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Abstract—In this paper we examine the robustness of Norm 
Optimal ILC with quadratic cost criterion for discrete-time, 
linear time-invariant, single-input single-output systems.  A 
bounded multiplicative uncertainty model is used to describe 
the uncertain system and a sufficient condition for robust 
monotonic convergence is developed.  We find that, for 
sufficiently large uncertainty, the performance weighting can 
not be selected arbitrarily large, and thus overall performance 
is limited.  To maximize available performance, a time-
frequency design methodology is presented to shape the 
weighting matrix based on the initial tracking error.  The 
design is applied to a nanopositioning system and simulation 
results are presented. 

I. INTRODUCTION 
TERATIVE learning control (ILC) [1]-[3] is used to 
improve the performance of systems that repeat the same 

operation many times.  ILC uses the tracking errors from 
previous iterations of the repeated motion to generate a 
feedforward control signal for subsequent iterations.  
Convergence of the learning process results in a feedforward 
control signal that is customized for the repeated motion, 
yielding very low tracking error. 

One popular ILC design method for discrete-time, linear 
time-invariant (LTI) systems is Norm Optimal ILC [4]-[8], 
analogous to linear quadratic optimal control for feedback 
systems.  Norm Optimal ILC has successfully been applied 
to industrial robots [6], wafer steppers [9], and video 
projection systems [10].  Norm Optimal ILC is an attractive 
design framework because the designer is supplied with 
several intuitive tuning knobs in the form of weighting 
matrices, optimal solutions to the quadratic cost function are 
straightforward and elegant, and solutions always result in 
monotonic convergence of the control [4].  Previous work 
has shown how weighting functions can be designed to 
prevent actuator saturation [6], decrease noise sensitivity [5], 
and emphasize certain frequency bands in the learning [7]. 

One critical limitation of Norm Optimal ILC, however, is 
that perfect models of the system are assumed.  When the 
model is inaccurate, monotonic convergence of the control is 
no longer guaranteed.  Learning transients including large, 
rapid growth of the error [11] or even instability can occur, 
potentially damaging equipment or causing injury.  In the 
first part of this work we examine the monotonic 
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convergence robustness of the optimal solution for bounded 
frequency-domain model uncertainty.  A sufficient condition 
for robust monotonic convergence is developed, which 
creates limitations on the weighting matrices.  In the second 
part of this paper we consider the problem of optimally 
selecting weighting matrices to maximize nominal 
performance, while maintaining worst-case robustness.  We 
present a design methodology using time-frequency analysis 
to identify the most challenging portions of the trajectory 
and design weightings to focus on those portions. 

The remainder of this paper is organized as follows.  In 
Section II we present the Norm Optimal ILC for nominal 
systems.  Uncertain systems and robust monotonic 
convergence are presented in Section III.  Our design 
methodology is developed in Section IV.  In Section V we 
apply our methodology to the design of a robust Norm 
Optimal ILC for a nanopositioning system.  Conclusions are 
given in Section VI. 

II. NORM OPTIMAL ILC 
In this work we will consider single-input single-output 

(SISO) systems for simplicity, although results can be 
extended to multi-input multi-output systems.  Let q be the 
forward time-shift operator ( ) ( )q 1x k x k= +  and q-1 be the 
backward time-shift operator.  Consider the discrete-time 
SISO LTI dynamic system, 
 ( ) ( ) ( ) ( )qj jy k P u k d k= + , (1) 

where k is the time index, j is the iteration index, y is the 
output, u is the control input, and d is an iteration-invariant 
disturbance.  ( )qP  is assumed to be asymptotically stable 
and can be written as 
 ( ) 1 2

1 2q q q qm m m
m m mP p p p− − − − −

+ += + + +… , (2) 

where 0mp ≠  and { }1 2, ,m m mp p p+ + …  is the system 
impulse response.  The system delay, or equivalently relative 
degree, is given by 0m ≥ .  Repeating disturbances [12], 
repeated nonzero initial conditions [11], and systems 
augmented with feedback and feedforward control [12] can 
be captured in ( )d k . 

