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Abstract—The development in this (Part II) paper augments
the result developed in Part I by considering uncertain dynamic
systems that are not necessarily linear-in-the-parameters (LP),
and have additive non-LP bounded disturbances. For non-LP
uncertainties, a model-based adaptive feedforward formulation
cannot be used. Therefore, in this paper, a multilayer neural
network (NN) structure is used as a feedforward element
(that learns and compensates for the non-LP dynamics) in
conjunction with the Robust Integral of the Sign of the Error
(RISE) feedback term. Similar to the result in Part I, a NN-
based controller is developed in this paper with modularity in
NN weight tuning laws and control law. Specifically, the results
in this paper allow the NN weight tuning laws to be determined
from a developed generic update law (rather than be restricted
to a gradient update law).

I. INTRODUCTION
Numerous adaptive control results have been developed

for nonlinear systems with parametric uncertainty that is
assumed to satisfy the linear-in-the-parameters (LP) con-
dition. The transient performance of these adaptive con-
trollers is often degraded because of the restriction to use
a gradient-based adaptive update law to cancel cross terms
in a Lyapunov-based stability analysis. Motivated by the
fact that gradient update laws often exhibit slow parameter
convergence in comparison to other possible adaptive update
laws (e.g., least-squares update law), several efforts have
been made to redesign the closed-loop error system and
stability analysis to accommodate different adaptive update
laws (cf. [1]–[4]). Researchers have also developed a class
of modular adaptive controllers (cf. [5]–[9]) where nonlinear
damping (ND) [6], [10] is used to stabilize the error dynam-
ics provided certain conditions are satisfied on the adaptive
update law (i.e., an input-to-state stability (ISS) result). In
lieu of the class of ND-based controllers, Part I of this paper
[11] described how a new feedback control strategy called
the Robust Integral of the Sign of the Error (RISE) could be
coupled with a generic update law to yield a new class of
modular adaptive controllers.
In comparison with the outcomes of Part I, the focus of this

(Part II) paper is to extend the class of RISE-based modular
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adaptive controllers to include uncertain dynamic systems
that do not satisfy the LP assumption. For non-LP dynamic
systems, the use of a model-based adaptive feedforward
term is not possible. Neural networks (NNs) have gained
popularity as a feedforward adaptive control method that can
compensate for non-LP uncertainty in nonlinear systems. A
limiting factor in previous NN-based feedforward control re-
sults is that a residual function approximation error exists that
limits the steady-state performance to a uniformly ultimately
bounded result, rather than an asymptotic result. Some re-
sults (cf. [12]–[18]) have been developed to augment the
NN feedforward component with a discontinuous feedback
element to achieve asymptotic tracking. Motivated by the
practical limitations of discontinuous feedback, a multilayer
NN-based controller was augmented by RISE feedback in
[19] to yield the first asymptotic tracking result using a
continuous controller. However, in all previous NN-based
controllers, the NN adaptation is governed by a gradient
update law to facilitate the Lyapunov-based stability analysis.
Since multilayer NNs are nonlinear in the weights, it is

challenging to derive weight tuning laws in closed-loop feed-
back control systems that yield stability as well as bounded
weights. The development in the current work illustrates
how to extend the class of modular adaptive controllers
in Part I for NNs. Specifically, the results in this paper
allow the NN weight tuning laws to be determined from a
developed generic update law (rather than be restricted to a
gradient update law). We are not aware of any modular NN-
based controller in literature with modularity in the tuning
laws/controller. The NN feedforward structure adaptively
compensates for the non-LP uncertain dynamics, thereby
extending the results in Part I where only LP dynamics could
be compensated by using a model-based feedforward term.
For the tuning laws that could be used in this result, the

NN weights can be initialized randomly, and no off-line
training is required.

