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Abstract— It is well known that the stability and perfor-
mance of a networked control system (NCS) are strongly
affected by the transmission delay, which is usually random
in communication networks such as Ethernet. In order to cope
with the random transmission delay and increase the control
performance, a novel switching control approach for NCS is
proposed. The random transmission delay is modelled by a
Markov process. A controller, which is able to monitor the
transmission delay and synchronously switches with the delay,
is considered. The resulting closed-loop system is a Markovian
jump linear system (MJLS) with random delay. In this paper
a delay-dependent stability condition for stochastic exponen-
tial mean square stability is derived by using a Lyapunov-
Krasovskii functional. The controller design algorithm for
a switching controller is proposed. Experiments with the 3
degree-of-freedom (DoF) robotic manipulator ViSHaRD31 show
the validity of the proposed approach. An alternative non-
switching approach with buffering strategy at the controller
side is considered. The experimental comparison with the non-
switching counterpart indicates performance benefits for the
proposed switching control approach.

I. INTRODUCTION

A networked control system (NCS) is a feedback control
system using a shared network for the communication be-
tween spatially distributed sensors, actuators and physical
plants. The NCS has advantages such as low cost, high
flexibility, easy installation and maintenance, which facilitate
its applications in automation technology. Typical examples
are unmanned aerial vehicles [1], Ethernet-based car control
network [2] and teleoperation [3].

The use of a communication network comes, however, at
the price of non-ideal signal transmission: the sampled data
sent through the network experience variable time delays
and suffer transmission losses (or packet dropouts), see [4].
Particularly, the delay is well known as a source of instability
and deteriorates the control performance [5]. So far, various
approaches have been proposed in the literature to cope
with the delay, see [6]–[10]. In [6], the augmented state
vector method for constant delay is proposed. A hybrid
system analysis approach is applied to NCS in [7] for known
delay and in [8] for uncertain delay. Time-varying delay
and robust control are addressed in [9]. In [10], a delay
compensation predictive control approach is proposed for
the delay with known deviations. More approaches with
deterministic delays can be found in [11], [12] and references
therein.
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Systems with random time delay are studied in [13]–[17].
In [13], the delay is modelled as a Markov process and
the effect of random delay is treated as an LQG problem.
However, the network-induced random delay has to be less
than one sampling interval. Therefore, this approach may be
unsuitable for systems with longer time delay. A stochastic
hybrid system approach involving bounded random delay
and switching feedback control laws is considered in [14].
The approach results in a bilinear matrix inequality (BMI).
An iteration algorithm is formulated for solving the BMI
difficulties. The model-based NCS with random transmission
delay is studied in [15]. Sufficient conditions for almost
sure stability and stochastic exponential mean square stability
are presented. In [16], a H∞ control problem for Bernoulli
binary random delay is considered and an LMI problem for
the analysis of stochastic exponential mean square stability is
established. The discrete-time Markovian jump linear system
(MJLS) approach for NCS is considered in [17]. Based on the
Lyapunov method, an iterative linear matrix inequality (LMI)
for the mode-dependent controller is proposed. However,
only the stochastic stability is quaranteed.

In this paper, stochastic exponential mean square stability
for longer random transmission delay with upper bound is
considered. The sensor-to-controller (SC) delay τsc(rt) is
modelled by a Markovian process rt while the controller-
to-actuator (CA) delay τ̄ca is held constant by the buffering
technique. The sampled-data system approach is applied
and a delay-dependent switching state-feedback controller is
proposed. The resulting delay contains a random part τsc(rt)
related to network transmission and a linear time-varying
part, which is uncertain and bounded by the sampling inter-
val. The switching controller monitors the SC random delay
and synchronously switches with it. As a result, an MJLS
with random delay is established. A delay-dependent stability
condition for stochastic exponential mean square stability is
derived by using a Lyapunov-Krasovskii functional. A simple
switching controller design algorithm is proposed. All the
results are presented in terms of linear matrix inequalities
(LMI’s). The proposed switching controller approach is
experimentally validated using a 3 DoF robotic manipulator
ViSHaRD3 [18]. An alternative non-switching approach by
using a buffering approach rendering the SC transmission
delay constant is considered. The experimental comparison
with the non-switching counterpart indicates performance
benefits for the proposed switching control approach.

