
Level Set Methods for Computing Reachable Sets of Systems with

Differential Algebraic Equation Dynamics

Elizabeth Ann Cross and Ian M. Mitchell

Department of Computer Science,

University of British Columbia,

2366 Main Mall, Vancouver, BC, V6T 1Z4

{ecross,mitchell}@cs.ubc.ca

Abstract— Most existing algorithms for approximating the
reachable sets of continuous systems assume an ordinary
differential equation model of system evolution. In this pa-
per we adapt such an existing algorithm—one based on
level set methods and the Hamilton-Jacobi partial differential
equation—in two distinct ways to work with systems modeled
by index one differential algebraic equations (DAEs). The first
method works by analytic projection of the dynamics onto the
DAE’s constraint manifold, while the second works in the full
dimensional state space. The two schemes are demonstrated on
a nonlinear power system voltage safety problem.

I. INTRODUCTION

The reachable set or tube is a very general tool for verify-

ing the safe operation of a system; unfortunately, it can rarely

be determined exactly for continuous or hybrid systems.

Design of approximation algorithms depends critically on the

type of mathematical model chosen to describe the evolution

of the system. In this paper, we adapt reachability algorithms

based on level set methods and the Hamilton-Jacobi (HJ)

partial differential equation (PDE) to the class of continuous

state and time models called differential algebraic equations

(DAEs). In particular, we focus on index one DAEs, which

can be alternatively viewed as ordinary differential equations

(ODEs) evolving on constraint manifolds.

The contribution of this paper is two algorithms for

approximating the backward reachable set or tube of sys-

tems described by nonlinear DAEs of index one. The first

algorithm operates on the constraint manifold, and so uses a

lower dimensional state space but requires that the manifold

be explicitly parameterized. The second and more general

algorithm works in the full dimensional state space. While

we use a simple toy example to explain each of the two

schemes, we conclude the paper with a power system voltage

safety analysis to demonstrate their practical application to a

complex but low dimensional nonlinear model. The schemes

are successful at approximating reach tubes; however, they

are both subject to the dimensional scaling problems com-

mon to grid-based reachability algorithms. That said, these

results are useful not only for computation, but also from a

theoretical perspective. The two algorithms demonstrate that

HJ PDEs can be used to describe the evolution of reach sets

and tubes for DAEs; consequently, any theoretical analysis

arising from HJ PDEs for reachability of ODE models can

likely be applied to DAE models as well.

II. BACKGROUND

A. Reach Sets and Tubes

Consider a model of a system operating in a state space

S of dimension dS (typically S = R
dS) with a set of known

initial states I ⊂ S and a set of known unsafe states T ⊂ S

(the “target” set). Trajectories of the model will be denoted

by x(·) : T → S, where T ⊂ R is the time interval over

which the trajectory exists, and x(0) = x0. The system is

considered safe as long as there does not exist a t ∈ T

and x0 ∈ I such that x(t) ∈ T ; in other words, no trajectory

exists which travels from the initial states to the unsafe states.

One common tool for verifying the safety of a system’s

model is the reachable set or tube. For the input-free system

described above, the backwards reach set and reach tube

(we use “reachable” and “reach” interchangably) are defined

respectively as

B(T, t) , {x0 ∈ S | ∃x̂ ∈ T, x(t) = x̂},

B(T, [0, t]) , {x0 ∈ S | ∃x̂ ∈ T,∃s ∈ [0, t], x(s) = x̂}.

The backwards reach set at time t is the set of states which

give rise to trajectories which reach T in exactly t time units.

The backward reach tube over time interval [0, t] is the set

of states which give rise to trajectories which reach T at any

time s ∈ [0, t]. Once the backward reach tube is determined,

then the system is safe until at least time t if B(T, [0, t]) ∩
I = ∅. In the remainder of this paper we will use reach

tubes exclusively, although the algorithms can be equally

well applied to approximate the reach set. Further discussion

of the connections between backward reach sets and tubes,

as well as the related forward reach sets and tubes, can be

found in [1] and the citations therein.