II. DYNAMIC MODEL AND PROPERTIES
The class of nonlinear dynamic systems considered in this

paper is assumed to be modeled by the following Euler-
Lagrange formulation:

M(q)q̈ + Vm(q, q̇)q̇ +G(q) + F (q̇) + τd (t) = τ(t). (1)

In (1), M(q) ∈ Rn×n denotes the inertia matrix, Vm(q, q̇) ∈
Rn×n denotes the centripetal-Coriolis matrix, G(q) ∈ Rn
denotes the gravity vector, F (q̇) ∈ Rn denotes friction,
τd (t) ∈ Rn denotes a general nonlinear disturbance (e.g.,
unmodeled effects), τ(t) ∈ Rn represents the torque input
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control vector, and q(t), q̇(t), q̈(t) ∈ Rn denote the link
position, velocity, and acceleration vectors, respectively. The
subsequent development is based on the assumption that q(t)
and q̇(t) are measurable and that M(q), Vm(q, q̇), G(q),
F (q̇) and τd (t) are unknown and do not have to satisfy the
LP assumption. Moreover, the following properties and as-
sumptions will be exploited in the subsequent development.
Property 1: The inertia matrix M(q) is symmetric, positive
definite, and satisfies the following inequality ∀ξ(t) ∈ Rn:

m1 kξk2 ≤ ξTM(q)ξ ≤ m̄(q) kξk2 (2)

where m1 ∈ R is a known positive constant, m̄(q) ∈ R
is a known positive function, and k·k denotes the standard
Euclidean norm.
Property 2: If q(t), q̇(t) ∈ L∞, then Vm(q, q̇), F (q̇) and
G(q) are bounded. Moreover, if q(t), q̇(t) ∈ L∞, then the
first and second partial derivatives of the elements of M(q),
Vm(q, q̇), G(q) with respect to q (t) exist and are bounded,
and the first and second partial derivatives of the elements of
Vm(q, q̇), F (q̇) with respect to q̇(t) exist and are bounded.
Property 3: The nonlinear disturbance term and its first two
time derivatives, i.e. τd (t) , τ̇d (t) , τ̈d (t) are bounded by
known constants.
Property 4: The desired trajectory is assumed to be de-
signed such that q(i)d (t) ∈ Rn (i = 0, 1, ..., 4) exist, and are
bounded.

III. CONTROL OBJECTIVE
The objective is to design a continuous modular adaptive

controller which ensures that the system tracks a desired
time-varying trajectory, denoted by qd(t) ∈ Rn, despite un-
certainties in the dynamic model. To quantify this objective,
a position tracking error, denoted by e1(t) ∈ Rn, is defined
as

e1 , qd − q. (3)

To facilitate the subsequent analysis, filtered tracking errors
[20], denoted by e2(t), r(t) ∈ Rn, are also defined as

e2 , ė1 + α1e1 (4)

r , ė2 + α2e2 (5)

where α1, α2 ∈ R denote positive constants. The filtered
tracking error r(t) is not measurable since the expression in
(5) depends on q̈(t).

IV. FEEDFORWARD NN ESTIMATION
NN-based estimation methods are well suited for control

systems where the dynamic model contains unstructured
nonlinear disturbances as in (1). The main feature that em-
powers NN-based controllers is the universal approximation
property. Let S be a compact simply connected set of RN1+1.
With map f : S→ Rn, define Cn (S) as the space where f
is continuous. There exist weights and thresholds such that
some function f(x) ∈ Cn (S) can be represented by a three-
layer NN as [21], [22]

f (x) =WTσ
¡
V Tx

¢
+ ε (x) (6)

for some given input x(t) ∈ RN1+1. In (6), V ∈ R(N1+1)×N2

and W ∈ R(N2+1)×n are bounded constant weight matrices
for the first-to-second and second-to-third layers respectively,
where N1 is the number of neurons in the input layer, N2

is the number of neurons in the hidden layer, and n is the
number of neurons in the third layer. The activation function1
in (6) is denoted by σ (·) ∈ RN2+1, and ε (x) ∈ Rn is
the functional reconstruction error. Note that, augmenting
the input vector x(t) and activation function σ (·) by “1”
allows us to have thresholds as the first columns of the
weight matrices [21], [22]. Thus, any tuning of W and V
then includes tuning of thresholds as well. For more details
on the NN structure, see [21], [22].
Remark 1: If ε = 0, then f (x) is in the functional range