The remainder of the paper is organized as follows: In
section II, the sampled-data MJLS is introduced. The system
contains a random delay and a switching state-feedback
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Fig. 1. Illustration of NCS over communication network, the transmission
delay from sensor-to-controller τsc(rt) and from controller-to-actuator τ̄ca.

controller. In section III, an stochastic exponential mean
square stability condition for MJLS is derived. Based on the
stability condition, a switching controller design algorithm
is proposed in section IV. The experimental validation and
performance comparison are illustrated in section V.

Notation. Throughout the paper we let λmax(M) and
λmin(M) denote the maximal and the minimal eigenvalue of
matrix M . MT and ||M || denote the transpose and induced
Euclidean norm of matrix (or vector) M . Let ||e(tf )||2
denote the L2 norm of e(t) on a given interval [0 tf ], where

||e(tf )||2 =
√∫ tf

0
e(t)eT (t)dt. E stands for mathematical

expectation and P for probability. Let {rt, t ≥ 0} denote
a Markov process governing the mode switching in the
finite set S := {1, . . . , N} having the generator A = (αi,j),
i, j ∈ S, αi,j > 0, i 6= j, αi,i = −

∑
i 6=j αi,j . Then the mode

transition probability can be defined as

Pi,j(rt+δ = j|rt = i) = eAδ.

II. PROBLEM DEFINITION

A. NCS Model

Consider an LTI system as plant

ẋ(t) = Ax(t) + Bū(t), (1)

where x ∈ Rn is the state and ū ∈ Rm is the control input;
A and B are constant matrices with appropriate dimensions.
The plant is interconnected by a controller over a commu-
nication network, see Fig. 1. The sensor and controller are
periodically sampled with the sampling interval h.

We now consider the SC transmission delay as a Marko-
vian time delay τsc(rt) . The mode switching is governed
by a Markov process rt ∈ S taking values in the finite set
S := {1, . . . , N}. The switching rate from mode i to mode j
is defined by αi,j . According to (1) and Fig. 1, the piecewise
constant measurement from SC at the sampled time tk is
given by

x̄(t) = x(tk − τsc(rt)) = x(t− τ1(t, rt)),
τ1(t, rt) = t− tk + τsc(rt), tk ≤ t < tk+1.

(2)

Assume a remote state-feedback controller which is able to
monitor the SC delay, e.g. using the time-stamping technique,
and synchronously switches the feedback gains with the SC

τ̇ = 1

τsc(i)
τsc(j)

tk tk+1 tk+2 tk+3 tk+4

eAh
τ (t, rt)

Fig. 2. The evolution of time delay τ(t, rt) for certain sample path of
τsc(rt).

delay τsc(rt). The control commands are fed back through
the CA channel to the plant. Holding the CA delay constant
τ̄ca by using buffering technique, we have the control law

ū(t) = K(rt)u(t− τ̄ca) = K(rt)x(t− τ1(t, rt)− τ̄ca). (3)

Take (3) into system (1), the closed-loop system has the form

ẋ(t) = Ax(t) + BK(rt)x(t− τ(t, rt)), (4)

where τ(t, rt) = τ1(t, rt) + τ̄ca. System (4) is an MJLS with
random delay τ(t, rt).

B. Time Delay Model

The switching of transmission delays may result in the
disorder of sampled sequence. In this paper we exclude the
disordering in the sampled sequence, i.e. we assume
A1: P(|τsc(rtk+1)− τsc(rtk

)| ≥ h) = 0.
The assumption A1 restricts that the switching difference of
consecutive delays is less than one sampling interval. This
assumption is not unreasonable as the current transmission
delay in the real communication networks is usually cor-
related to the previous delay. In single-path networks the
assumption is automatically fulfilled.