B. Approximating Reach Tubes with Level Set Methods

Except for simple or contrived examples, the backward

reach tube cannot be determined analytically. In this paper

we will use the method described in [2] to approximate the

backward reach tube, although we restrict our presentation to

systems without inputs so that we can use a simpler notation

for trajectories. Under this restriction, the method works on

a system modeled by the ODE dx(t) / dt = ẋ(t) = fS(x(t))
subject to initial conditions x(0) = x0. The dynamics

fS : S → TS are assumed to be Lipschitz continuous and

bounded.

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

ThA14.3

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 2260

To determine the backward reach tube, we must be given

an implicit surface function φ0 : S→ R such that T = {x ∈
S | φ0(x) ≤ 0}. The backward reach tube is then implicitly

defined by the function φ : S× T→ R, where

B(T, [0, t]) = {x ∈ S | φ(x,−t) ≤ 0}. (1)

The implicit surface function φ is the viscosity solution to

the HJ PDE

Dsφ(x, s) + min [0, Dx φ(x, s) · fS(x)] = 0 (2)

solved backwards in time from s = 0 with terminal value

φ(x, 0) = φ0(x).
Of course, analytic solutions for HJ PDEs such as (2) are

not generally available either. Instead, we use the group of

numerical algorithms known collectively as level set methods

to approximate the solution. In particular, we use the publicly

available implementation TOOLBOXLS [3], [4].

C. Differential Algebraic Equations

ODEs are the most common model for the evolution of

a continuous system’s state, but far from the only one. For

many systems, the most convenient model involves a mixture

of differential and algebraic equations, giving rise to a DAE.

For the DAE models of interest in this paper we can partition

the state space S into those states D directly governed by

differential equations and those states A directly governed

by algebraic constraints. Let dD be the dimension of D and

dA be the dimension of A. For a state x ∈ S = D × A we

will write x = (y, z) where y ∈ D and z ∈ A. Then the

system model takes the form of a semi-explicit DAE

ẏ(s) = fD(y(s), z(s)) (3)

0 = g(y(s), z(s)) (4)

where fD : D × A → TD, g : D × A → R
dA and the initial

conditions are y(0) = y0 and z(0) = z0.

The index of a DAE is a metric which in some sense

describes how far the DAE is from being an ODE; ODEs

are defined to be DAEs of index zero. Mathematically, the

index is the number of times which the algebraic equations

must be differentiated in order to retrieve a purely differential

model of the system. In this paper we will restrict ourselves

to DAEs of index one. To determine an almost equivalent

ODE for (4), we differentiate with respect to t, apply the

chain rule, and rearrange to find

ż = (Dz g(y, z))−1(Dy g(y, z)fD(y, z)) , fA(y, z) (5)

subject to the same initial conditions. It should be noted that

while solutions of (3) and (4) are solutions of (3) and (5), the

latter also admits any trajectories which satisfy (3) and hold

g(y, z) = c for any constant c. In practical terms, numerical

approximation of the solution of (3) and (4) by applying an

ODE integrator to (3) and (5) is a poor idea because the small

errors introduced by each timestep of the integrator cause

gradual violation of the algebraic constraint g(y, z) = 0.

Fortunately, a number of numerical schemes are available for

accurately approximating the solution of DAEs with index

one [5]; for example, the sample trajectories used in this

paper were generated with MATLAB’s ode15s [6].

As a simple example of a DAE system, in the next two

sections we use the two dimensional model

ẏ = −(3/2 + z) = fD(y, z),

0 = z − sin(πy) = g(y, z),
(6)

where y ∈ D = R and z ∈ A = R. For visualization

purposes, we will let z be the horizontal coordinate and y be

the vertical coordinate. The almost equivalent ODE system

is given by
[

ẏ
ż

]

=

[

−(3/2 + z)
−π cos(πy)(3/2 + z)

]

=

[

fD(y, z)
fA(y, z)

]

.

Qualitatively, the constraint in (6) is a sine curve z =
sin(πy), along which the trajectory moves faster when z
is more positive. For this system we will determine the

backward reach tube starting from the target set T = {(y, z) |
y ≤ 0 ∧ g(y, z) = 0}.

D. Related Work

Many other schemes have been used for approximating

reach sets and tubes; for reasons of space we include here

only the work and issues most relevant to systems modeled

by DAEs. Extensive discussions of and citations to the full

variety of reachability schemes for continuous and hybrid

systems can be found in [1], [2].