of the NN. In general for any positive constant real number
εN > 0, f (x) is within εN of the NN range if there exist
finite hidden neurons N2, and constant weights so that for
all inputs in the compact set, the approximation holds with
kεk < εN . For various activation functions, results such as
the Stone-Weiserstrass theorem indicate that any sufficiently
smooth function can be approximated by a suitable large
network. Therefore, the fact that the approximation error ε is
bounded follows from the Universal Approximation Property
of the NNs (see [23], [24], and [25]).
Based on (6), the typical three-layer NN approximation

for f(x) is given as [21], [22]

f̂ (x) , ŴTσ(V̂ Tx) (7)

where V̂ (t) ∈ R(N1+1)×N2 and Ŵ (t) ∈ R(N2+1)×n are
subsequently designed estimates of the ideal weight matrices.
The estimate mismatches for the ideal weight matrices,
denoted by Ṽ (t) ∈ R(N1+1)×N2 and W̃ (t) ∈ R(N2+1)×n,
are defined as

Ṽ , V − V̂ , W̃ ,W − Ŵ ,

and the mismatch for the hidden-layer output error for a
given x(t), denoted by σ̃(x) ∈ RN2+1, is defined as

σ̃ , σ − σ̂ = σ
¡
V Tx

¢
− σ(V̂ Tx). (8)

The NN has several properties that facilitate the subse-
quent development. These properties are described as fol-
lows.
Property 5: (Boundedness of the Ideal Weights) The ideal
weights are assumed to exist and be bounded by known
positive values so that

kV k2F = tr
¡
V TV

¢
= vec (V )

T
vec (V ) ≤ V̄B (9)

kWk2F = tr
¡
WTW

¢
= vec (W )T vec (W ) ≤ W̄B , (10)

where k·kF is the Frobenius norm of a matrix, tr (·) is the
trace of a matrix, and the operator vec (·) stacks the columns
of a matrix A ∈ Rm×n to form a vector vec(A) ∈ Rmn as

vec(A) ,
£
A11 A21... Am1 A12

A22... A1n... Amn

¤T
.

1A variety of activation functions (e.g., sigmoid, hyperbolic tangent or
radial basis) could be used for the control development in this paper.
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Property 6: (Convex Regions) Based on (9) and (10), convex
regions (e.g., see Section 4.3 of [26]) can be defined.
Specifically, the convex region ΛV can be defined as

ΛV ,
©
v : vT v ≤ V̄B

ª
, (11)

where V̄B was given in (9). In addition, the following defin-
itions concerning the region ΛV and the parameter estimate
vector vec(V̂ ) ∈ R(N1+1)N2 (i.e., the dynamic estimate of
vec(V ) ∈ ΛV ) are provided as follows: int(ΛV ) denotes
the interior of the region ΛV , ∂(ΛV ) denotes the boundary
for the region ΛV , vec(V̂ )⊥ ∈ R(N1+1)N2 is a unit vector
normal to ∂(ΛV ) at the point of intersection of the boundary
surface ∂(ΛV ) and vec(V̂ ), where the positive direction for
vec(V̂ )⊥ is defined as pointing away from int(ΛV ) (note
that vec(V̂ )⊥ is only defined for vec(V̂ ) ∈ ∂(ΛV )), P t

r (ψ)
is the component of the vector ψ ∈ R(N1+1)N2 that is tangent
to ∂(ΛV ) at the point of intersection of the boundary surface
∂(ΛV ) and the vector vec(V̂ ), and

P⊥r (ψ) = ψ − P t
r (ψ) ∈ R(N1+1)N2 (12)

is the component of the vector ψ ∈ R(N1+1)N2 that is
perpendicular to ∂(ΛV ) at the point of intersection of the
boundary surface ∂(ΛV ) and the vector vec(V̂ ). Similar to
(11), the convex region ΛW is defined as

ΛW ,
©
v : vT v ≤ W̄B

ª
, (13)

where W̄B was given in (10).

V. RISE FEEDBACK CONTROL DEVELOPMENT

The contribution of this paper is modular control devel-
opment and stability analysis that illustrate how the afore-
mentioned textbook (e.g., [22]) NN feedforward estimation
strategy can be fused with a RISE feedback control method
as a means to achieve asymptotic stability for general Euler-
Lagrange systems described by (1) while using generic NN
weight update laws. In this section, the open-loop and closed-
loop tracking error is developed for the combined control
system.