The delay τ(t, rt) contains a randomly piecewise constant
part τsc(rt) related to the transmission delay and a time-
varying part t− tk related to the inter-sampling effect as
shown in Fig. 2. The time-varying part is bounded by a sam-
pling interval, i.e. t− tk ≤ h, and has the derivative τ̇ = 1.
We consider the time-varying part of delay as uncertain and
bounded in the later analysis and let

τ(t, rt) = h + τsc(rt) + τ̄ca. (5)

Henceforth, we write τ(rt) instead of τ(t, rt) if no ambiguity
occurs.

The associated upper and lower bounds of τ(rt) are
defined as

τ̄ = h + max
i∈S

{τsc(i)}+ τ̄ca,

τ = h + min
i∈S

{τsc(i)}+ τ̄ca.

Before the main result is introduced, the following defini-
tion and lemma have to be given.

Definition 1: System (4) is said to be stochastic exponen-
tial mean square stable if for any initial condition x(t0, rt0),
there exist positive constants b, and ρ such that for all t ≥ t0

E
{
||x(t)||2|x(t0, rt0)

}
≤ b||x(t0, rt0)||2e−ρ(t−t0).
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Lemma 1: [19] Let X and Y be real constant matrices
with appropriate dimensions. Then

XT Y + Y T X ≤ εXT X +
1
ε
Y T Y

holds for any ε > 0.

III. MAIN RESULT

In this section, a delay-dependent stability condition for
an NCS with random delay is presented. The approach is
derived by using the Lyapunov-Krasovskii functional and
descriptor transformation. Introduce a γ > 0, which is related
to the convergence rate of E||x(t)||2 in (4) as discussed later,
and consider a new variable z(t) = eγtx(t). Substitute z(t)
into (4), it becomes

ż(t) = (A + γI)z(t) + eγτ(rt)BK(rt)z(t− τ(rt)). (6)

Note that

z(t)− z(t− τ(rt)) =
∫ t

t−τ(rt)

ż(s)ds

and substituting into (6) it gives

ż(t) =
(
Â + Â1(rt)

)
z(t)− Â1(rt)

∫ t

t−τ(rt)

ż(s)ds, (7)

where Â = A + γI and Â1(rt) = eγτ(rt)BK(rt). Let
ξT (t) = [zT (t) żT (t)], system (7) has the descriptor form

Eξ̇(t) =
(
Ā + Ā1(rt)

)
ξ(t)− Ā2(rt)

∫ t

t−τ(rt)

ξ(s)ds, (8)

where

E =
[
I 0
0 0

]
, Ā =

[
0 I

Â −I

]
, Ā1(rt) =

[
0 0

Â1(rt) 0

]
,

Ā2(rt) =
[
0 0
0 Â1(rt)

]
.

Theorem 1: For the closed-loop system (4) with a given
decay rate γ > 0 and positive scalars n1(i) and n2(i) if
there exist matrices Q > 0 and X(i) = XT (i) > 0, i ∈ S
such that the following LMI holds[

Ψ1(i) τ̂(i)ΨT
2 (i)

τ̂(i)Ψ2(i) −τ̂(i)Q

]
< 0, (9)

where

τ̂(i) = τ(i) +
1
2
ᾱ(τ̄2 − τ2), ᾱ = max{|αi,i|},

Ψ1(i) =
(
Ā + Ā1(i)

)
X(i) + XT (i)

(
Ā + Ā1(i))T

+
Nsc∑
j=1

αi,jEXT (j) + τ(i)Q,

Ψ2(i) = Ā2(i)X(i),

then the system is stochastic exponential mean square stable.
Proof: The state {ξ(t), rt, t ≥ 0} depends on the history

ξ(t + θ), θ ∈ [−2τ(rt), 0], which implies {ξ(t), rt, t ≥ 0} is
not a Markov process. According to [19], we modify our

problem into a new Markov process {Ξ(t), rt, t ≥ 0} having
the values as the following

Ξ(t) = ξ(s + t), s ∈
[
t− 2τ(rt), t

]
.