 Let ( )dy k  be the N-sample length desired output for 

1, 2, ,k m m m N= + + +…  and consider the vector-
description of signals, 
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The lifted system [13] description is given by j j= +y Pu d , 

where, 
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The tracking error is given by, 
 j d j= −e y y , (4) 
or, 
 0j j= − +e Pu e , for 1j ≥ , (5) 

where 0 = −de y d . 
The Norm Optimal ILC algorithm is to choose the control 

for the next iteration as the solution to 
1 1arg min

j j+ +u J , 

where 
 1 1 1 1 1

T T
j j j j j+ + + + += +e uJ e W e u W u  (6) 

and 0>eW , 0≥uW .  From (5), (6), 
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The optimal control obtained from 1 1 0j j+ +∂ ∂ =J u  is given 
by, 

 ( ) 1

1
T T

j

−

+ = +e u e 0u P W P W P W e . (7) 

In the following we replace P  by P̂ , to emphasize that the 
learning algorithm is constructed using the system model P̂ , 
rather than the actual system P .  Using the system model 
(5), we can reformulate (7) into the first-order algorithm 
(similar to [6]), 
 ( )1j j j+ = +u Q u Le , (8) 

where 
 1ˆ −=L P , (9) 
is the learning function and, 

 ( ) 1ˆ ˆ ˆ ˆT T
−

= +e u eQ P W P W P W P , (10) 

is the robustifying Q-filter [3].  Thus, we find that the 
optimal solution is a Q-filtered model-inversion ILC where 
the weighting matrices are used to shape the Q-filter. 

The converged control lim j j∞ →∞u u�  can be found 
from (5), (8) as 

 ( ) 1

0
ˆ ˆT T

−

∞ = +e u eu P W P W P W e . (11) 

The converged error lim j j∞ →∞e e�  can then be found from 
(5) as, 

 ( ) 1

0
ˆ ˆT T

−

∞
⎛ ⎞= − +⎜ ⎟
⎝ ⎠e u ee I P P W P W P W e . (12) 

An important consideration for safe operation of ILC are 
the learning transients of the system [11].  In some cases, 
stable ILC algorithms can generate large control signals for 
many iterations before convergence [11].  Therefore, we are 
interested in monotonic convergence of the ILC as defined 
by the following. 

Definition:  The ILC is monotonically convergent if ju  

converges and 1 2 2j j∞ + ∞− < −u u u u . 

Remark:  Monotonic convergence of 
2j∞ −u u  does not 

necessarily give monotonic convergence of the system error, 
although 

2j∞ −u u  bounds the error growth.  For example, 

( )2 2
ˆ

j j jσ∞ ∞ ∞∞
− ≤ − ≤ −e e e e P u u , where ( )σ i  is 

the maximum singular value of ( )i . 

As a special case of the result we present in Section III.A, 
we find that Optimal ILC is monotonically convergent when 
the system dynamics are accurately modeled as P̂ .  
However, when the model is inaccurate, monotonic 
convergence may be lost, which is examined in the 
following section. 

III. ROBUSTNESS OF THE OPTIMAL SOLUTION 
Consider model uncertainty such that the actual system P  

belongs to a set of perturbations of the nominal system given 
by 
 ( )ˆ= + ΔP P I W Δ , (13) 

where P̂ , ΔW  are known lower-triangular Toeplitz nxn 
matrices and Δ  is an unknown lower-triangular Toeplitz 
nxn matrix with ( ) 1σ ≤Δ .  The class of lifted systems (13) 
includes systems whose frequency-domain description is 
given by [14], 
 ( ) ( ) ( ) ( )( )ˆ 1P z P z W z zΔ= + Δ , (14) 

where ΔW  is the lifted system description of ( )W zΔ , and 

( ) 1z
∞

Δ ≤ .  This description is useful for capturing models 

with parametric uncertainties and unmodeled dynamics [15]. 
Robustness results for Q-filtered model-inversion ILC are 

given in [14].  The following theorem is adapted from [14] 
for the Norm Optimal solution in (8), (9), (10).  This result 
is the first of its kind (to the author’s knowledge) that 
provides explicit constraints on the weighting matrices for 
robustness. 
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Theorem 1:  If 

 ( ) 1ˆ ˆ ˆ ˆ 1T Tσ
−⎛ ⎞+ <⎜ ⎟

⎝ ⎠u e e ΔW P W P P W PW . (15) 

then the ILC is robustly monotonic for the class of 
uncertainties (13). 