A. Open-Loop Error System
The open-loop tracking error system can be developed by

premultiplying (5) by M(q) and utilizing the expressions in
(1), (3), and (4) to obtain the following expression:

M(q)r = fd + S + τd − τ (14)

where the auxiliary function fd (qd, q̇d, q̈d) ∈ Rn is defined
as

fd ,M(qd)q̈d + Vm(qd, q̇d)q̇d +G(qd) + F (q̇d) , (15)

and the auxiliary function S (q, q̇, qd, q̇d, q̈d) ∈ Rn is defined
as

S , M (q) (α1ė1 + α2e2) +M (q) q̈d −M(qd)q̈d (16)
+Vm(q, q̇)q̇ − Vm(qd, q̇d)q̇d

+G(q)−G(qd) + F (q̇)− F (q̇d) .

The expression in (15) can be represented by a three-layer
NN as

fd =WTσ
¡
V Txd

¢
+ ε (xd) . (17)

In (17), the input xd(t) ∈ R3n+1 is defined as xd(t) ,
[1 qTd (t) q̇Td (t) q̈Td (t)]

T so that N1 = 3n where N1 was
introduced in (6). Based on the assumption that the desired
trajectory is bounded, the following inequalities hold

kε (xd)k ≤ εb1 kε̇ (xd, ẋd)k ≤ εb2 (18)
kε̈ (xd, ẋd, ẍd)k ≤ εb3

where εb1 , εb2 , εb3 ∈ R are known positive constants.

B. Closed-Loop Error System
Based on the open-loop error system in (14), the control

torque input is composed of a three-layer NN feedforward
term plus the RISE feedback term as

τ , f̂d + μ. (19)

Specifically, μ(t) ∈ Rn denotes the RISE feedback control
term defined as [27]–[30]

μ(t) , (ks + 1)e2(t)− (ks + 1)e2(0) (20)

+

tZ
0

[(ks + 1)α2e2(σ) + β1sgn(e2(σ))]dσ

where ks, β1 ∈ R are positive constant control gains. The
feedforward NN component in (19), denoted by f̂d(t) ∈ Rn,
is generated as

f̂d , ŴTσ
³
V̂ Txd

´
. (21)

The estimates for the NN weights in (21) are generated on-
line (there is no off-line learning phase) as

·
Ŵ ,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1 if vec(Ŵ ) ∈ int (ΛW )

(1

½
if vec(Ŵ ) ∈ ∂ (ΛW ) and
vec((1)

T vec(Ŵ )⊥ ≤ 0

P t
Mr ((1)

½
if vec(Ŵ ) ∈ ∂ (ΛW ) and
vec((1)

T vec(Ŵ )⊥ > 0

(22)

·
V̂ ,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(2 if vec(V̂ ) ∈ int (ΛV )

(2

½
if vec(V̂ ) ∈ ∂ (ΛV ) and
vec ((2)

T vec(V̂ )⊥ ≤ 0

P t
Mr ((2)

½
if vec(V̂ ) ∈ ∂ (ΛV ) and
vec ((2)

T
vec(V̂ )⊥ > 0

(23)

where

vec(Ŵ (0)) ∈ int (ΛW ) , vec(V̂ (0)) ∈ int (ΛV ) ,

and the auxiliary terms (1(t) ∈ R(N2+1)×n, (2(t) ∈
R(N1+1)×N2 are of the general forms that satisfy the fol-
lowing norm bounds:

