to study MHD data

assimilation. Also, we set nxL0
= 14, nxLf

= 19, nyL0
= 22,

and nyLf
= 42. We assume that we have the observation

model (4.1), where Ck =

[
C [17,30]

C [17,34]

]
, and C [i,j] �

=[
06×6(ny(i−1)+(j−1)) I6×6 06×6(ny(i+1)+(ny−j))

]
∈

R
6×n, that is, measurements are obtained only from
cells [17, 30] and [17, 34]. We set Rk = 10−6Im×m.
Both measured data from base scheme (Base) and
central difference scheme (CD) are investigated; see
Section VIII. Then, we implement LUKF and, to enforce
the zero-divergence constraint (4.2), we implement
LECUKF and PLUKF. Also, we set as initial conditions
x̂0|0 = x̂p

0|0 = x0 + δx0 and P xx
L,0|0 = P xxp

L,0|0 = 0.001In×n,
where x0 ∈ R

n is the true initial value used in Section
VIII and δx0 is a zero-mean Gaussian random vector with
covariance 0.0004In×n.
Figure 3 shows the y components of magnetic field at

kT = 15 s for eight different combinations of data (Base
or CD), data-assimilation algorithm (LUKF, LECUKF, and
PLUKF) and process model (Base or CD), namely, (i) data
from base (Base) scheme with LUKF algorithm using Base
model - Base + LUKF, (ii) Base data and LECUKF algorithm
using Base model - Base + LECUKF, (iii) CD data and

LUKF algorithm using Base model - CD + LUKF, (iv) CD
data and LUKF algorithm using CD model - CD + LUKF
(CD), (v) CD data and LECUKF algorithm using Base model
- CD + LECUKF, (vi) CD data and LECUKF algorithm using
CD model - CD + LECUKF (CD), (vii) CD data and PLUKF
algorithm using Base model - CD + PLUKF, and (viii) CD
data and PLUKF algorithm using CD model - CD + PLUKF
(CD). Though a bowshock wave is created in all cases, the
results are substantially different.
Figure 4a shows RMSEk as a function of time for

i0 = nxL0
, if = nxLf

, j0 = nyL0
, jf = nyLf

. While
RMSEk = 0.04 is observed for the three cases where LUKF
is used, RMSEk = 7 × 10−5 is observed for the cases
where LECUKF is employed to enforce the zero-divergence
constraint, and RMSEk = 10−7 is obtained for the cases
where PLUKF is used. Figure 4b shows RMSEk for i0 =
3, if = nx−2, j0 = 3, jf = ny−2, that is, for the full grid.
In this case, LECUKF yields RMSEk values similar to those
obtained when LUKF is used, whereas PLUKF guarantees
zero divergence within numerical precision. Note that, al-
though PLUKF provides magnetic-field estimates satisfying
the zero-divergence constraint with the smallest RMSE, we
cannot claim the same about the accuracy of its estimates
because we do not have a closed solution of the MHD
equations for the example under investigation to compare
our results with. Since LECUKF and PLUKF are suboptimal
estimators, they can provide less accurate estimates than does
LUKF.
It is important to mention that LECUKF and PLUKF has

processing time similar to the processing time of LUKF. Note
that, even if the CD model is used during forecast and CD
data is used during data assimilation, LUKF does not produce
data-assimilation estimates that satisfy the zero-divergence
constraint because the Kalman gain given by (5.10) does not
take the constraint into account.

X. CONCLUDING REMARKS

We investigated the problem of enforcing the zero-
divergence constraint in both the simulation and the data
assimilation of magnetohydrodynamics. This was accom-
plished by using either a field-interpolated central difference
or a projection scheme for simulation. For data assimilation,
we investigated the localized unscented Kalman filter and,
to enforce the zero-divergence constraint, we presented the
localized equality-constrained unscented Kalman filter and
the projected localized unscented Kalman filter. A two-
dimensional example illustrated the problems above.
Results show that, even if zero-divergence model and

measured data are used for data-assimilation, the LUKF esti-
mates do not satisfy the zero-divergence property. However,
whenever LECUKF is used to enforce the zero-divergence
constraint, the state estimates in the localized region satisfy
this equality constraint within numerical precision. PLUKF
enforces the zero-divergence constraint in the full grid but
without recursively feeding the zero-divergence estimates
back in the next estimation step.
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Fig. 3. By components of magnetic field at t = 15 s obtained from two-dimensional MHD data assimilation by algorithms LUKF, LECUKF, and PLUKF
using data obtained from the base (Base) and central difference (CD) approaches.
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Fig. 4. RMSE index (8.1) evolving with time t = kT for estimated data for six different combinations of data (Base or CD), data-assimilation algorithm
(LUKF, LECUKF, PLUKF) plus model (Base or CD).

As future work, we suggest the investigation of an exam-
ple whose closed solution is known such that the tradeoff
between the accuracy of the estimates provided by LUKF,
LECUKF, and PLUKF and the accuracy of the satisfaction
of the zero-divergence constraint can be evaluated.
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