Proof:  From (11), (8), and (12), 

 
( )( )

( )( )
1

1 2 2

,

.

j j

j jσ

∞ + ∞

∞ + ∞

− = − −

− ≤ − −

u u Q I LP u u

u u Q I LP u u
 

Then, the system is robustly monotonic if 
( )( ) 1σ − <Q I LP .  Substituting (9) and (10) for L and Q, 

respectively, we arrive at (15). □ 

A. Robustness of Optimal ILC to Small Uncertainty 
When the uncertainty is bounded by ( ) 1σ <ΔW , then the 

Optimal ILC is robustly monotonic for all choices of 
weightings because 
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u e e Δ

u e e

W P W P P W PW

W P W P P W P  

where the last step is due to positive semidefiniteness of 
uW  and positive definiteness of eW .  Note that the 

uncertainty bound ( ) 1σ <ΔW  is equivalent [12] to the H∞ 

bound ( ) 1W zΔ ∞
<  for the frequency-domain description 

(14). 

B. Existence of Robustifying Weightings 
In the following we show that there always exists 

weighting matrices that satisfy the robustness condition (15).  
Consider ( ) 1σ ≥ΔW  and the weightings, 

 =uW I  (16) 
and 
 c=eW I , 0c >  (17) 
Then,  
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and (15) is satisfied for,  

 
( )
( )

1ˆ ˆ

1

T

c
σ

σ

− −

<
−Δ

P P

W
, (18) 

Thus, it is always possible to pick c small enough to be 
robust. 

In some cases it may not be possible or feasible to obtain 
explicit bounds on the model uncertainty.  In light of  (18), a 
reasonable tuning strategy is to begin with a very small 
value of c and slowly increasing it while watching the 
system response for signs of instability or transient growth.  
When the uncertainty bound is known or can be estimated, 
the design strategy presented in the following section can be 
utilized. 

IV. TIME-FREQUENCY DESIGN OF THE WEIGHTING 
MATRICES 

For design, it suffices to set =uW I  and design eW .  
Typically, a scalar weighting cI  is used for eW  and the 
scalar c is selected by system tuning [5],[6].  As we show in 
the previous section, it is always possible to find a 
sufficiently small c to provide robustness.  However, for 
high performance, we would like c to be as large as possible, 
and thus we might consider selecting a c close to the bound 
(18). 

A. Time-Varying Weighting 
The scalar weighting c represents a uniform performance 

weighting across every time sample in the iteration.  
However, in many applications, especially in precision 
motion control [16], performance challenges are not uniform 
across the entire iteration.  That is, some portions of the 
iteration (for instance, those where references and 
disturbances contain low frequencies) may naturally result in 
low tracking error with a small weighting.  We refer to these 
low frequency sections as β-segments [16].  Other portions, 
referred to as α-segments, may contain very high 
frequencies and naturally result in large errors.  α-segments 
could  be the result of rapid changes in the reference signal 
or nonsmooth, nonlinear disturbances such as friction and 
backlash.  For α-segments, a much larger weighting will be 
necessary to provide low error.  For these applications, we 
are interested in designing a weighting matrix of the form, 
 ( ) ( ) ( ){ }1 , 2 , ,diag w w w N=eW … , (19) 

which we interpret as a time-varying weighting, since ( )w k  
is the weight on the error at time k. 
 Our goal is to design eW  to provide the best performance 
for the nominal plant, while maintaining robustness to the 
class of uncertainties (13).  Formally, we wish to solve the 
optimal design problem, 
 

( ) ( )
ˆ 21 , ,

arg min
w w N

∞ =P P
e

…
 such that (15), (20) 

where, 
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 ( ) 1

ˆ 0
ˆ ˆ ˆ ˆT T

−

∞ =

⎛ ⎞= − +⎜ ⎟
⎝ ⎠e eP P

e I P P W P I P W e . (21) 

An important feature of this problem is that ∞e  depends on 

0 d= −e y d , and thus is specific to the reference and 
disturbance.  The optimal weightings are therefore 
customized for the specific tracking challenges in dy  and 
d .  As we show in Section V, this can lead to significant 
performance improvements over the scalar weighting, c. 

B. Design Procedure 
The design problem (20) can not be solved analytically, 

so we look to numerical techniques.  For long iteration 
lengths where N is large, the number of free variables in (20) 
could pose computational difficulties.  Here, we present a 
methodology for shaping a low-order weighting profile, 
 ( ) ( )1, , ,nw k f kξ ξ= …  (22) 

where iξ  are variables to be optimized, and n N� .  The 

methodology uses the initial tracking error ( )0e k  and time-
frequency analysis tools to identify temporal locations where 
weightings should be largest.  This approach is similar to 
previous work by the author [16], although the difference 
here is that the methodology is applied with robustness 
constraints, and thus results in a robust, high performance 
ILC design. 