(1 = w1 (t) + ΞW (q, q̇, e1, e2, r, t) (24)
(2 = v1 (t) + ΞV (q, q̇, e1, e2, r, t).
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In (24), w1 (t) ∈ R(N2+1)×n and v1 (t) ∈ R(N1+1)×N2 are
known functions such that

kw1 (t)k ≤ γ1 (25)
kẇ1 (t)k ≤ γ2 + γ3 ke1k+ γ4 ke2k+ γ5 krk

kv1 (t)k ≤ δ1 (26)
kv̇1 (t)k ≤ δ2 + δ3 ke1k+ δ4 ke2k+ δ5 krk

and ΞW ∈ R(N2+1)×n and ΞV ∈ R(N1+1)×N2 satisfy the
following bounds:

kΞW (t)k ≤ γ6 ke1k+ γ7 ke2k+ γ8 krk (27)

kΞV (t)k ≤ δ6 ke1k+ δ7 ke2k+ δ8 krk

where γi, δi ∈ R, i = 1, 2, ..., 8 are known non-
negative constants (i.e., the constants can be set to zero
for different update laws). In (22) and (23), P t

Mr (A) =
devec (P t

r (vec (A))) for a matrix A, where the operation
devec (·) is the reverse of vec (·).
Remark 2: The use of the projection algorithm in (22) and

(23) is to ensure that Ŵ (t) and V̂ (t) remain bounded inside
the convex regions defined in (11) and (13). This fact will
be exploited in the subsequent stability analysis
Remark 3: It is assumed that only the NN adaptation rules

depend on the unmeasurable signal r(t) but the corresponding
weight estimate obtained after integration is independent of
r(t).
The closed-loop tracking error system can be developed

by substituting (19) into (14) as

M(q)r = fd − f̂d + S + τd − μ. (28)

To facilitate the subsequent stability analysis, the time deriv-
ative of (28) is determined as

M(q)ṙ = −Ṁ(q)r + ḟd −
·
f̂d + Ṡ + τ̇d − μ̇. (29)

Using (17) and (21) the closed-loop error system in (29) can
be expressed as

M(q)ṙ = −Ṁ(q)r +WTσ
0 ¡
V Txd

¢
V T ẋd (30)

−
·

ŴTσ(V̂ Txd)− ŴTσ
0
(V̂ Txd)

·
V̂ Txd

−ŴTσ
0
(V̂ Txd)V̂

T ẋd + ε̇+ Ṡ + τ̇d − μ̇.

After adding and subtracting the term WT σ̂
0
V̂ T ẋd +

ŴT σ̂
0
Ṽ T ẋd to (30), the following expression can be ob-

tained:

M(q)ṙ = −Ṁ(q)r + ŴT σ̂
0
Ṽ T ẋd + W̃T σ̂

0
V̂ T ẋd (31)

+WTσ
0
V T ẋd −WT σ̂

0
V̂ T ẋd − ŴT σ̂

0
Ṽ T ẋd

−
·

ŴT σ̂ − ŴT σ̂
0
·

V̂ Txd + Ṡ + τ̇d + ε̇− μ̇

where the notations σ̂ and σ̃ are introduced in (8). Substi-
tuting the NN weight adaptation laws in (22), (23); (31) can
be rewritten as

M(q)ṙ = −1
2
Ṁ(q)r + Ñ +NB − e2 (32)

−(ks + 1)r − β1sgn(e2)

where the fact that the time derivative of (20) is given as

μ̇ = (ks + 1)r + β1sgn(e2) (33)

was utilized, and where the unmeasurable auxiliary terms
Ñ(e1, e2, r, t), NB(Ŵ , V̂ , xd, ẋd, t) ∈ Rn are defined as

Ñ , −1
2
Ṁ(q)r − proj(ΞW )

T σ̂ (34)

−ŴT σ̂
0
proj(ΞV )

Txd + Ṡ + e2

NB , NB1 +NB2 . (35)

In (35), NB1
(t), NB2

(Ŵ , V̂ , xd, ẋd, t) ∈ Rn are given by

NB1 =WTσ
0
V T ẋd + ε̇+ τ̇d (36)

NB2
= ŴT σ̂

0
Ṽ T ẋd + W̃T σ̂

0
V̂ T ẋd (37)

−proj(w1)T σ̂ − ŴT σ̂
0
proj(v1)

Txd

where proj (·) is the projection operator. In a similar manner
as in [27], the Mean Value Theorem can be used to develop
the following upper bound°°°Ñ(t)°°° ≤ ρ (kzk) kzk (38)

where z(t) ∈ R3n is defined as

z(t) , [eT1 eT2 rT ]T , (39)

and the bounding function ρ(kzk) ∈ R is a positive globally
invertible nondecreasing function. The following inequalities
can be developed based on Properties 2 and 3, (18), (24)-
(26), and (35)-(37):

kNBk ≤ ζ1

°°°ṄB1

°°° ≤ ζ2 (40)°°°ṄB2

°°° ≤ ζ3 + ζ4 ke1k+ ζ5 ke2k+ ζ6 krk (41)

where ζi ∈ R (i = 1, 2, ..., 6) are known positive constants.