Almost all of the previous work on continuous reachability

has focused on systems whose state evolution is described by

ordinary differential or difference equations. One exception

is [7], which adapts the d/dt tool [8] to a DAE setting by

replacing the standard ODE integration schemes in d/dt with

a standard DAE integration scheme: the equivalent ODE (3)

and (5) is solved at each timestep, numerical errors in this

process cause drift away from the constraint manifold, and

so the result is projected back onto the manifold to ensure

that (4) holds [5]. This approach could also be applied to

any other reachability algorithm based on explicitly follow-

ing system trajectories (“Lagrangian” algorithms), but the

projection step inevitably introduces error. An advantage of

the techniques examined here is that no such projection is

needed—the reach tube always satisfies (4).

Although we are not aware of any viability work explicitly

addressing DAE-like systems, it should be straightforward to

adapt viability kernel algorithms [9] to handle systems such

as those examined here. The primary challenge of a direct

adaptation in the full dimensional state space will be accurate

approximation of the lower dimensional constraint manifold.

III. COMPUTATIONS ON THE ALGEBRAIC MANIFOLD

The HJ PDE based approach to reach tubes explained

in section II-B makes few restrictions on the dynamics fS.

Consequently, one approach to determining the reach tube is

to parameterize the constraint manifold (4), apply an appro-

priate change of variables to the differential dynamics (3),

and solve the HJ PDE on the manifold.

Denote the coordinate system on the constraint manifold

by x ∈ M ⊂ R
dD . Let y = u(x) be a diffeomorphism

2261

Fig. 1. Zero level set of the implicit surface function φ(x, t) solving (8),
which approximates the backward reach tube on the constraint manifold of
the toy system (6). Also plotted is a numerical approximation of the solution
of the DAE mapped into the manifold coordinate system. Qualitatively, the
two solutions are indistinguishable.

mapping from the constraint manifold coordinates M to the

differential subspace D. Also, let z = v(x) be a continuous

function from M to A. Using the chain rule, ẏ = Dx u(x)ẋ,

so the dynamics on the constraint manifold are given by

ẋ = (Dx u(x))−1ẏ,

= (Dx u(x))−1fD(u(x), v(x)) , fM(x),
(7)

where Dx u(x) is nonsingular because u is a diffeomor-

phism. Consequently, we can easily solve the HJ PDE (2)

in the parameterized coordinate system with the substitution

fS(x) ← fM(x), and then the reach tube is given by (1).

Given u(x) and v(x), the greatest challenge to solving (2) is

likely to be determination of initial conditions φ0(x) which

represent T on the constraint manifold, since T will normally

be given in the original (y, z) coordinate system.

To demonstrate this technique, we apply it to the toy

system (6). Choosing our manifold coordinate system as

x = y we get y = u(x) = x, z = v(x) = sin(πx),
Dx u(x) = 1 and fM(x) = −(1)−1(3/2 + sin(πx)). The

resulting HJ PDE is

Dtφ(x, t) + min [0, Dx φ(x, t) · −(3/2 + sin(πx))] = 0 (8)

The initial conditions are φ0(x) = x. Figure 1 shows the

zero isosurface of φ(x, t) as approximated by applying level

set methods to (8). For comparison purposes, the numerical

solution of (6) is also plotted in the (x, t) coordinate system.

IV. COMPUTATIONS IN THE FULL STATE SPACE

For those DAE systems not amenable to the treatment in

the previous section, the alternative is to work in the full

state space S = D × A. Now the constraint manifold is a

dD dimensional subspace of the domain, represented by the

zero level set (the zero isosurface) of g. Our approach to

determining the backward reach tube will be to define an

evolution of an implicit surface function φ throughout the

domain such that the reach tube is the intersection of the

zero sublevel set of φ and the zero level set of g

B(T, [0, t]) =

{

(y, z) ∈ D× A

∣

∣

∣

∣

∣

φ(y, z,−t) ≤ 0

∧ g(y, z) = 0

}

. (9)

The simplest way of accomplishing this goal is to solve the

HJ PDE (2) on S. Since the DAE does not provide a full

dimensional set of dynamics, we break the gradient of φ into

components corresponding to the differential and algebraic

subspaces, and plug fD from (3) and fA from (5) into (2) to

get

Dtφ(y, z, t) + min

[

0,
Dy φ(y, z, t) · fD(y, z)

+ Dz φ(y, z, t) · fA(y, z)

]

= 0

(10)

with φ(y, z, 0) = φ0(y, z). Numerically, use of fA does

permit some drift in the dynamics away from the constraint

manifold; however, since the reach tube approximation is

always determined in (9) by comparison with the true con-

straint manifold, this drift is not a concern.