To determine where tracking challenges will be largest, 
we begin the design process by measuring ( )0e k  from the 

0th iteration.  ( )0e k  is then decomposed into its time and 
frequency components using any time-frequency 
decomposition (eg. short-time Fourier Transform, Wigner-
Ville decomposition [17], or wavelets).  For illustrative 
purposes, consider ( )0e k  from the nanopositioning example 
in Section V, which is shown in Figure 1.  The Wigner-Ville 
decomposition is given  by 

 ( ) ( ) ( ) ( )0 0
1, exp 2

N

N

W k e k e k i
τ

ω τ τ ωτ
π =−

= − + −∑ , (23) 

and shown for this signal in Figure 2. 
The time-frequency decomposition in Figure 2 shows a 

high frequency peak at 0.1 seconds followed by lower 
frequency content at approximately 0.11 seconds.  We 
identify these peaks as α-segments and shape the weighting 
vector ( )w k  to permit larger weights during these 
segments.  To do so, we select a shaping function centered 
at the α-segment ti with one or more tunable parameters.  For 
example the rectangle function, 

 ( ) ,
, , ,

0, . .
i

i
a for k t b

rect a b t k
o w

− ≤⎧
= ⎨

⎩
, (24) 

where a is the function height and 2b is its width can serve 
this purpose.  The weighting profile is then constructed as, 

 
( ) ( )

( )

1 1

1

, , , , , ,

, , , ,

N N

N

i i i
i

w k f c a b a b k

c rect a b t k

α α

α

=

=

= + ∑

…

 (25) 

where c is the β-segment weighting.  The weighting profile 
for this example is shown in Figure 3. 

To optimally select the shaping parameters ai, bi, and c, 
we use a numerical search to minimize ˆ 2∞ =P Pe , subject to 

the robustness constraint (15).  The design procedure is 
summarized in the flowchart in Figure 4. 
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Fig. 1.  Initial error, ( )0e k . 

 
Fig. 2.  Wigner-Ville time-frequency decomposition 

of ( )0e k . 
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Fig. 3.  Parameterized weighting profile, ( )w k . 
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Identify system model 
and uncertainty bound

Measure e0(k)

Time-frequency
decomposition

Shape and parameterize 
weighting vector, w(k)

Numerical
optimization

Evaluate results

Done Iterate design

Satisfactory

 
Fig. 4.  Time-frequency design process. 

V. NUMERICAL EXAMPLE:  NANOPOSITIONING SYSTEM 
In this section we apply the methodology presented in the 

previous section to the design of an Optimal ILC for a 
nanopositioning system [18].  The nanopositioning system is 
operated with a feedback controller, as shown in Figure 5.   
The sampling rate is 4 kHz and the plant model ( )qG  and 

feedback controller ( )qC  are given in (23) and (24), 
respectively, at the bottom of the next page.  The closed 
loop transfer function from u to e is given by 

( ) ( ) ( ) ( )( )ˆ q q 1 q qP G C G= + , and its Bode plot is shown 

in Figure 6.  To illustrate the design approach and 
robustness limitations on performance, we assume that the 
model for P has the multiplicative uncertainty bound, 

 ( ) 1.4 (q - 0.9975)q
q - 0.9656

WΔ = . 

A Bode plot of P and WΔ  is shown in Figure 7. 

 
Fig. 5.  Nanopositioning system control structure [18]. 

We choose our reference as a unit step at 0.1 seconds with 
an iteration length of 0.3 seconds.  The initial error and 
time-frequency decomposition are given in figures 1 and 2, 
respectively.  As illustrated in Figure 3, two rectangular 
shape functions (24), are selected at t1=0.1 seconds and 
t2=0.11 seconds where the two dominant lobes in the time-
frequency decomposition are centered.  Rectangular shape 

functions are used here as the simplest shape function to 
illustrate the design approach.  Other shapes could be 
selected by the designer and may yield improved 
performance. 
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Fig. 7.  Bode plot of ( )qWΔ . 

A. Nominal System Performance 
Using MATLAB’s fmincon, the optimal parameters are 

found as 

 1 2

1 2

178.7 0 30.4
80 /

a a c
b b N A

= = =
= =

. 