VI. STABILITY ANALYSIS
Theorem: The combined NN and RISE controller given in

(19)-(23) ensures that all system signals are bounded under
closed-loop operation and that the position tracking error is
regulated in the sense that

ke1(t)k→ 0 as t→∞

provided the control gain ks introduced in (20) is selected
sufficiently large (see the subsequent proof), α1, α2 are
selected according to the following sufficient conditions:

α1 >
β2
4
+
1

2
(42)

α2 >
β2
2
+ β3 +

β4
2
+ 1

and βi (i = 1, 2, 3, 4) are selected according to the following
sufficient conditions:

β1 > ζ1 +
1

α2
ζ2 +

1

α2
ζ3 (43)

β2 > ζ4 β3 > ζ5 β4 > ζ6
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where β1 was introduced in (20), and β2-β4 are introduced
in (46).
Proof: Let D ⊂ R3n+1 be a domain containing y(t) = 0,

where y(t) ∈ R3n+1 is defined as
y(t) , [zT (t)

p
P (t)]T . (44)

In (44), the auxiliary function P (t) ∈ R is defined as

P (t) , β1 ke2(0)k− e2(0)
TNB(0)−

tZ
0

L(τ)dτ (45)

where the auxiliary function L(t) ∈ R is defined as
L(t) , rT (NB(t)− β1sgn(e2)) (46)

−β2 ke1(t)k ke2(t)k− β3 ke2(t)k
2

−β4 ke2(t)k kr(t)k
where βi ∈ R (i = 1, 2, 3, 4) are positive constants chosen
according to the sufficient conditions in (43). Provided the
sufficient conditions introduced in (43) are satisfied, the
following inequality can be obtained in a similar manner
as in [30]:

tZ
0

L(τ)dτ ≤ β1 ke2(0)k− e2(0)
TNB(0). (47)

Hence, (47) can be used to conclude that P (t) ≥ 0.
Let VL(y, t) : D × [0,∞) → R be a continuously

differentiable positive definite function defined as

VL(y, t) , eT1 e1 +
1

2
eT2 e2 +

1

2
rTM(q)r + P, (48)

which satisfies the following inequalities:

U1(y) ≤ VL(y, t) ≤ U2(y) (49)

provided the sufficient conditions introduced in (43) are
satisfied. In (49), the continuous positive definite functions
U1(y), and U2(y) ∈ R are defined as U1(y) , λ1 kyk2, and
U2(y) , λ2(q) kyk2 , where λ1, λ2(q) ∈ R are defined as

λ1 ,
1

2
min {1,m1} λ2(q) , max

½
1

2
m̄(q), 1

¾
where m1, m̄(q) are introduced in (2). After taking the time
derivative of (48), V̇L(y, t) can be expressed as

V̇L(y, t) = rTM(q)ṙ +
1

2
rT Ṁ(q)r

+eT2 ė2 + 2e
T
1 ė1 + Ṗ .

The derivative Ṗ (t) ∈ R can be expressed as
Ṗ (t) = −L(t) = −rT (NB(t)− β1sgn(e2)) (50)

+β2 ke1(t)k ke2(t)k+ β3 ke2(t)k
2

+β4 ke2(t)k kr(t)k .
After utilizing (4), (5), (32), (33), and (50), V̇ (y, t) can be
simplified as follows:

V̇L(y, t) = rT Ñ(t)− (ks + 1) krk2 − α2 ke2k2 (51)
−2α1 ke1k2 + 2eT2 e1 + β2 ke1k ke2k
+β3 ke2k

2 + β4 ke2k krk .