Unfortunately, this straightforward approach yields disap-

pointing numerical results. In order for the intersection of

the zero level sets of φ and g to be well-behaved, these level

sets should not be too close to parallel. However, even if the

level sets of φ0 are nearly perpendicular to those of g, the

action of the dynamics fD and fA on φ can twist these level

sets over time and cause them to become nearly parallel.

To avoid this problem, we modify the motion of φ with the

closest point technique [10]. Because the reach tube is only

defined on the constraint manifold, the evolution of φ only

needs to agree with the underlying DAE on this manifold—

away from the manifold, any convenient evolution may be

used, as long as it matches the DAE at the manifold. The

closest point technique modifies the evolution of φ to keep

its level sets roughly perpendicular to the constraint manifold

in the neighbourhood of the manifold. In addition to keeping

the intersection in (9) well-behaved, the gradient of φ will be

roughly parallel to the constraint manifold because the value

of φ does not change in directions normal to this manifold;

consequently, the drift in dynamics away from the manifold

that is mentioned above will be minimized.

To accomplish this goal of maintaining the level sets

of φ perpendicular to the manifold, define a closest point

function γ : D × A → D × A which for every point in the

domain identifies the closest point on the constraint manifold.

Standard level set methods are then used to solve (10)

as usual, except that after every timestep we replace the

calculated φ(y, z, t) at each node in the computational grid

by φ(γ(y, z), t). Since γ(y, z) will not generally be a node

in the grid, the value φ(γ(y, z), t) is estimated based on the

values of φ at nodes adjacent to γ(y, z) by an interpolation

scheme with an order of accuracy at least one greater than the

numerical scheme used to approximate the solution of (10).

Further discussion of this approach, including the method by

which we create the function γ, can be found in [11].

The results of applying this full dimensional approach

to the toy system (6) are shown in figure 2, both with

and without the closest point adjustment to the motion of

2262

(a) Without closest point. (b) With closest point.

Fig. 2. Motion of the backward reach tube in the full state space for the
toy system (6). The dotted line shows the constraint manifold g(y, z) = 0,
the star symbols are the numerical solutions to the DAE at times ti =
i/4 for i = 0, 1, . . . , 12, (starting from t0 at the bottom), and the solid
lines are the zero level sets of φ(y, z,−ti). The intersection of the level
set of φ(y, z,−ti) and the constraint represents the upper boundary of
the backward reach set at ti, and should align with a star symbol. It is
much easier to determine this intersection when the closest point scheme is
applied.

Description Symbol Value

generator voltage behind transient reactance E′

field excitation Ef

load bus voltage E
generator bus voltage EG

open-circuit transient time constant T ′

d0
5

transmission reactance (two routes) X1 0.1
d-axis synchronous reactance Xd 1.2
d-axis transient reactance X′

d
0.2

time constant of first-order model of AVR T 1.5
nominal field excitation E0

f
1.6

gain constant of first-order model of AVR K 7
set-point value of generator bus voltage Er 1
mechanical input power to generator Pm 1.0
constant reactive power of load Q0 0.5Pm

current source of load H 0
impedance load B 0
critical value of load bus voltage Ec 0.7

TABLE I

PHYSICAL MEANING OF VARIABLES AND PARAMETERS IN DAE

MODEL (11) FOR THE SINGLE MACHINE-LOAD BUS EXAMPLE [12].

the implicit surface function. By the end of the simulation

time, the implicit surface function for the case without

closest point is so nearly parallel to the constraint that the

intersection of the two is very difficult to see; in contrast, the

intersections for the case with closest point remain clearly

visible throughout the simulation.

Alternative schemes for evolving implicit surface functions

on manifolds have been described; see [10] for a full discus-

sion. For our static manifold problem, we tried several but

the closest point scheme proved to be the most effective and

efficient, as well as being extensible to manifolds of higher

codimension. More details can be found in [11].