Define a set of positive definite matrices P (rt) = X−1(rt)
and consider a Lyapunov candidate (10)

V (Ξ(t), rt) = V1(Ξ(t), rt) + V2(Ξ(t), rt)
+ V3(Ξ(t), rt),

(10)

where

V1(Ξ(t), rt) = ξT (t)EP (rt)ξ(t),

V2(Ξ(t), rt) =
∫ 0

−τ(rt)

∫ t

t+θ

ξT (s)ÂT
2 (rt)Q−1Ā2(rt)

ξ(s)dsdθ,

V3(Ξ(t), rt) = ᾱ

∫ −τ

−τ̄

∫ t

t+θ

ξT (s)ĀT
2 (rt)Q−1Ā2(rt)ξ(s)

(s− t− θ)dsdθ.

Suppose rt = i ∈ S and let L(·) be the infinitesimal gener-
ator of {Ξ(t), rt, t ≥ 0}; then

LV1(Ξ(t), rt) = ξT (t)
[(

Ā + Ā1(rt)
)T

P (rt)

+ PT (rt)
(
Ā + Ā1(rt)

)
+

N∑
j=1

αi,jEP (j)
]
ξ(t)

− 2ξT (t)PT (rt)Ā2(rt)
∫ T

t−τ(rt)

ξ(s)ds.

According to Lemma 1, LV1(Ξ(t), rt) becomes

LV1(Ξ(t), rt) ≤ ξT (t)
[(

Ā + Ā1(rt)
)T

P (rt)

+ PT (rt)
(
Ā + Ā1(rt)

)
+

N∑
j=1

αi,jEP (j)
]
ξ(t)

+ τ(rt)ξT (t)PT (rt)QP (rt)ξ(t)

+
∫ t

t−τ(rt)

ξT (s)ĀT
2 (rt)Q−1Ā2(rt)ξ(s)ds.

(11)

Similarly,

LV2(Ξ(t), rt)

≤ τ(rt)ξT (t)ĀT
2 (rt)Q−1Ā2(rt)ξ(t)

−
∫ t

t−τ(rt)

ξT (s)ĀT
2 (rt)Q−1Ā2(rt)ξ(s)ds

+ ᾱ

∫ −τ

−τ̄

∫ t

t+θ

ξT (s)ĀT
2 (rt)Q−1Ā2(rt)ξ(s)dsdθ.

(12)

LV3(Ξ(t), rt)

=
1
2
ᾱ(τ̄2 − τ2)ξT (t)ĀT

2 (rt)Q−1Ā2(rt)ξ(t)

− ᾱ

∫ −τ

−τ̄

∫ t

t+θ

ξT (s)ĀT
2 (rt)Q−1Ā2(rt)ξ(s)dsdθ.

(13)
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Combining (11)-(13), it results in

LV (Ξ(t), rt) ≤ ξT (t)
[(

Ā + Ā1(rt)
)T

P (rt)

+ PT (rt)
(
Ā + Ā1(rt)

)
+

N∑
j=1

αi,jEP (j)
]
ξ(t)

+ τ(rt)ξT (t)PT (rt)QP (rt)ξ(t)

+ τ(rt)ξT (t)ĀT
2 (rt)Q−1Ā2(rt)ξ(t)

+
1
2
ᾱ(τ̄2 − τ2)ξT (t)ĀT

2 (rt)Q−1Ā2(rt)ξ(t)

= ξT (t)Θ(rt)ξ(t).