Based on the fact that

2eT2 e1 ≤ ke1k
2
+ ke2k2

V̇L(y, t) can be upper bounded using the squares of the
components of z(t) as follows:

V̇L(y, t) ≤ rT Ñ(t)− (ks + 1) krk2 − α2 ke2k2

−2α1 ke1k2 + ke1k2 + ke2k2 (52)

+
β2
2
ke1k2 +

β2
2
ke2k2 + β3 ke2k

2

+
β4
2
ke2k2 +

β4
2
krk2 .

By using (38), the expression in (52) can be rewritten as
follows:

V̇L(y, t) ≤ −λ3 kzk2−
∙µ

ks −
β4
2

¶
krk2 − ρ(kzk) krk kzk

¸
(53)

where λ3 , min{2α1 − β2
2 − 1, α2 −

β2
2 − β3 −

β4
2 − 1, 1};

hence, α1, and α2 must be chosen according to the sufficient
condition in (42). After completing the squares for the terms
inside the brackets in (53), the following expression can be
obtained:

V̇L(y, t) ≤ −λ3 kzk2 +
ρ2(kzk) kzk2

4
³
ks − β4

2

´ ≤ −U(y) (54)

where U(y) = c kzk2, for some positive constant c, is a
continuous, positive semi-definite function that is defined on
the following domain:

D ,
(
y ∈ R3n+1 | kyk ≤ ρ−1

Ã
2

s
λ3

µ
ks −

β4
2

¶!)
.

The inequalities in (49) and (54) can be used to show that
VL(y, t) ∈ L∞ in D; hence, e1(t), e2(t), and r(t) ∈ L∞ in
D. Given that e1(t), e2(t), and r(t) ∈ L∞ in D, standard
linear analysis methods can be used to prove that ė1(t),
ė2(t) ∈ L∞ in D from (4) and (5). Since e1(t), e2(t),
r(t) ∈ L∞ in D, the assumption that qd(t), q̇d(t), q̈d(t) exist
and are bounded can be used along with (3)-(5) to conclude
that q(t), q̇(t), q̈(t) ∈ L∞ in D. Since q(t), q̇(t) ∈ L∞ in
D, Property 2 can be used to conclude that M(q), Vm(q, q̇),
G(q), and F (q̇) ∈ L∞ in D. Thus from (1) and Property 3,
we can show that τ(t) ∈ L∞ in D. Given that r(t) ∈ L∞
in D, (33) can be used to show that μ̇(t) ∈ L∞ in D. Since
q̇(t), q̈(t) ∈ L∞ in D, Property 2 can be used to show that
V̇m(q, q̇), Ġ(q), Ḟ (q) and Ṁ(q) ∈ L∞ in D; hence, (32) can
be used to show that ṙ(t) ∈ L∞ in D. Since ė1(t), ė2(t),
ṙ(t) ∈ L∞ in D, the definitions for U(y) and z(t) can be
used to prove that U(y) is uniformly continuous in D.
Let S ⊂ D denote a set defined as follows:

S , {y(t)⊂ D | U2(y(t)) (55)

< λ1

Ã
ρ−1

Ã
2

s
λ3

µ
ks −

β4
2

¶!!2
}.

The region of attraction in (55) can be made arbitrarily large
to include any initial conditions by increasing the control
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gain ks (i.e., a semi-global type of stability result) [27].
Theorem 8.4 of [31] can now be invoked to state that

c kz(t)k2 → 0 as t→∞ ∀y(0) ∈ S. (56)

Based on the definition of z(t), (56) can be used to show
that

ke1(t)k→ 0 as t→∞ ∀y(0) ∈ S. (57)

VII. CONCLUSION
Modularity in controller/NN weight tuning law was shown

for a class of non-LP uncertain Euler-Lagrange systems
with additive bounded disturbances. Specifically, a nonlinear
multilayer NN was used in conjunction with the RISE
feedback term (see [19]), and a generic form of the NN
weight tuning law was derived. A new closed-loop error
system was developed, and the typical RISE stability analysis
was modified. New sufficient gain conditions were derived to
show asymptotic tracking of the desired link position. The
generic form of the tuning law allows for the use of any
existing NN weight tuning law (e.g., gradient or Hebbian
etc.).
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