V. SINGLE MACHINE-LOAD BUS EXAMPLE

To demonstrate the techniques described above in a more

realistic setting, we consider a single machine-load bus

system, and in particular a purely continuous single mode

version of the hybrid system reach tube problem posed

in [13], based on the model given in [12]. The state space is

Fig. 3. Important sets and surfaces for the single machine-load bus example.
Starting from the back left and moving right along the back edge of the
plot, the green (dark grey) surface heading almost directly into the page is
the zero level set of φ0 (regions to the left of this surface are φ0 < 0),
the yellow (lightest grey) is the singular surface S, and the red (medium
grey) is the constraint surface. The blue (black) region in the front left
is the target set T : The intersection of the zero sublevel set of φ0 and
the constraint surface. Notice that the singular surface only approaches the
constraint surface inside the target set.

y = (E′, Ef) ∈ D = R
2 and z = E ∈ A = R (note that the

prime does not denote a derivative; E′ is a separate variable

from E). The DAE is

[

Ė′

Ėf

]

=





1
T ′

d0

(

Xd−X′

d

X′

E2+X′Q(E)
E′

− X1+X′

d

X′
E′ + Ef

)

1
T

(

−(Ef − E0
f)−K [EG(E)− Er]

)





= fD(E′, Ef , E),

0 = E′2E2 − (X ′P)2 −
[

X ′Q(E) + E2
]2

= g(E′, E),
(11)

where

EG(E) = 1
E

√

(X1P)2 + [X1Q(E) + E2]
2
,

X ′ = X1 + X ′

d,

P = Pm,

Q(E) = Q0 + HE + BE2.

The physical meaning and values of the variables and pa-

rameters are described in table I. The corresponding ODE

system replaces the constraint g in (11) with

Ė =
E′Ė′E

2(X ′Q(E) + E2)− E′2
= fA(E′, E). (12)

As discussed in [12], [13], the model (11) has a singular

surface

S = {(E′, Ef , E) ∈ D× A | DE g(E′, E) = 0}.

A view of S and of the constraint surface g(E′, E) = 0 is

shown in figure 3. The model is not an accurate representa-

tion of the underlying physics of the system on S, and the

DAE (11) is not of index one on this surface. Reviewing the

derivation of (12) from (5), we also see that Ė blows up as

the state approaches S.

Fortunately, the states in S represent unacceptably low

values for the bus voltage E; low voltages can result in

2263

Fig. 4. Approximating the reach tube on the constraint manifold. The
general flow on the manifold is counter-clockwise about an equilibrium at
x ≈ [0.86 2.14]T . The dark grey region is the initial target set, the thin
solid lines show the reach tube’s growth every 1/2 time unit, and the light
grey region is the complement of the reach tube after it achieves a fixpoint
for t & 5. For comparison purposes, a number of sample trajectories starting
on the boundary of the target set are also shown as dashed lines.

damage or failure of the attached load. Consequently, the

unsafe set T for this system is defined as

T = {(E′, Ef , E) ∈ D× A | E ≤ Ec},

and is also shown in figure 3. We approximate the reach tube

for this target using both of the approaches discussed above.

To use the approach from section III, we take manifold

coordinate system x1 = E, x2 = Ef and M = R
2. For

the parameters H = 0 and B = 0 from table I, we get the

simplification Q(E) = Q0 and so

u(x) =

[

1
x1

√

(X ′P)2 + (X ′Q0 + x2
1)

2

x2

]

,

v(x) = x1.

A more complicated but still algebraic formula for u(x) can

be derived for the more general Q(E), but we continue with

the simpler case here. The resulting dynamics on M are given

by (7), where

Dx u(x) =

[

σ(x) 0
0 1

]

,

σ(x) =
x4

1 − (X ′P)2 − (X ′Q0)
2

x2
1

√

(X ′P)2 + (X ′Q0 + x2
1)

2
.

It can be shown that σ(x) 6= 0 for x /∈ S, so Dx u(x) is

nonsingular and fM(x) is well defined for x /∈ T . Because

the dynamics inside the target set are irrelevant to computa-

tion of the reach tube, we apply a smooth approximation of

the Heaviside function

H(λ) =















0, λ ∈ (−∞,−2ǫ);
1
2 + λ+ǫ

2ǫ
+ 1

2π
sin

(

π(λ+ǫ)
ǫ

)

, λ ∈ [−2ǫ, 0];

1, λ ∈ (0,+∞).

to damp the dynamics to zero for x ∈ T (where φ0(x) ≤
0), and hence there is no problem caused by the fact that

(a) Same view as figure 3.