(14)

Pre- and post-multiply Θ(rt) by XT (rt) and X(rt), it gives(
Ā + Ā1(rt)

)
X(rt) + XT (rt)

(
Ā + Ā1(rt)

)T

+ τ̂(rt)XT (rt)ĀT
2 (rt)Q−1Ā2(rt)X(rt)

+
N∑

j=1

αi,jEXT (j) + τ(rt)Q < 0.

(15)

Applying Schur complement to (15) it results in (9).
Since maxθ∈[−2τ,0]{||ξ(t + θ)||} ≤ ϕ||ξ(t)|| for some

ϕ > 0 [20]. Therefore, it has

V (Ξ(t), rt) ≤
[
λmax(EP (rt)) + ϕλmax(R)

]
||ξ(t)||2

≤ Λmax(rt)||ξ(t)||2,

where

R = ĀT
2 (rt)Q−1Ā2(rt), ϕ =

1
2
τ̄2 +

1
6
(τ̄3 − τ3)ᾱ.

and
Λmax(rt) = λmax(EP (rt)) + ϕλmax(R).

Combining with (14), it becomes

LV (Ξ(t), rt)
V (Ξ(t), rt)

≤ −min
rt∈S

{
λmin(−Θ(rt))

Λmax(rt)

}
, −ρ0

and yields in

ELV (Ξ(t), rt) ≤ −ρ0EV (Ξ(t), rt). (16)

Applying Dynkin’s formula into (16), we have

EV (Ξ(t), rt)− EV (Ξ(0), r0)

= E
[ ∫ t

0

LV (Ξ(s), rs)ds

]
≤ −ρ0

∫ t

0

ELV (Ξ(s), rs)ds.

(17)

Using the Gronwall-Bellman lemma, (17) results in

EV (Ξ, rt) ≤ e−ρ0tEV (Ξ(0), r0).

Since

V (Ξ(t), rt) ≥
[
λmin(EP (rt)) + ϕλmin(R)

]
||ξ(t)||2

= Λmin(rt)||ξ(t)||2,

it becomes

E||ξ(t)||2 ≤ e−ρ0t EV (Ξ(0), r0)
minrt∈S

{
Λmin(rt)

} . (18)

Equation (18) implies stochastic exponential mean square
stability and completes the proof.

Remark 1: The delay τ(rt) contains the transmission de-
lay and uncertain time-varying component bounded by a
sampling interval, see (5). Accordingly, the transmission
delay as well as the sampling interval are conjointly treated
by a single stability condition in Theorem 1. The solution
of Theorem 1 indicates the trade-off between transmission
delays τsc(rt) + τ̄ca and the sampling interval h for which the
stochastic exponential mean square stability is guaranteed.

Remark 2: In case of constant transmission delay, i.e.
τsc(rt) = τsc and αi,j = 0, Theorem 1 is straightforward
applicable to systems with constant delay. For random SC
and CA transmission delays, the extended results of the same
author can be found in [21].

Remark 3: It is noted that E||ξ(t)||2 ≥ E||z(t)||2 and
z(t) = eγtx(t). Therefore, the inequality (18) can be rewrit-
ten as

E||x(t)||2 ≤ e−(ρ0+2γ)t EV (Ξ(0), r0)
minrt∈S

{
Λmin(rt)

} .

The given γ in Theorem 1 ensures the smallest decay rate
of trajectory E||x(t)||2.

IV. CONTROLLER DESIGN

The difficulty in solving switching feedback gain K(i) in
the matrix inequality (9) involves the nonlinear terms, i.e.
Ā1(i)X(i) in Ψ1(i) and Ā2(i)X(i) in Ψ2(i), and cannot
be considered as an LMI problem. However, by introducing
special settings of X(i) the nonlinear terms can be eliminated
and the LMI problem is recovered.