Interestingly, the optimization has determined that the 
second α-segment is not significant, and set the weighting 
for that segment to 0.  For comparison purposes, we also 
search for the optimal scalar weighting and find it as, 
 67.7scalarc = . 
The resulting weighting vector for each are plotted in Figure 
8.  The learning algorithm is constructed for both sets of 
weightings and the tracking performance is simulated using 
the nominal plant model, ( )ˆ qP .  In both cases convergence 
occurs in one iteration because of the perfect model 
inversion in L.  The converged error is shown in Figure 9.  
The performance results are listed in Table 1. 

Both weighting vectors are robust to uncertainties 
bounded by WΔ .  However, the optimization results show 
that better performance is achieved when the weighting is 
decreased in the β-segments and reallocated to the first α-
segment.   

C(q) G(q) 
yd(k) yj(k)

ej(k) uj(k) 

Frequency (Hz) 

Frequency (Hz) 
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( )
2 2 2 2

2 2 2 2

q

0.058593(q 0.5318)(q 1.89q 0.9716)(q 1.703q 0.9595)(q 1.461q 0.9264)(q 1.11q 0.8759)
(q 0.6193)(q 0.9251)(q 1.294q 0.5162)(q 1.723q 0.9719)(q 1.589q 0.9055)(q 1.268q 0.8754)

G =

− − + − + − + − +
− − − + − + − + − +

(23)

( )

2 2 2

2 2 2 2

3 2

0.21546(q 0.7394)(q 0.9252)(q 0.08362)(q 1.974q 0.9744)(q 1.201q 0.3644)(q 1.338q 0.543)

(q 1.72q 0.97)(q 1.573q 0.8973)(q 1.262q 0.8723)(q 0.4859q 0.8786)q
q(q 0.8988)(q 0.9969) (q 0.5403)(q

C

− − − − + − + − +

⋅ − + − + − + − +
=

− − − 2

2 2 2 2

0.8642q 0.2344)(q 1.784q 0.869)

(q 1.704q 0.9596)(q 1.439q 0.87)(q 1.189q 0.8285)(q 0.4483q 0.8109)

− + − +

⋅ − + − + − + − +

(24)
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Fig. 8.  Optimized weighting vector, w(k). 
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Fig. 9.  Converged error ( )e k∞  on the nominal plant ( )ˆ qP . 

Table 1.  Performance results. 
 

2∞e  ( )max e k∞  

Scalar Weighting 1.0419 0.4222 
Shaped Weighting 0.8717 0.3214 
Improvement 16% 24% 

B. Perturbed Plant Performance 
In this section we present simulation results for the 

perturbed system, ( ) ( ) ( )( )ˆq q 1 qP P WΔ= + .  Because the 

learning function L does not invert the perturbed system, 
convergence is slower than for the nominal system.  As 

shown in Figure 10, the control convergences monotonically 
on the perturbed system.  Figure 11 shows that the shaped 
weighting also outperforms the scalar weighting on the 
perturbed system.  Although this is not guaranteed by the 
design, we might reasonably expect this result since the 
perturbed dynamics do not change the location of the α-
segment. 

Finally, to demonstrate the robustness limitations of large 
weightings in Optimal ILC, we create a third weighting 
vector with the scalar weighting 200scalarc = .  A check of 
(15) shows that this weighting is not robustly monotonic for 
the perturbed system.  The first 100 iterations are simulated 
using this weighting and plotted in Figure 12.  The results 
show large transient growth with approximately 7x 
amplification of the initial error after 100 iterations.  It is 
interesting that this ILC is actually stable as determined by 
checking the system eigenvalues [3], and thus we expect the 
control to convergence after sufficient iterations.  Clearly, 
however, the large transient growth is undesirable, which 
reinforces the necessity of robust monotonic convergence, 
rather than the weaker condition of robust stability. 
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Fig. 10.  Monotonic convergence of the control on the 

perturbed plant P. 
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Fig. 11.  Error convergence on perturbed plant ( )qP . 
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Fig. 12.  Large transient growth for non-robust weighting, 

200scalarc = . 

VI. CONCLUSIONS 
In this work we examined the robustness of Optimal ILC 

with respect to monotonic convergence.  Sufficient 
conditions for robust monotonic convergence were 
developed and found to impose constraints on weighting 
matrix selection for sufficiently large uncertainties.  These 
constraints translate to performance limitations.  A time-
frequency design methodology was presented to optimize 
the performance within the robustness constraints by 
shaping the weightings based on the initial tracking error. 

The methodology was applied to the design of an Optimal 
ILC for a nanopositioning system.  Simulations showed that 
the shaped weighting resulted in 16% improvement in 
converged error 2-norm and 24% improvement in peak error 
versus unshaped weighting. 
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