(b) Same view as figure 4.

Fig. 5. Approximating the reach tube in the full state space at t = 5
(two views). The light blue (light grey) lines in both views are sample
trajectories starting on the boundary of the target set. The faceting of the
reach tube’s boundary arises because of a low resolution grid. The blue
(dark grey) surface is the reach tube. Where visible, the green (lighter grey)
surface perpendicular to the reach tube is the zero level set of φ and the
red (light grey) region is the complement of the reach tube (the safe set).

Dx u(x) becomes singular for some states inside the target

set.

fM(x) = H(φ0(x)) (Dx u(x))
−1

fD(u(x), v(x)). (13)

For the results shown below we used ǫ = 2∆x, where ∆x
is the grid node spacing. It is trivial to create an implicit

surface function for the target set: φ0(x) = x1 − Ec. The

results of computing the reach tube for fM from (13) are

shown in figure 4. Only the small light grey region in the

center is outside of the reach tube and is thus safe.

To use the approach from section IV, we would like to

solve (10) using fD from (11) and fA from (12), while

applying the closest point function γ to reinitialize φ after

every timestep. Unfortunately, fA blows up for states near

S, and we need a well defined flow field throughout the full

dimensional computational domain to solve (10). We use the

same Heaviside function damping trick as above to remove

the problem inside the target set. However, in this case there

are still portions of S outside T but inside the computational

domain. Fortunately, in solving (10) we only need to respect

the problem’s true dynamics on the constraint manifold, and

hence we can choose any flow field to evolve φ as long as

it agrees with the true flow field on the constraint manifold.

Computation of such modified flow fields is known in the

level set literature as velocity extension [14]. In this case, we

use the closest point function to extend the flow field [10]

2264

and replace (10) with

Dtφ(y, z, t) + min

[

0,
Dy φ(y, z, t) · fD(y, z)

+ Dz φ(y, z, t) · fA(y, z)

]

= 0.

where

fD(y, z) = H(φ0(γ(y, z)))fD(γ(y, z)),

fA(y, z) = H(φ0(γ(y, z)))fA(γ(y, z)).

The closest point reinitialization φ(y, z, t)← φ(γ(y, z), t) is

still applied after each timestep. Results of computing the

reach tube in this manner are shown in figure 5.

VI. CONCLUSION

We have presented two techniques for approximating the

reach tube of a system modeled by an index one DAE. While

conceptually simple and of lower dimension, the approach

in section III is not always applicable. The existence of

suitable u and v implies that the original DAE system could

be solved as a pure (albeit potentially complicated) ODE

of the form (7). In the context of approximating individual

trajectories of DAEs, this technique is variously called the

indirect or ODE approach and is used in practice [6], but if

such a situation holds then why use the DAE model to begin

with? In contrast, the approach in section IV may be applied

to any DAE of index one; however, because it works in the

full dimensional state space, the computational effort will be

much greater. This computational tradeoff can clearly be seen

in the quality of the reach tube approximation in figures 4

and 5: because it requires one fewer dimension, the former

can be computed at a finer resolution in less time than the

latter.

The two schemes also differ in their adaptability to other

algorithms. The approach examined in section III, which is

essentially an analytic projection onto the constraint mani-

fold, could be used with almost any reachability algorithm

provided that the algorithm could handle the projected dy-

namics (which are likely to be nonlinear). The approach ex-

amined in section IV makes use of a closest point extension

away from the manifold, which is quite specific to implicit

surface based representations of the reach tube and hence is

unlikely to be useful in other contexts. However, the general

idea of evolving a reach tube in the full dimensional state

space—making use of conveniently modified dynamics away

from the constraint manifold as necessary—and considering

only the states where this tube intersects the manifold as

truely part of the reach tube might prove productive in other

algorithms.

With the addition of a method for handling the state reset

that occurs during mode switches, these schemes can be used

for reachability in hybrid systems. The method is briefly

explained in [15], along with an extension of the single

machine-load bus example to a hybrid setting.