Theorem 2: For given positive scalars n1(i), n2(i)
and decay rate γ > 0, if there exist matrices Q > 0,
X11(i) = XT

11(i) > 0 satisfying

X(i) =
[

X11(i) 0
−n1(i)X11(i) n2(i)X11(i)

]
(19)

and matrices Y (i) satisfying

Ȳ (i) = [Y (i) 0], (20)

i ∈ S such that[
Ψ̂1(i) τ̂(i)Ψ̂T

2 (i)
τ̂(i)Ψ̂2(i) −τ̂(i)Q

]
< 0, (21)

where

τ̂(i) = τ(i) +
1
2
ᾱ(τ̄2 − τ2), ᾱ = max{|αi,i|},

Ψ̂1(i) = ĀX(i) + B̄Ȳ (i) +
(
ĀX(i) + B̄Ȳ (i)

)T

+
Nsc∑
j=1

αi,jEXT (j) + τ(i)Q,

B̄T =
[
0 BT

]
,
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Ψ̂2(i) =
[

0 0
−n1(i)eγτ(i)BY (i) n2(i)eγτ(i)BY (i)

]
,

holds, then the closed-loop system (4) is stochastic exponen-
tial mean square stable with the feedback gain

K(i) = Y (i)X−1
11 . (22)

Proof: According to Theorem 1, the switching controller
(3) stabilizes the closed-loop system (4) if the inequality (9)
is satisfied. Subsitute (19), (20) and B̄T = [0 BT ] into (9)
and let Y (i) = K(i)X11(i). The nonlinear terms in (9) are
eliminated and the LMI (21) is derived.

V. EXPERIMENTAL VALIDATION

In order to validate the proposed switching control ap-
proach, experiments of the position control for a 3 DoF
robotic manipulator ViSHaRD3 [18] are conducted. The de-
vice is equipped with a fixed end-effector and three revolute
joints as shown in Fig. 3. Each joint is actuated by a Maxon
RE40 DC motor coupled with a harmonic drive gear (gear
ratio 1:100). The DC-motor current, resulting in torque,
is provided by the PWM amplifier operated under current
control. The reference signal is given by voltage from D/A
converter and is an output of the I/O board. The ViSHaRD3
device is connected to a PC running RT Linux. The control
loop and the communication network, i.e. the transmission
delay, are implemented in MATLAB/SIMULINK blocksets.
Standalone realtime code is generated directly from the
SIMULINK models.

A. Experimental System Model

Due to the requirement of the proposed approach, the
ViSHaRD3 device is linearized by computed torque feedfor-
ward approach [22]. Combined with friction compensation,
the linearized ViSHaRD3 system is decoupled into three
systems

d

dt

[
qi

q̇i

]
=

[
0 1
1 −50

] [
qi

q̇i

]
+

[
0
1

]
ui (23)

i = 1, 2 for joint 1, 2

d

dt

[
q3

q̇3

]
=

[
0 1
1 −40

] [
q3

q̇3

]
+

[
0
1

]
u3 (24)

for joint 3, where q = [q1, q2, q3]T .
The joint vector q of ViSHaRD3 is fed to the remote

controller through a communication network having the SC
delay τsc(rt) ∈ {1, 3, 7}ms and the transition rate

A =

−3 2 1
1 −3 2
3 1 −4

 .

The ViSHaRD3 system is stabilized by a set of PD
controllers, which are synchronously switched with the SC
delay. Combine the switching PD controller into (23) and
(24), it yields

q̇(t) = Aiq(t) + K̄(rt)q(t− τ(rt)), (25)

PC RT−LINUX

Switched

position

controller

Joint 3

Joint 2

Joint 1

DA Converter

Counter

network

S626  I/O

Sensoray

Fig. 3. Experimental 3 DoF ViSHaRD3 system.

where i = 1, 2, 3 and

A1 = A2 =
[
0 1
1 −50

]
, A3 =

[
0 1
1 −40

]
,

K̄ =
[

0 0
−KP (rt) −KD(rt)

]
.