Finally, we mention that empirical extension of either

technique to systems with inputs is straightforward following

the procedures in [2], and as shown there such inputs can be

used to robustly treat model uncertainty. However, we do not

know whether such an extension might run into theoretical

issues unique to DAEs regarding existence and uniqueness

of trajectories and/or reach tubes.

Reproducible Research: The code recreating the results

using the approach from section III, including code for

figures 1 and 4, can be found at [4]; these codes require

the TOOLBOXLS package also located at the same website.

Unfortunately, the approach in section IV requires some

features not currently available in TOOLBOXLS, and we

apologize that the code for figures 2 and 5 has consequently

not been released.

Acknowledgements: The authors would like to thank

Prof. Yoshihiko Susuki for introducing us to the single

machine-load bus example and its voltage safety problem,

as well as discussions on how to simulate and verify the

model. This research was supported by the National Science

and Engineering Research Council of Canada.

REFERENCES

[1] I. M. Mitchell, “Comparing forward and backward reachability as tools
for safety analysis,” in Hybrid Systems: Computation and Control, ser.
Lecture Notes in Computer Science, A. Bemporad, A. Bicchi, and
G. Buttazzo, Eds. Springer Verlag, 2007, no. 4416, pp. 428–443.

[2] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent
Hamilton-Jacobi formulation of reachable sets for continuous dynamic
games,” IEEE Transactions on Automatic Control, vol. 50, no. 7, pp.
947–957, 2005.

[3] I. M. Mitchell and J. A. Templeton, “A toolbox of Hamilton-Jacobi
solvers for analysis of nondeterministic continuous and hybrid sys-
tems,” in Hybrid Systems: Computation and Control, ser. Lecture
Notes in Computer Science, M. Morari and L. Thiele, Eds. Springer
Verlag, 2005, no. 3414, pp. 480–494.

[4] [Online]. Available: http://www.cs.ubc.ca/∼mitchell/ToolboxLS
[5] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Dif-

ferential Equations and Differential-Algebraic Equations. Philadel-
phia: Society for Industrial and Applied Mathematics, 1998.

[6] L. F. Shampine, M. W. Reichelt, and J. A. Kierzenka, “Solving index-
1 DAEs in MATLAB and Simulink,” SIAM Review, vol. 41, no. 3, pp.
538–552, 1999.

[7] T. Dang, A. Donzé, and O. Maler, “Verification of analog and mixed-
signal circuits using hybrid system techniques,” in Formal Methods

in Computer-Aided Design, ser. Lecture Notes in Computer Science,
A. J. Hu and A. K. Martin, Eds. Springer Verlag, 2004, no. 3312,
pp. 21–36.

[8] E. Asarin, T. Dang, and O. Maler, “d/dt: A verification tool for hybrid
systems,” in Proceedings of the IEEE Conference on Decision and

Control, Orlando, FL, 2001, pp. 2893–2898.
[9] P. Saint-Pierre, “Approximation of the viability kernel,” Applied Math-

ematics and Optimization, vol. 29, pp. 187–209, 1994.
[10] S. J. Ruuth and B. Merriman, “A simple embedding method for solving

partial differential equations on surfaces,” Journal of Computational

Physics, vol. 227, pp. 1943–1961, 2008.
[11] E. A. Cross, “Solving reachable sets on a manifold,” Master’s thesis,

Department of Computer Science, University of British Columbia,
August 2007.

[12] V. Venkatasubramanian, H. Schättler, and J. Zaborszky, “Voltage
dynamics: Study of a generator with voltage control, transmission,
and matched MW load,” IEEE Transactions on Automatic Control,
vol. 37, no. 11, pp. 1717–1733, November 1992.

[13] Y. Susuki and T. Hikihara, “Predicting voltage instability of power
system via hybrid system reachability analysis,” in Proceedings of the

American Control Conference, New York, NY, 2007, pp. 4166–4171.
[14] D. Adalsteinsson and J. A. Sethian, “The fast construction of extension

velocities in level set methods,” Journal of Computational Physics, vol.
148, pp. 2–22, 1999.

[15] I. M. Mitchell and Y. Susuki, “Level set methods for computing
reachable sets of hybrid systems with differential algebraic equation
dynamics,” to appear in Hybrid Systems Computation and Control
2008, 4 pages.

2265