The PD gains in (25) are computed by (21) using
the Yalmip toolbox [23] in MATLAB. With the
sampling interval h = 10 ms, CA transmission delay
τ̄ca = 1 ms, the resulting delay in (5) has the values
τ(1) = 12 ms, τ(2) = 14 ms, τ(3) = 18 ms. Set the decay
rate to be γ = 2.5. Solve the LMI (21) in Theorem 2
by using brute-force search of n1(i), n2(i), where
i ∈ S := {1, 2, 3}. The feasible PD gains are computed with
n1(1) = n2(1) = 1.6× 103, n1(2) = n2(2) = 3.6× 103

and n1(3) = n2(3) = 1.7× 106 and summarized in Table I.

TABLE I

The feasible switching PD controller for ViSHaRD3 device

Joint 1/2 Joint 3
τ(1) = 12 ms KP (1) = 259.65 KP (1) = 208.95
τsc(1) = 1 ms KD(1) = 5.19 KD(1) = 5.21
τ(2) = 14 ms KP (2) = 96.54 KP (2) = 77.39
τsc(2) = 3 ms KD(2) = 1.93 KD(2) = 1.93
τ(3) = 18 ms KP (3) = 77.21 KP (3) = 23.26
τsc(3) = 7 ms KD(3) = 1.55 KD(3) = 1.21

B. Experiments

The initial joint vector of ViSHaRD3 is set to
qT (t0) = [0 0 − 0.5π] rad and q̇T (t0) = [0 0 0π] rad/s. A
sinusoidal function, which has the amplitude 0.2 and fre-
quency 0.5 rad/s, serves as position reference qr to the
system. The experiments are run 10 times with random initial
distribution probabilities of SC delay. One sample path of
the SC delay is shown in Fig 4 (a). Two approaches are
investigated. In the proposed switching control approach,
the delay is monitored using the time-stamping technique
and the remote controller is synchronously switched with the
SC delay. The second approach holds the SC delay constant
by using the buffering technique at the controller side, i.e.
the controller is designed with the higher delay τsc(3). For
comparison, the evolutions of normalized mean control error2

ē(t) are shown in Fig. 4 (b). It is observed that the normalized
mean control errors of the proposed approach (solid line) are

2The normalized control error is defined as ē(t) =
q(t)−qr(t−τ(rt)
max{||qr(t)||} .
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Fig. 4. The sample path of Markovian delay for the experiment (a) and
mean control error evolutions with switching controller (solid line) and non-
switching controller (dashed line) (b)

in general smaller than the non-switching approach (dashed
line). The L2 norm of normalized mean control error over
the experimental time horizon [0 tf ], tf = 10 s, is measured
to be ||ē(tf )||2 = 1.42 for the proposed switching control
approach and ||ē(tf )||2 = 3.92 for non-switching approach.
Surprisingly, the switching control approach has superior
performance benefits over the non-switching counterpart
even when the total switching difference of delay is small,
as in this case only 6 ms. In case of larger switching delay
difference, the performance benefit is likely to be more
obvious. The experiment shows the proposed approach is
very promising for the NCS applications.

Open questions that will be addressed in the future re-
search concerns the control performance optimization and
the packet dropout.

VI. CONCLUSIONS

Aiming at the networked control system (NCS) with
random transmission delay this paper concerns a novel
control approach based on Markovian jump linear systems
with random delay and gives a sufficient stability condition
and controller design algorithm in terms of linear matrix
inequalities (LMI’s). Stochastic exponential mean square sta-
bility is guaranteed for longer random transmission delay by
using the Lyapunov-Krasovskii functional. A switching state-
feedback controller is proposed and validated by a 3 DoF
robotic manipulator ViSHaRD3. The experiment demon-
strates the superior performance benefit of the proposed
switching controller over the non-switching counterpart. This
confirms the proposed control approach is very promising for
NCS applications.
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